Effects of Wave-Induced Processes in a Coupled Wave–Ocean Model on Particle Transport Simulations
Abstract
:1. Introduction
2. Methods
2.1. Models and Set-Up
2.1.1. The Circulation Model NEMO
2.1.2. The Wave Model WAM
2.1.3. Wave-Induced Processes
2.1.4. The Lagrangian Model
2.2. Observational Data
2.2.1. Drifter Data
2.2.2. HF Radar Data
2.3. Model Experiments
3. Evaluation of Model Simulations
3.1. Methodology
3.2. Surface Currents
3.2.1. HF-Radar versus Drifter Observations
3.2.2. Assessment of Model Velocity
4. Model Trajectories
4.1. Time Series of Separation Distance, Skill Scores and Standard Deviation
4.2. Particle Trajectories of the Albatros Drifters
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Wave–Current Interaction Processes
Stokes Drift
Appendix A.2. Momentum and Energy Flux from the Wave Model
References
- Van Sebille, E.; Griffies, S.M.; Abernathey, R.; Adams, T.P.; Berloff, P.; Biastoch, A.; Blanke, B.; Chassignet, E.P.; Cheng, Y.; Cotter, C.J.; et al. Lagrangian Ocean Analysis: Fundamentals and Practices. Ocean Modell. 2018, 121, 49–75. [Google Scholar] [CrossRef]
- Van Sebille, E.; Aliani, S.; Law, K.L.; Maximenko, N.; Alsina, J.M.; Bagaev, A.; Bergmann, M.; Chapron, B.; Chubarenko, I.; Cózar, A.; et al. The Physical Oceanography of the Transport of Floating Marine Debris. Environ. Res. Lett. 2020, 15, 023003. [Google Scholar] [CrossRef] [Green Version]
- Van Sebille, E.; van Leeuwen, P.J.; Biastoch, A.; Barron, C.N.; de Ruijter, W.P.M. Lagrangian Validation of Numerical Drifter Trajectories Using Drifting Buoys: Application to the Agulhas System. Ocean Modell. 2009, 29, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Weisberg, R.H. Evaluation of Trajectory Modeling in Different Dynamic Regions Using Normalized Cumulative Lagrangian Separation. J. Geophys. Res. Oceans 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Sotillo, M.G.; Fanjul, E.A.; Castanedo, S.; Abascal, A.J.; Menendez, J.; Emelianov, M.; Olivella, R.; García-Ladona, E.; Ruiz-Villarreal, M.; Conde, J.; et al. Towards an Operational System for Oil-Spill Forecast over Spanish Waters: Initial Developments and Implementation Test. Mar. Pollut. Bull. 2008, 56, 686–703. [Google Scholar] [CrossRef]
- Huntley, H.S.; Lipphardt, B.L.; Kirwan, A.D. Lagrangian Predictability Assessed in the East China Sea. Ocean Modell. 2011, 36, 163–178. [Google Scholar] [CrossRef]
- Janssen, P.A.E.M. Wave-Induced Stress and the Drag of Air Flow over Sea Waves. J. Phys. Oceanogr. 1989, 19, 745–754. [Google Scholar] [CrossRef] [Green Version]
- Janssen, P.A.E.M. Quasi-Linear Theory of Wind-Wave Generation Applied to Wave Forecasting. J. Phys. Oceanogr. 1991, 21, 1631–1642. [Google Scholar] [CrossRef] [Green Version]
- Semedo, A.; Saetra, Ø.; Rutgersson, A.; Kahma, K.K.; Pettersson, H. Wave-Induced Wind in the Marine Boundary Layer. J. Atmos. Sci. 2009, 66, 2256–2271. [Google Scholar] [CrossRef] [Green Version]
- Breivik, Ø.; Janssen, P.A.E.M.; Bidlot, J.-R. Approximate Stokes Drift Profiles in Deep Water. J. Phys. Oceanogr. 2014, 44, 2433–2445. [Google Scholar] [CrossRef] [Green Version]
- Breivik, Ø.; Mogensen, K.; Bidlot, J.-R.; Balmaseda, M.A.; Janssen, P.A.E.M. Surface Wave Effects in the NEMO Ocean Model: Forced and Coupled Experiments. J. Geophys. Res. Ocean. 2015, 120, 2973–2992. [Google Scholar] [CrossRef] [Green Version]
- Guan, C.; Xie, L. On the Linear Parameterization of Drag Coefficient over Sea Surface. J. Phys. Oceanogr. 2004, 34, 2847–2851. [Google Scholar] [CrossRef]
