Blue Water Visitor Monitoring Potential: A Literature Review and Alternative Proposal
Abstract
:1. Introduction
2. Prevailing Visitor Monitoring Methods
2.1. Self-Counting
2.2. Direct Counting
3. Contemporary Visitor Monitoring
3.1. Aerial Surveys
3.2. Photography and Video
3.3. Social Media
3.4. Counting Devices
3.5. Proxy Counts and Multipliers
3.6. GPS and Phone Data
3.7. Acoustics, Buoys, and Drones
3.8. Vessel Monitoring Systems
4. Applications in Marine Areas and an Alternative Proposal
Alternative Proposal
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leeworthy, V.R.; Schwarzmann, D.; Goedeke, T.L.; Gonyo, S.B.; Bauer, L.J. Recreation Use and Spatial Distribution of Use by Washington Households on the Outer Coast of Washington. J. Park Recreat. Adm. 2018, 36, 56–68. [Google Scholar] [CrossRef]
- Highfill, T.; Franks, C.; Georgi, P.S.; Howells, T.F., III. Introducing the Outdoor Recreation Satellite Account. Surv. Curr. Bus. 2018, 98, 3. [Google Scholar]
- Haefele, M.; Loomis, J.B. Total Economic Valuation of the National Park Service Lands and Programs: Results of a Survey of the American Public. SSRN Electron. J. 2016. [Google Scholar] [CrossRef] [Green Version]
- Chilman, K.; Lane, D.; Foster, D.; Everson, A.; Lannoy, M. Monitoring social conditions on wildlands: Designing low-cost systems. In Proceedings of the Managing America’s Enduring Wilderness Resource; Lime, D.W., Ed.; University of Minnesota Press: Minneapolis, MN, USA, 1990; pp. 163–169. [Google Scholar]
- Hollenhorst, S.J.; Whisman, S.A.; Ewert, A.W. Monitoring Visitor Use in Backcountry and Wilderness: A Review of Methods; General Technical Report PSW-GTR-134; Pacific Southwest Research Station: Albany, CA, USA, 1992; Volume 10.
- Muhar, A.; Arnberger, A.; Brandenburg, C. Methods for Visitor Monitoring in Recreational and Protected Areas: An Overview. In Monitoring and Management of Visitors Flows in Recreational and in Protected Areas; Institut for Landscape Architecture & Landscape Management Bodenkultur University Vienna: Vienna, Austria, 2002; pp. 1–6. [Google Scholar]
- Lucas, R.C. Low Compliance Rates at Unmanned Trail Registers; Res. Note INT-200; Intermountain Forest and Range Experiment Station, U.S. Department of Agriculture, Forest Service: Ogden, UT, USA, 1975; p. 6. [Google Scholar]
- D ’Antonio, A.; Monz, A.C.; Lawson, S.; Newman, P.; Pettebone, D.; Courtemanch, A. GPS-Based Measurements of Backcountry Visitors in Parks and Protected Areas: Examples of Methods and Applications from Three Case Studies. J. Park Recreat. Adm. Fall 2010, 28, 42–60. [Google Scholar]
- Leonard, R.E.; Echelberger, H.E.; Plumley, H.J.; Van Meter, L.W. Management Guidelines for Monitoring Use on Backcountry Trails; Res. Pap. NE-286; Northeastern Forest and Range Experiment Station, U.S. Department of Agriculture, Forest Service: Broomall, PA, USA, 1980; p. 20.
- Tombaugh, L.W.; Love, L.D. Estimating Number of Visitors to National Forest Campgrounds; Res. Note RM-17; Rocky Mountain Forest and Range Experiment Station, US Forest Service: Fort Collins, CO, USA, 1964; p. 4.
- Schreuder, H.T.; Tyre, G.L.; James, G.A. Instant- and Interval-Count Sampling: Two New Techniques for Estimating Recreation Use. For. Sci. 1975, 21, 40–44. [Google Scholar] [CrossRef]
- James, G.A.; Quinkert, A.K. Estimating Recreational Use at Developed Observation Sites; Res. Pap. SE-97; Northeastern Forest and Range Experiment Station, U.S. Department of Agriculture, Forest Service: Asheville, NC, USA, 1972; p. 6.
