Presence and Reduction of Anthropogenic Substances with UV Light and Oxidizing Disinfectants in Wastewater—A Case Study at Kuopio, Finland
Abstract
:1. Introduction
2. Materials and Methods
Experimental Design
3. Results and Discussion
3.1. Cetirizine
3.2. Benzotriazoles (BZTs)
3.3. Hydrocholorothiazide
3.4. Furosemide
3.5. Lamotrigine
3.6. Diclofenac
3.7. Venlafaxine
3.8. Losartan
3.9. The Most Efficient Removal of Anthropogenic Substances Achieved by Using Ozone Purification with OxTube Hermetic Dissolution Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deblonde, T.; Cossu-Leguille, C.; Hartemann, P. Emerging pollutants in wastewater: A review of the literature. Int. J. Hyg. Environ. Health 2011, 214, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Martín-Pozo, L.; De Alarcón-Gómez, B.; Rodríguez-Gómez, R.; García-Córcoles, M.T.; Çipa, M.; Zafra-Gómez, A. Analytical methods for the determination of emerging contaminants in sewage sludge samples. A review. Talanta 2019, 192, 508–533. [Google Scholar] [CrossRef] [PubMed]
- Thomaidis, N.S.; Asimakopoulos, A.G.; Bletsou, A. Emerging contaminants: A tutorial mini-review. Glob. NEST J. 2012, 14, 72–79. [Google Scholar]
- Gros, M.; Petrović, M.; Ginebreda, A.; Barceló, D. Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ. Int. 2010, 36, 15–26. [Google Scholar] [CrossRef]
- Song, P.; Huang, G.; An, C.; Xin, X.; Zhang, P.; Chen, X.; Ren, S.; Xu, Z.; Yang, X. Exploring the decentralized treatment of sulfamethoxazole-contained poultry wastewater through vertical-flow multi-soil-layering systems in rural communities. Water Res. 2021, 188, 116480. [Google Scholar] [CrossRef]
- Lienert, J.; Güdel, K.; Escher, B.I. Screening Method for Ecotoxicological Hazard Assessment of 42 Pharmaceuticals Considering Human Metabolism and Excretory Routes. Environ. Sci. Technol. 2007, 41, 4471–4478. [Google Scholar] [CrossRef]
- Kosonen, J.; Kronberg, L. The occurrence of antihistamines in sewage waters and in recipient rivers. Environ. Sci. Pollut. Res. 2009, 16, 555–564. [Google Scholar] [CrossRef]
- European Union. Water Framework Directive (WFD) 2000/60/EC: Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; European Union: Brussels, Belgium, 2012. [Google Scholar]
- European Union. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy; European Union: Brussels, Belgium, 2013. [Google Scholar]
- Vieno, N.; Äystö, L.; Mehtonen, J.; Sikanen, T.; Karlsson, S.; Fjäder, P.; Nystén, T. Lääkejäämien vesistöriskien arviointi Suomessa. Vesitalous 2020, 1, 25–28. (In Finnish) [Google Scholar]
- Mejía-Morales, C.; Hernández-Aldana, F.; Cortes-Hernandez, D.M.; Rivera-Tapia, J.A.; Castañeda-Antonio, D.; Bonilla, N. Assessment of Biological and Persistent Organic Compounds in Hospital Wastewater After Advanced Oxidation Process UV/H2O2/O3. Waterairsoil Pollut. 2020, 231, 1–10. [Google Scholar] [CrossRef]
- Chen, X.; Huang, G.; Li, Y.; An, C.; Feng, R.; Wu, Y.; Shen, J. Functional PVDF ultrafiltration membrane for Tetrabromobisphenol-A (TBBPA) removal with high water recovery. Water Res. 2020, 181, 115952. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, G.; An, C.; Huang, J.; Xin, X.; Chen, X.; Hong, Y.; Song, P. Removal of Escherichia Coli from water using functionalized porous ceramic disk filter coated with Fe/TiO2 nano-composites. J. Water Process. Eng. 2020, 33, 101013. [Google Scholar] [CrossRef]
- EPA. Method 1694: Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS; Environmental Protection Agency: Washington, DC, USA, 2007.