- Wu, L.; Rutgersson, A.; Sahlée, E.; Larsén, X.G. Swell Impact on Wind Stress and Atmospheric Mixing in a Regional Coupled Atmosphere-Wave Model. J. Geophys. Res. Ocean. 2016, 121, 4633–4648. [Google Scholar] [CrossRef] [Green Version]
- Higgins, C.; Vanneste, J.; Bremer, T.S. Unsteady Ekman-Stokes Dynamics: Implications for Surface Wave-Induced Drift of Floating Marine Litter. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Röhrs, J.; Christensen, K.H.; Hole, L.R.; Broström, G.; Drivdal, M.; Sundby, S. Observation-Based Evaluation of Surface Wave Effects on Currents and Trajectory Forecasts. Ocean Dyn. 2012, 62, 1519–1533. [Google Scholar] [CrossRef]
- Hufnagl, M.; Payne, M.; Lacroix, G.; Bolle, L.J.; Daewel, U.; Dickey-Collas, M.; Gerkema, T.; Huret, M.; Janssen, F.; Kreus, M.; et al. Variation That Can Be Expected When Using Particle Tracking Models in Connectivity Studies. J. Sea Res. 2017, 127, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Röhrs, J.; Christensen, K.H.; Vikebø, F.; Sundby, S.; Saetra, Ø.; Broström, G. Wave-Induced Transport and Vertical Mixing of Pelagic Eggs and Larvae. Limnol. Oceanogr. 2014, 59, 1213–1227. [Google Scholar] [CrossRef]
- Staneva, J.; Alari, V.; Breivik, Ø.; Bidlot, J.-R.; Mogensen, K. Effects of Wave-Induced Forcing on a Circulation Model of the North Sea. Ocean Dyn. 2017, 67, 81–101. [Google Scholar] [CrossRef]
- Alari, V.; Staneva, J.; Breivik, Ø.; Bidlot, J.-R.; Mogensen, K.; Janssen, P. Surface Wave Effects on Water Temperature in the Baltic Sea: Simulations with the Coupled NEMO-WAM Model. Ocean Dyn. 2016, 66, 917–930. [Google Scholar] [CrossRef]
- Brown, J.M.; Bolaños, R.; Wolf, J. The Depth-Varying Response of Coastal Circulation and Water Levels to 2D Radiation Stress When Applied in a Coupled Wave–Tide–Surge Modelling System during an Extreme Storm. Coast. Eng. 2013, 82, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.M.; Wolf, J. Coupled Wave and Surge Modelling for the Eastern Irish Sea and Implications for Model Wind-Stress. Cont. Shelf Res. 2009, 29, 1329–1342. [Google Scholar] [CrossRef] [Green Version]
- Staneva, J.; Wahle, K.; Koch, W.; Behrens, A.; Fenoglio-Marc, L.; Stanev, E.V. Coastal Flooding: Impact of Waves on Storm Surge during Extremes—A Case Study for the German Bight. Nat. Hazards Earth Syst. Sci. 2016, 16, 2373–2389. [Google Scholar] [CrossRef] [Green Version]
- Lewis, H.W.; Castillo Sanchez, J.M.; Siddorn, J.; King, R.R.; Tonani, M.; Saulter, A.; Sykes, P.; Pequignet, A.-C.; Weedon, G.P.; Palmer, T.; et al. Can Wave Coupling Improve Operational Regional Ocean Forecasts for the North-West European Shelf? Ocean Sci. 2019, 15, 669–690. [Google Scholar] [CrossRef] [Green Version]
- Cavaleri, L.; Abdalla, S.; Benetazzo, A.; Bertotti, L.; Bidlot, J.-R.; Breivik, Ø.; Carniel, S.; Jensen, R.E.; Portilla-Yandun, J.; Rogers, W.E.; et al. Wave Modelling in Coastal and Inner Seas. Prog. Oceanogr. 2018, 167, 164–233. [Google Scholar] [CrossRef]
- Wu, L.; Breivik, Ø.; Rutgersson, A. Ocean-Wave-Atmosphere Interaction Processes in a Fully Coupled Modeling System. J. Adv. Modeling Earth Syst. 2019, 11, 3852–3874. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, R.; Horstmann, J. German Bight Surface Drifter Data from Heincke Cruise HE 445. 2015. Available online: https://doi.pangaea.de/10.1594/PANGAEA.874511 (accessed on 28 January 2020).