- Tyre, G.L.; Siderelis, C.D. Instant-count sampling: A technique for estimating recreation use in municipal settings. Leis. Sci. 1979, 2, 173–179. [Google Scholar] [CrossRef]
- Ziesler, P.S.; Pettebone, D. Counting on Visitors: A Review of Methods and Applications for the National Park Service’s Visitor Use Statistics Program. J. Park Recreat. Adm. 2018, 36, 39–55. [Google Scholar] [CrossRef]
- Metcalf, E.C.; Burns, R.C.; Graefe, A. Understanding non-traditional forest recreation: The role of constraints and negotiation strategies among racial and ethnic minorities. J. Outdoor Recreat. Tour. 2013, 1–2, 29–39. [Google Scholar] [CrossRef]
- Kainzinger, S.; Arnberger, A.; Burns, R.C. Whitewater recreationists’ preferences for social, resource and managerial attributes in the Alpine Nature and Geopark Styrian Eisenwurzen. eco.mont 2017, 9, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, M.D.; Burns, R.C.; Smaldone, D. Innovations in outdoor recreation visitor use management: Applying market segmentation at the Timberline Lodge Recreation Complex. Int. Leis. Rev. 2018, 1, 108–131. [Google Scholar]
- Burns, R.C.; Robinson, K.F. Oregon’s Aging Population: Relationships between Facilities, Services, Participation, and Sociodemographics in Outdoor Recreation Settings. J. Park Recreat. Adm. 2017, 35, 13–23. [Google Scholar] [CrossRef]
- Burns, R.C.; Moreira, J.C.; The, S.; Wright, G.; Burns, R.C.; Moreira, J.C. Visitor Management in Brazil’s Protected Areas: Benchmarking for Best Practices in Resource Management Published by: George Wright Society Visitor Management in Brazil’s Protected Areas: Benchmarking for Best Practices in Resource Management. Georg. Wright Forum 2013, 30, 163–170. [Google Scholar]
- Nyaupane, G.P.; Graefe, A.R.; Burns, R.C. Understanding equity in the recreation user fee context. Leis. Sci. 2007, 29, 425–442. [Google Scholar] [CrossRef]
- Nyaupane, G.P.; Graefe, A.R.; Burns, R.C. The role of equity, trust and information on user fee acceptance in protected areas and other public lands: A structural model. J. Sustain. Tour. 2009, 17, 501–517. [Google Scholar] [CrossRef]
- Absher, J.D.; Graefe, A.R.; Burns, R.C. Monitoring Public Reactions to the U.S. Forest Service Recreation Fee Program. In Proceedings of the Exploring the Nature of Management; University of Applied Sciences: Rapperswil, Switzerland, 2006; pp. 50–51. [Google Scholar]
- Walden-Schreiner, C.; Leung, Y.F. Spatially characterizing visitor use and its association with informal trails in yosemite valley Meadows. Environ. Manag. 2013, 52, 163–178. [Google Scholar] [CrossRef]
- McKenzie, T.L.; Cohen, D.A.; Sehgal, A.; Williamson, S.; Golinelli, D. System for Observing Play and Recreation in Communities (SOPARC): Reliability and Feasibility Measures. J. Phys. Act. Heal. 2016, 3, S208–S222. [Google Scholar] [CrossRef]
- Sasidharan, V.; McKenzie, T.L.; Chavez, D.J. SOPARNA: System for Observing Physical Activity and Recreation in Natural Areas; Description and Manual Procedures; San Diego State University: San Diego, CA, USA, 2014. [Google Scholar]
- Cosco, N.G.; Moore, R.C.; Islam, M.Z. Behavior mapping: A method for linking preschool physical activity and outdoor design. Med. Sci. Sports Exerc. 2010, 42, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, S.K.; Burns, R.C.; Pierskalla, C.D.; Selin, S. Predicting Deer Hunting Intentions Using the Theory of Planned Behavior: A Survey of Oregon Big Game Hunters. Hum. Dimens. Wildl. 2012, 17, 129–140. [Google Scholar] [CrossRef]
- Metcalf, E.C.; Graefe, A.R.; Trauntvein, N.E.; Burns, R.C. Understanding Hunting Constraints and Negotiation Strategies: A Typology of Female Hunters. Hum. Dimens. Wildl. 2015, 20, 30–46. [Google Scholar] [CrossRef]
- Shrestha, S.K.; Burns, R.C. Integrating Constraints to the Theory of Planned Behavior in Predicting Deer Hunting Participation. Hum. Dimens. Wildl. 2016, 21, 445–459. [Google Scholar] [CrossRef]
- Rawhouser, D.; Harris, C.; Grussing, L.; Krumpe, E.E.; McLaughlin, W.J. Cooperative research for monitoring recreation use of the Lower Salmon River. J. Park Recreat. Adm. 1989, 7, 41–57. [Google Scholar]
- Burns, R.C.; Chuprinko, T.; Caplinger, C.; Kainzinger, S. 2011–2013 Umpqua National Forest Recreation Survey; West Virginia University, Submitted to US Forest Service: Morgantown, WV, USA, 2014.