- Zhang, L.; Cheng, L.; Hong, J. The Clinical Use of Cetirizine in the Treatment of Allergic Rhinitis. Pharmacology 2013, 92, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Curran, M.P.; Scott, L.J.; Perry, C.M. Cetirizine. Drugs 2004, 64, 523–561. [Google Scholar] [CrossRef]
- Teixeira, M.; Almeida, Â.; Calisto, V.; Esteves, V.I.; Schneider, R.J.; Wrona, F.J.; Soares, A.M.; Figueira, E.; Freitas, R. Toxic effects of the antihistamine cetirizine in mussel Mytilus galloprovincialis. Water Res. 2017, 114, 316–326. [Google Scholar] [CrossRef]
- Bahlmann, A.; Carvalho, J.J.; Weller, M.G.; Panne, U.; Schneider, R.J. Immunoassays as high-throughput tools: Monitoring spatial and temporal variations of carbamazepine, caffeine and cetirizine in surface and wastewaters. Chemosphere 2012, 89, 1278–1286. [Google Scholar] [CrossRef]
- Ma, D.; Chen, L.; Liu, R. Removal of novel antiandrogens identified in biological effluents of domestic wastewater by activated carbon. Sci. Total. Environ. 2017, 595, 702–710. [Google Scholar] [CrossRef]
- Cantwell, M.G.; Sullivan, J.C.; Burgess, R.M. Benzotriazoles: History, environmental distribution, and potential ecological effects. In Anonymous Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2015; pp. 513–545. [Google Scholar]
- Muschietti, A.; Serrano, N.; Ariño, C.; Diaz-Cruz, M.S.; Cruz, J.M.D. Screen-Printed Electrodes for the Voltammetric Sensing of Benzotriazoles in Water. Sensors 2020, 20, 1839. [Google Scholar] [CrossRef] [Green Version]
- Janna, H.; Scrimshaw, M.D.; Williams, R.J.; Churchley, J.; Sumpter, J.P. From Dishwasher to Tap? Xenobiotic Substances Benzotriazole and Tolyltriazole in the Environment. Environ. Sci. Technol. 2011, 45, 3858–3864. [Google Scholar] [CrossRef] [Green Version]
- Hart, D.; Davis, L.; Erickson, L.; Callender, T. Sorption and partitioning parameters of benzotriazole compounds. Microchem. J. 2004, 77, 9–17. [Google Scholar] [CrossRef]
- Alotaibi, M.D.; McKinley, A.J.; Patterson, B.M.; Reeder, A.Y. Benzotriazoles in the Aquatic Environment: A Review of Their Occurrence, Toxicity, Degradation and Analysis. Waterairsoil Pollut. 2015, 226, 226. [Google Scholar] [CrossRef]
- Loos, R.; Carvalho, R.; António, D.C.; Comero, S.; Locoro, G.; Tavazzi, S.; Paracchini, B.; Ghiani, M.; Lettieri, T.; Blaha, L.; et al. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res. 2013, 47, 6475–6487. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Perales, M.; Sánchez-Polo, M.; Rozalen, M.; López-Ramón, M.V.; Mota, A.; Rivera-Utrilla, J. Degradation of the diuretic hydrochlorothiazide by UV/Solar radiation assisted oxidation processes. J. Environ. Manag. 2020, 257, 109973. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, S.; Devarapalli, R.; Kundu, S.; Vangala, V.R.; Ghosh, A.; Reddy, C.M. Three new hydrochlorothiazide cocrystals: Structural analyses and solubility studies. J. Mol. Struct. 2017, 1133, 405–410. [Google Scholar] [CrossRef]
- Äystö, L.; Mehtonen, J.; Kalevi, K. Kartoitus Lääkeaineista Yhdyskuntajätevedessä ja Pintavedessä; Finnish Environment Institute: Helsinki, Finland, 2014. (In Finnish) [Google Scholar]
- Oosterhuis, M.; Sacher, F.; Ter Laak, T.L. Prediction of concentration levels of metformin and other high consumption pharmaceuticals in wastewater and regional surface water based on sales data. Sci. Total. Environ. 2013, 442, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Bueno, M.M.; Gomez, M.; Herrera, S.; Hernando, M.; Agüera, A.; Fernández-Alba, A.R.R. Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: Two years pilot survey monitoring. Environ. Pollut. 2012, 164, 267–273. [Google Scholar] [CrossRef]