- Callies, U.; Groll, N.; Horstmann, J.; Kapitza, H.; Klein, H.; Maßmann, S.; Schwichtenberg, F. Surface Drifters in the German Bight: Model Validation Considering Windage and Stokes Drift. Ocean Sci. 2017, 13, 799–827. [Google Scholar] [CrossRef] [Green Version]
- Ricker, M.; Stanev, E.V. Circulation of the European Northwest Shelf: A Lagrangian Perspective. Ocean Sci. 2020, 16, 637–655. [Google Scholar] [CrossRef]
- Callies, U.; Carrasco, R.; Floeter, J.; Horstmann, J.; Quante, M. Submesoscale Dispersion of Surface Drifters in a Coastal Sea near Offshore Wind Farms. Ocean Sci. 2019, 15, 865–889. [Google Scholar] [CrossRef] [Green Version]
- Von Schuckmann, K.; Traon, P.-Y.L.; Smith, N.; Pascual, A.; Djavidnia, S.; Gattuso, J.-P.; Grégoire, M.; Nolan, G.; Aaboe, S.; Aguiar, E.; et al. Copernicus Marine Service Ocean State Report, Issue 3. J. Oper. Oceanogr. 2019, 12, S1–S123. [Google Scholar] [CrossRef]
- Ho-Hagemann, H.T.M.; Hagemann, S.; Grayek, S.; Petrik, R.; Rockel, B.; Staneva, J.; Feser, F.; Schrum, C. Internal Model Variability of the Regional Coupled System Model GCOAST-AHOI. Atmosphere 2020, 11, 227. [Google Scholar] [CrossRef] [Green Version]
- Breivik, Ø.; Allen, A.A. An Operational Search and Rescue Model for the Norwegian Sea and the North Sea. J. Mar. Syst. 2008, 69, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Breivik, Ø.; Allen, A.A.; Maisondieu, C.; Olagnon, M. Advances in Search and Rescue at Sea. Ocean Dyn. 2013, 63, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Madec, G. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL); NEMO Ocean Engine: Paris, France, 2008. [Google Scholar]
- Hordoir, R.; Axell, L.; Höglund, A.; Dieterich, C.; Fransner, F.; Gröger, M.; Liu, Y.; Pemberton, P.; Schimanke, S.; Andersson, H.; et al. Nemo-Nordic 1.0: A NEMO-Based Ocean Model for the Baltic and North Seas—Research and Operational Applications. Geosci. Model Dev. 2019, 12, 363–386. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, J.C.; Zijlema, M.; Westerink, J.J.; Holthuijsen, L.H.; Dawson, C.; Luettich, R.A.; Jensen, R.E.; Smith, J.M.; Stelling, G.S.; Stone, G.W. Modeling Hurricane Waves and Storm Surge Using Integrally-Coupled, Scalable Computations. Coast. Eng. 2011, 58, 45–65. [Google Scholar] [CrossRef]
- O’Dea, E.; Furner, R.; Wakelin, S.; Siddorn, J.; While, J.; Sykes, P.; King, R.; Holt, J.; Hewitt, H. The CO5 Configuration of the 7 km Atlantic Margin Model: Large-Scale Biases and Sensitivity to Forcing, Physics Options and Vertical Resolution. Geosci. Model Dev. 2017, 10, 2947–2969. [Google Scholar] [CrossRef] [Green Version]
- O’Dea, E.J.; Arnold, A.K.; Edwards, K.P.; Furner, R.; Hyder, P.; Martin, M.J.; Siddorn, J.R.; Storkey, D.; While, J.; Holt, J.T.; et al. An Operational Ocean Forecast System Incorporating NEMO and SST Data Assimilation for the Tidally Driven European North-West Shelf. J. Oper. Oceanogr. 2012, 5, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Group, T.W. The WAM Model—A Third Generation Ocean Wave Prediction Model. J. Phys. Oceanogr. 1988, 18, 1775–1810. [Google Scholar] [CrossRef] [Green Version]
- ECMWF. IFS Documentation CY40R1; IFS Documentation; ECMWF: Readink, UK, 2014. [Google Scholar]
- Komen, G.J.; Cavaleri, L.; Donelan, M.; Hasselmann, K.; Hasselmann, S.; Janssen, P.A.E.M. Dynamics and Modelling of Ocean Waves; Cambridge University Press: Cambridge, UK, 1994; ISBN 978-0-521-57781-6. [Google Scholar]
- Günther, H.; Hasselmann, S.; Janssen, P.A.E.M. The WAM Model Cycle 4.0; Deutsches Klimarechenzentrum: Hamburg, Germany, 1992; p. 102. [Google Scholar]