- Burns, R.C.; Popham, A.R.; Smaldone, D. Examining Satisfaction and Crowding in a Remote, Low Use Wilderness Setting: The Wenaha Wild and Scenic River Case Study. Int. J. Wilderness 2018, 24, 3. [Google Scholar]
- Loomis, D.K.; Allen, M.E.; Hawkins, C. Hawaii Fishing Community Perceptions of the Marine Protected Area Siting Process and its Implications; Western Pacific Regional Fishery Management Council, Pacific Island Fisheries Research Program: Honolulu, HI, USA, 2018.
- Loomis, D.K.; Anderson, L.E.; Hawkins, C.; Paterson, S.K. Understanding Coral Reef Use: Snorkeling in the Florida Keys by Residents and Non-Residents during 2006–2007; The Florida Reef Resilience Program; The Nature Conservancy: Altamonte Springs, FL, USA, 2008. [Google Scholar]
- Loomis, D.K.; Allen, M.E.; Paterson, S.K. Coastal Marine Recreation at Buck Island Reef National Monument: Understanding the Ecological Attitudes, Behavior, and Knowledge of Park Visitors; Natural Resource Report; National Park Service, Natural Sounds Program: Fort Collins, CO, USA, 2017.
- Loomis, D.K.; Allen, M.E.; Paterson, S.K. Coastal Marine Recreation at Dry Tortugas National Park: Understanding the Ecological Attitudes, Behavior, and Knowledge of Park Visitors; Natural Resource Report; National Park Service, Natural Sounds Program: Fort Collins, CO, USA, 2017.
- Malvestuto, S.P. Sampling the recreational fishery. In Fisheries Techniques; Nielsen, L.A., Johnson, L., Eds.; American Fisheries Society: Bethesda, MD, USA, 1983; pp. 397–419. [Google Scholar]
- Deuell, R.L.; Lillesand, T.M. An aerial photographic procedure for estimating recreational boating use on inland lakes (Lake Minnetonka, Minnesota). Photogramm. Eng. Remote Sens. 1982, 48, 1713–1717. [Google Scholar]
- Pollock, K.H.; Jones, C.M.; Brown, T.L. Angler Survey Methods and Their Applications in Fisheries Management; Special Publication 25; American Fisheries Society: Bethesda, MD, USA, 1994. [Google Scholar]
- Smallwood, C.B.; Beckley, L.E.; Moore, S.A.; Kobryn, H.T. Assessing patterns of recreational use in large marine parks: A case study from Ningaloo Marine Park, Australia. Ocean. Coast. Manag. 2011, 54, 330–340. [Google Scholar] [CrossRef] [Green Version]
- Reed-Andersen, T.; Bennett, E.M.; Jorgensen, B.S.; Lauster, G.; Lewis, D.B.; Nowacek, D.; Riera, J.L.; Sanderson, B.L.; Stedman, R. Distribution of recreational boating across lakes: Do landscape variables affect recreational use? Freshw. Biol. 2000, 43, 439–448. [Google Scholar] [CrossRef]
- Cessford, G.; Muhar, A. Monitoring options for visitor numbers in national parks and natural areas. J. Nat. Conserv. 2003, 11, 240–250. [Google Scholar] [CrossRef]
- Arnberger, A.; Haider, W.; Brandenburg, C. Evaluating visitor-monitoring techniques: A comparison of counting and video observation data. Environ. Manag. 2005, 36, 317–327. [Google Scholar] [CrossRef]
- Burns, R.C. Game Camera Demonstration Project; Technical Report; West Virginia University: Morgantown, WV, USA, 2016. [Google Scholar]
- Moreira, J.C.; Burns, R.C.; de Carvalho, K. Use of game cameras and interviews to monitor visitors: Is there crowding in the Iguaçu National Park—Brazil? In Proceedings of the 9th International Conference on Monitoring and Management of Visitors in Recreational and Protected Areas (MMV), Bordeaux, France, 28–31 August 2018. [Google Scholar]
- Burns, R.C.; Arnberger, A.; von Ruschkowski, E. Social Carrying Capacity Challenges in Parks, Forests, and Protected Areas. Int. J. Sociol. 2010, 40, 30–50. [Google Scholar] [CrossRef]
- Greene-Roesel, R.D.; Mara Chagas Ragland, D.R. Pedestrian Counting Device in Urban. Environments; University of California Traffic Safety Center: Berkeley, CA, USA, 2008.