- Radjenovic, J.; Petrovic, M.; Barceló, D. Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Anal. Bioanal. Chem. 2006, 387, 1365–1377. [Google Scholar] [CrossRef] [Green Version]
- Laurencé, C.; Rivard, M.; Martens, T.; Morin, C.; Buisson, D.; Bourcier, S.; Sablier, M.C.; Oturan, M.A. Anticipating the fate and impact of organic environmental contaminants: A new approach applied to the pharmaceutical furosemide. Chemosphere 2014, 113, 193–199. [Google Scholar] [CrossRef]
- Fimea, K. Finnish Statistics on Medicines. 2016. Available online: http://urn.fi/URN:NBN:fi-fe2017111750773 (accessed on 2 December 2020).
- Khalaf, H.; Salste, L.; Karlsson, P.; Ivarsson, P.; Jass, J.; Olsson, P.-E. In vitro analysis of inflammatory responses following environmental exposure to pharmaceuticals and inland waters. Sci. Total. Environ. 2009, 407, 1452–1460. [Google Scholar] [CrossRef]
- TemaNord. PPCP Monitoring in the Nordic Countries—Status Report; Nordic Council of Ministers: Copenhagen, Denmark, 2012; p. 519. [Google Scholar]
- Besse, J.-P.; Garric, J. Human pharmaceuticals in surface waters: Implementation of a prioritization methodology and application to the French situation. Toxicol. Lett. 2008, 176, 104–123. [Google Scholar] [CrossRef]
- Jelic, A.; Gros, M.; Ginebreda, A.; Cespedes-Sánchez, R.; Ventura, F.; Petrovic, M.; Barcelo, D. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res. 2011, 45, 1165–1176. [Google Scholar] [CrossRef]
- Bollmann, A.F.; Seitz, W.; Prasse, C.; Lucke, T.; Schulz, W.; Ternes, T. Occurrence and fate of amisulpride, sulpiride, and lamotrigine in municipal wastewater treatment plants with biological treatment and ozonation. J. Hazard. Mater. 2016, 320, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, I.; Thurman, E.M. Identification of a New Antidepressant and its Glucuronide Metabolite in Water Samples Using Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry. Anal. Chem. 2010, 82, 8161–8168. [Google Scholar] [CrossRef] [PubMed]
- Keen, O.S.; Ferrer, I.; Thurman, E.M.; Linden, K.G. Degradation pathways of lamotrigine under advanced treatment by direct UV photolysis, hydroxyl radicals, and ozone. Chemosphere 2014, 117, 316–323. [Google Scholar] [CrossRef]
- Richards, N.; Gilbert, M.; Taggart, M.; Naidoo, V. A Cautionary Tale: Diclofenac and Its Profound Impact on Vultures. Encycl. Anthr. 2018, 247–255. [Google Scholar] [CrossRef]
- Sathishkumar, P.; Meena, R.A.A.; Palanisami, T.; AshokKumar, V.; Palvannan, T.; Gu, F.L. Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota - a review. Sci. Total. Environ. 2020, 698, 134057. [Google Scholar] [CrossRef]
- Lindholm-Lehto, P.C.; Ahkola, H.S.J.; Knuutinen, J.S.; Herve, S.H. Widespread occurrence and seasonal variation of pharmaceuticals in surface waters and municipal wastewater treatment plants in central Finland. Environ. Sci. Pollut. Res. 2016, 23, 7985–7997. [Google Scholar] [CrossRef] [PubMed]
- Lindqvist, N.; Tuhkanen, T.; Kronberg, L. Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Res. 2005, 39, 2219–2228. [Google Scholar] [CrossRef]
- Lonappan, L.; Brar, S.K.; Das, R.K.; Verma, M.; Surampalli, R.Y. Diclofenac and its transformation products: Environmental occurrence and toxicity - A review. Environ. Int. 2016, 96, 127–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieno, N. Occurrence of pharmaceuticals in Finnish sewage treatment plants, surface waters, and their elimination in drinking water treatment processes. 2007. Available online: http://urn.fi/URN:NBN:fi:tty-200810021012 (accessed on 11 December 2020).