- Staneva, J.; Behrens, A.; Wahle, K. Wave Modelling for the German Bight Coastal-Ocean Predicting System. J. Phys. Conf. Ser. 2015, 633, 012117. [Google Scholar] [CrossRef]
- Hersbach, H.; Janssen, P.A.E.M. Improvement of the Short-Fetch Behavior in the Wave Ocean Model (WAM). J. Atmos. Ocean. Technol. 1999, 16, 884–892. [Google Scholar] [CrossRef]
- Bidlot, J.-R.; Janssen, P.; Abdalla, S. A Revised Formulation of Ocean Wave Dissipation and Its Model Impact; ECMWF: Reading, UK, 2007; p. 27. [Google Scholar]
- Dagestad, K.-F.; Röhrs, J.; Breivik, Ø.; Ådlandsvik, B. OpenDrift v1.0: A Generic Framework for Trajectory Modelling. Geosci. Model Dev. 2018, 11, 1405–1420. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.E.; Dagestad, K.-F.; Breivik, Ø.; Holt, B.; Röhrs, J.; Christensen, K.H.; Espeseth, M.; Brekke, C.; Skrunes, S. Measurement and Modeling of Oil Slick Transport. J. Geophys. Res. Ocean. 2016, 121, 7759–7775. [Google Scholar] [CrossRef]
- Christensen, K.H.; Breivik, Ø.; Dagestad, K.-F.; Röhrs, J.; Ward, B. Short-Term Predictions of Oceanic Drift. Oceanography 2018, 31, 59–67. [Google Scholar] [CrossRef]
- Meyerjürgens, J.; Badewien, T.H.; Garaba, S.P.; Wolff, J.-O.; Zielinski, O. A State-of-the-Art Compact Surface Drifter Reveals Pathways of Floating Marine Litter in the German Bight. Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Baschek, B.; Schroeder, F.; Brix, H.; Riethmüller, R.; Badewien, T.H.; Breitbach, G.; Brügge, B.; Colijn, F.; Doerffer, R.; Eschenbach, C.; et al. The Coastal Observing System for Northern and Arctic Seas (COSYNA). Ocean Sci. 2017, 13, 379–410. [Google Scholar] [CrossRef] [Green Version]
- Stanev, E.V.; Schulz-Stellenfleth, J.; Staneva, J.; Grayek, S.; Grashorn, S.; Behrens, A.; Koch, W.; Pein, J. Ocean Forecasting for the German Bight: From Regional to Coastal Scales. Ocean Sci. 2016, 12, 1105–1136. [Google Scholar] [CrossRef] [Green Version]
- Gurgel, K.W. Remarks on Signal Processing in HF Radars Using FMCW Modulation. IRS 2009, 63–67. Available online: http://wera.cen.uni-hamburg.de/pub_70.pdf (accessed on 28 January 2020).
- De Dominicis, M.; Pinardi, N.; Zodiatis, G.; Archetti, R. MEDSLIK-II, a Lagrangian Marine Surface Oil Spill Model for Short-Term Forecasting – Part 2: Numerical Simulations and Validations. Geosci. Model Dev. 2013, 6, 1871–1888. [Google Scholar] [CrossRef] [Green Version]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Röhrs, J.; Sperrevik, A.K.; Christensen, K.H.; Broström, G.; Breivik, Ø. Comparison of HF Radar Measurements with Eulerian and Lagrangian Surface Currents. Ocean Dyn. 2015, 65, 679–690. [Google Scholar] [CrossRef] [Green Version]
- Ardhuin, F.; Marié, L.; Rascle, N.; Forget, P.; Roland, A. Observation and Estimation of Lagrangian, Stokes, and Eulerian Currents Induced by Wind and Waves at the Sea Surface. J. Phys. Oceanogr. 2009, 39, 2820–2838. [Google Scholar] [CrossRef]
- Niiler, P.P.; Sybrandy, A.S.; Bi, K.; Poulain, P.M.; Bitterman, D. Measurements of the Water-Following Capability of Holey-Sock and TRISTAR Drifters. Deep Sea Res. Part I Oceanogr. Res. Pap. 1995, 42, 1951–1964. [Google Scholar] [CrossRef]
- Stanev, E.V.; Badewien, T.H.; Freund, H.; Grayek, S.; Hahner, F.; Meyerjürgens, J.; Ricker, M.; Schöneich-Argent, R.I.; Wolff, J.-O.; Zielinski, O. Extreme Westward Surface Drift in the North Sea: Public Reports of Stranded Drifters and Lagrangian Tracking. Cont. Shelf Res. 2019, 177, 24–32. [Google Scholar] [CrossRef]