- O’Connell, A.F.; Nichols, J.D.; Karanth, K.U. Camera Traps in Animal Ecology: Methods and Analyses; Springer Science & Business Media: New York, NY, USA, 2010; ISBN 9784431994947. [Google Scholar]
- Van Poorten, B.T.; Carruthers, T.R.; Ward, H.G.M.; Varkey, D.A. Imputing recreational angling effort from time-lapse cameras using an hierarchical Bayesian model. Fish. Res. 2015, 172, 265–273. [Google Scholar] [CrossRef]
- Hartil, B.W.; Payne, G.W.; Rush, N.; Bian, R. Bridging the temporal gap: Continuous and cost-effective monitoring of dynamic recreational fisheries by web cameras and creel surveys. Fish. Res. 2016, 183, 488–497. [Google Scholar] [CrossRef]
- Keller, K.; Steffe, A.S.; Lowry, M.; Murphy, J.J.; Suthers, I.M. Monitoring boat-based recreational fishing effort at a nearshore artificial reef with a shore-based camera. Fish. Res. 2016, 181, 84–92. [Google Scholar] [CrossRef]
- Greenberg, S.; Godin, T. A Tool Supporting the Extraction of Angling Effort Data from Remote Camera Images. Fisheries 2015, 40, 276–287. [Google Scholar] [CrossRef]
- Hartman, K.J.; Andrew, R.G.; Schwinghamer, C.W.; Thorne, D.W.; Webster, J.S. Springtime Exploitation of Brook Trout by Anglers in Remote Headwater Streams of Central Appalachia. N. Am. J. Fish. Manag. 2019, 39, 403–411. [Google Scholar] [CrossRef]
- Wood, S.A.; Guerry, A.D.; Silver, J.M.; Lacayo, M. Using social media to quantify nature-based tourism and recreation. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Sessions, C.; Wood, S.A.; Rabotyagov, S.; Fisher, D.M. Measuring recreational visitation at U.S. National Parks with crowd-sourced photographs. J. Environ. Manag. 2016, 183, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Pettebone, D.; Meldrum, B.; Leslie, C.; Lawson, S.R.; Newman, P.; Reigner, N.; Gibson, A. A visitor use monitoring approach on the Half Dome cables to reduce crowding and inform park planning decisions in Yosemite National Park. Landsc. Urban Plan. 2013, 118, 1–9. [Google Scholar] [CrossRef]
- Pettebone, D.; Newman, P.; Lawson, S.R. Estimating visitor use at attraction sites and trailheads in Yosemite National Park using automated visitor counters. Landsc. Urban Plan. 2010, 97, 229–238. [Google Scholar] [CrossRef] [Green Version]
- English, D.B.K.; Kocis, S.M.; Arnold, J.R.; Zarnoch, S.J.; Warren, L. The effectiveness of visitation proxy variables in improving recreation use estimates for the USDA Forest Service. J. Nat. Conserv. 2003, 11, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Tyrrell, T.J.; Johnston, R.J. Estimating regional visitor numbers. Tour. Anal. 2002, 7, 33–41. [Google Scholar] [CrossRef]
- Alessa, L.; Kliskey, A.; Brown, G. Social-ecological hotspots mapping: A spatial approach for identifying coupled social-ecological space. Landsc. Urban Plan. 2008, 85, 27–39. [Google Scholar] [CrossRef]
- Brown, G.; Weber, D. Public Participation GIS: A new method for national park planning. Landsc. Urban Plan. 2011, 102, 1–15. [Google Scholar] [CrossRef]
- Dhami, I.; Deng, J.; Burns, R.C.; Pierskalla, C. Identifying and mapping forest-based ecotourism areas in West Virginia—Incorporating visitors’ preferences. Tour. Manag. 2014, 42, 165–176. [Google Scholar] [CrossRef]