- Vieno, N.; Sillanpää, M. Fate of diclofenac in municipal wastewater treatment plant — A review. Environ. Int. 2014, 69, 28–39. [Google Scholar] [CrossRef]
- Zhang, Y.; Geissen, S.-U.; Gal, C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008, 73, 1151–1161. [Google Scholar] [CrossRef]
- Thompson, W.A.; Vijayan, M.M. Environmental levels of venlafaxine impact larval behavioural performance in fathead minnows. Chemosphere 2020, 259, 127437. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, C.D.; Chu, S.; Judt, C.; Li, H.; Oakes, K.D.; Servos, M.R.; Andrews, D.M. Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed. Environ. Toxicol. Chem. 2010, 29, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Falås, P.; Wick, A.; Castronovo, S.; Habermacher, J.; Ternes, T.A.; Joss, A. Tracing the limits of organic micropollutant removal in biological wastewater treatment. Water Res. 2016, 95, 240–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fimea/Kela, 2018. Finnish statistics of medicines. Available online: http://urn.fi/URN:NBN:fi-fe2019123149481 (accessed on 2 December 2020).
- Kaur, B.; Dulova, N. UV-assisted chemical oxidation of antihypertensive losartan in water. J. Environ. Manag. 2020, 261, 110170. [Google Scholar] [CrossRef] [PubMed]
- Carpinteiro, I.; Castro, G.; Rodríguez, I.; Cela, R. Free chlorine reactions of angiotensin II receptor antagonists: Kinetics study, transformation products elucidation and in-silico ecotoxicity assessment. Sci. Total. Environ. 2019, 647, 1000–1010. [Google Scholar] [CrossRef]
- Botero-Coy, A.; Martínez-Pachón, D.; Boix, C.; Rincón, R.; Castillo, N.; Arias-Marín, L.; Manrique-Losada, L.; Torres-Palma, R.; Moncayo-Lasso, A.; Hernández, F.H. An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater. Sci. Total. Environ. 2018, 642, 842–853. [Google Scholar] [CrossRef] [PubMed]
- Kot-Wasik, Á.; Jakimska, A.; Śliwka-Kaszyńska, M. Occurrence and seasonal variations of 25 pharmaceutical residues in wastewater and drinking water treatment plants. Environ. Monit. Assess. 2016, 188, 661. [Google Scholar] [CrossRef]
- Gurke, R.; Rößler, M.; Marx, C.; Diamond, S.; Schubert, S.; Oertel, R.; Fauler, J. Occurrence and removal of frequently prescribed pharmaceuticals and corresponding metabolites in wastewater of a sewage treatment plant. Sci. Total. Environ. 2015, 532, 762–770. [Google Scholar] [CrossRef]
- Bustos, Y.; Vaca, M.; López, R.; Bandala, E.; Torres, L.; Rojas-Valencia, N. Disinfection of Primary Municipal Wastewater Effluents Using Continuous UV and Ozone Treatment. J. Water Resour. Prot. 2014, 6, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Tchobanoglous, G. Wastewater Engineering: Treatment and Resource Recovery. McGraw-Hill 2014, 2, 1367–1377. [Google Scholar]