- Wiese, A.; Staneva, J.; Schulz-Stellenfleth, J.; Behrens, A.; Fenoglio-Marc, L.; Bidlot, J.-R. Synergy of Wind Wave Model Simulations and Satellite Observations during Extreme Events. Ocean Sci. 2018, 14, 1503–1521. [Google Scholar] [CrossRef] [Green Version]
- Breivik, Ø.; Bekkvik, T.C.; Wettre, C.; Ommundsen, A. BAKTRAK: Backtracking Drifting Objects Using an Iterative Algorithm with a Forward Trajectory Model. Ocean Dyn. 2012, 62, 239–252. [Google Scholar] [CrossRef] [Green Version]
- Strand, K.O.; Vikebø, F.; Sundby, S.; Sperrevik, A.K.; Breivik, Ø. Subsurface Maxima in Buoyant Fish Eggs Indicate Vertical Velocity Shear and Spatially Limited Spawning Grounds. Limnol. Oceanogr. 2019, 64, 1239–1251. [Google Scholar] [CrossRef]
- Kukulka, T.; Proskurowski, G.; Morét-Ferguson, S.; Meyer, D.W.; Law, K.L. The Effect of Wind Mixing on the Vertical Distribution of Buoyant Plastic Debris. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Van Sebille, E.; England, M.H.; Froyland, G. Origin, Dynamics and Evolution of Ocean Garbage Patches from Observed Surface Drifters. Environ. Res. Lett. 2012, 7, 044040. [Google Scholar] [CrossRef]
- Sutherland, G.; Soontiens, N.; Davidson, F.; Smith, G.C.; Bernier, N.; Blanken, H.; Schillinger, D.; Marcotte, G.; Röhrs, J.; Dagestad, K.-F.; et al. Evaluating the Leeway Coefficient of Ocean Drifters Using Operational Marine Environmental Prediction Systems. J. Atmos. Ocean. Technol. 2020, 37, 1943–1954. [Google Scholar] [CrossRef]
- Stanev, E.V.; Ricker, M. Interactions between Barotropic Tides and Mesoscale Processes in Deep Ocean and Shelf Regions. Ocean Dyn. 2020, 70, 713–728. [Google Scholar] [CrossRef] [Green Version]
- Hasselmann, K. Wave-driven Inertial Oscillations. Geophys. Fluid Dyn. 1970, 1, 463–502. [Google Scholar] [CrossRef]
- Breivik, Ø.; Bidlot, J.-R.; Janssen, P.A.E.M. A Stokes Drift Approximation Based on the Phillips Spectrum. Ocean Model. 2016, 100, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Fox-Kemper, B.; Breivik, Ø.; Webb, A. Statistical Models of Global Langmuir Mixing. Ocean Model. 2017, 113, 95–114. [Google Scholar] [CrossRef] [Green Version]
- Craig, P.D.; Banner, M.L. Modeling Wave-Enhanced Turbulence in the Ocean Surface Layer. J. Phys. Oceanogr. 1994, 24, 2546–2559. [Google Scholar] [CrossRef] [Green Version]
Experiment | REF | CPL | WD-Ref | WD-CPL |
---|---|---|---|---|
NEMO-only | Yes | No | Yes | |
NEMO-WAM | No | Yes | No | |
Windage | No | No | 0.1%/0.5%/1% | 0.1%/0.5%/1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staneva, J.; Ricker, M.; Carrasco Alvarez, R.; Breivik, Ø.; Schrum, C. Effects of Wave-Induced Processes in a Coupled Wave–Ocean Model on Particle Transport Simulations. Water 2021, 13, 415. https://doi.org/10.3390/w13040415
Staneva J, Ricker M, Carrasco Alvarez R, Breivik Ø, Schrum C. Effects of Wave-Induced Processes in a Coupled Wave–Ocean Model on Particle Transport Simulations. Water. 2021; 13(4):415. https://doi.org/10.3390/w13040415
Chicago/Turabian StyleStaneva, Joanna, Marcel Ricker, Ruben Carrasco Alvarez, Øyvind Breivik, and Corinna Schrum. 2021. "Effects of Wave-Induced Processes in a Coupled Wave–Ocean Model on Particle Transport Simulations" Water 13, no. 4: 415. https://doi.org/10.3390/w13040415
APA StyleStaneva, J., Ricker, M., Carrasco Alvarez, R., Breivik, Ø., & Schrum, C. (2021). Effects of Wave-Induced Processes in a Coupled Wave–Ocean Model on Particle Transport Simulations. Water, 13(4), 415. https://doi.org/10.3390/w13040415