- US EPA. Wastewater Technology Fact Sheet, Ozone Disinfection; US EPA: Washington, DC, USA, 2009. [Google Scholar]
- Hu, J.Y.; Wang, Z.S.; Ng, W.J.; Ong, S.L. Disinfection By-Products in Water Produced by Ozonation and Chlorination. Environ. Monit. Assess. 1999, 59, 81–93. [Google Scholar] [CrossRef]
Anthropogenic Substance (Intended Use) | Ozone and Ox Tube Device (N = 1) | Peracetic Acid (PAA) and Ultraviolet (UV) Disinfection (N = 1) | H2O2 and UV Disinfection (N = 1) | EQS | |||
---|---|---|---|---|---|---|---|
Initial Concentration (µg L−1) | Reduction (%) | Initial Concentration (µg L−1) | Reduction (%) | Initial Concentration (µg L−1) | Reduction (%) | ||
Cetirizine (antihistamine) | 5.8 | 99.9 | 6.0 | 5.0 | 3.7 | − | NR |
Benzotriazole (chemical, anticorrosive) | 2.8 | 67.9 | 2.5 | − | 0.98 | − | NR |
Hydrochlorothiazide (diuretic) | 1.8 | 91.1 | 1.7 | 5.9 | 1.5 | − | NR |
Furosemide (diuretic) | 1.8 | 99.7 | 1.7 | 5.9 | 1.4 | − | NR |
Lamotrigine (antiepileptic/antidepressant) | 1.4 | 46.4 | 1.5 | − | 1.5 | 6.7 | NR |
Diclofenac (DCF) (anti-inflammatory medicine) | 1.5 | 99.7 | 1.4 | 7.1 | 1.2 | 16.7 | NR |
Venlafaxine (antidepressant) | 1.1 | 91.3 | 1.1 | − | 0.87 | 1.1 | NR |
Losartan (used to treat high blood pressure) | 1.2 | 99.6 | 0.8 | 13.8 | 0.84 | − | NR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikonen, J.; Nuutinen, I.; Niittynen, M.; Hokajärvi, A.-M.; Pitkänen, T.; Antikainen, E.; Miettinen, I.T. Presence and Reduction of Anthropogenic Substances with UV Light and Oxidizing Disinfectants in Wastewater—A Case Study at Kuopio, Finland. Water 2021, 13, 360. https://doi.org/10.3390/w13030360
Ikonen J, Nuutinen I, Niittynen M, Hokajärvi A-M, Pitkänen T, Antikainen E, Miettinen IT. Presence and Reduction of Anthropogenic Substances with UV Light and Oxidizing Disinfectants in Wastewater—A Case Study at Kuopio, Finland. Water. 2021; 13(3):360. https://doi.org/10.3390/w13030360
Chicago/Turabian StyleIkonen, Jenni, Ilpo Nuutinen, Marjo Niittynen, Anna-Maria Hokajärvi, Tarja Pitkänen, Eero Antikainen, and Ilkka T. Miettinen. 2021. "Presence and Reduction of Anthropogenic Substances with UV Light and Oxidizing Disinfectants in Wastewater—A Case Study at Kuopio, Finland" Water 13, no. 3: 360. https://doi.org/10.3390/w13030360
APA StyleIkonen, J., Nuutinen, I., Niittynen, M., Hokajärvi, A.-M., Pitkänen, T., Antikainen, E., & Miettinen, I. T. (2021). Presence and Reduction of Anthropogenic Substances with UV Light and Oxidizing Disinfectants in Wastewater—A Case Study at Kuopio, Finland. Water, 13(3), 360. https://doi.org/10.3390/w13030360