- Arnberger, A.; Hinterberger, B. Visitor monitoring methods for managing public use pressures in the Danube Floodplains National Park, Austria. J. Nat. Conserv. 2003, 11, 260–267. [Google Scholar] [CrossRef]
- Beeco, J.A.; Hallo, J.C.; Brownlee, M.T.J. GPS Visitor Tracking and Recreation Suitability Mapping: Tools for understanding and managing visitor use. Landsc. Urban Plan. 2014, 127, 136–145. [Google Scholar] [CrossRef]
- Bishop, I.D.; Gimblett, H.R. Management of recreational areas: GIS, autonomous agents, and virtual reality. Environ. Plan. B Plan. Des. 2000, 27, 423–435. [Google Scholar] [CrossRef]
- Hallo, J.C.; Manning, R.E. Analysis of the Social Carrying Capacity of a National Park Scenic Road. Int. J. Sustain. Transp. 2010, 4, 75–94. [Google Scholar] [CrossRef]
- Gabriela, N. A gis-based approach of recreation terrain suitability mapping for resource use management in Apuseni Natural Park Recreation. In Proceedings of the 2nd International Conference on Environmental Research and Assessment, Bucharest, Romania, 5–8 October 2006; pp. 274–294. [Google Scholar]
- Gül, A.; Örücü, M.K.; Karaca, Ö. An approach for recreation suitability analysis to recreation planning in Gölcük nature park. Environ. Manage. 2006, 37, 606–625. [Google Scholar] [CrossRef]
- Lai, P.C.; Li, C.L.; Chan, K.W.; Kwong, K.H. An Assessment of GPS and GIS in Recreational Tracking. J. Park Recreat. Adm. 2007, 25, 128–139. [Google Scholar]
- Korpilo, S.; Virtanen, T.; Lehvävirta, S. Smartphone GPS tracking—Inexpensive and efficient data collection on recreational movement. Landsc. Urban Plan. 2017, 157, 608–617. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Thapa, B.; Jang, S.; Yang, E. Seasonal spatial activity patterns of visitors with a mobile exercise application at Seoraksan National Park, South Korea. Sustain. 2018, 10, 2263. [Google Scholar] [CrossRef] [Green Version]
- Ahas, R.; Aasa, A.; Roose, A.; Mark, Ü.; Silm, S. Evaluating passive mobile positioning data for tourism surveys: An Estonian case study. Tour. Manag. 2008, 29, 469–486. [Google Scholar] [CrossRef]
- Thuillier, E.; Moalic, L.; Lamrous, S.; Caminada, A. Clustering Weekly Patterns of Human Mobility through Mobile Phone Data. IEEE Trans. Mob. Comput. 2018, 17, 817–830. [Google Scholar] [CrossRef] [Green Version]
- Tiru, M.; Kuusik, A.; Lamp, M.L.; Ahas, R. LBS in marketing and tourism management: Measuring destination loyalty with mobile positioning data. J. Locat. Based Serv. 2010, 4, 120–140. [Google Scholar] [CrossRef]
- Kamenjuk, P.; Aasa, A.; Sellin, J. Mapping changes of residence with passive mobile positioning data: The case of Estonia. Int. J. Geogr. Inf. Sci. 2017, 31, 1425–1447. [Google Scholar] [CrossRef]
- Zoss, B.M.; Mateo, D.; Kuan, Y.K.; Tokić, G.; Chamanbaz, M.; Goh, L.; Vallegra, F.; Bouffanais, R.; Yue, D.K.P. Distributed system of autonomous buoys for scalable deployment and monitoring of large waterbodies. Auton. Robot. 2018, 42, 1669–1689. [Google Scholar] [CrossRef]
- Clarke, R. Understanding the drone epidemic. Comput. Law Secur. Rev. 2014, 30, 230–246. [Google Scholar] [CrossRef]
- Ventura, D.; Bruno, M.; Jona Lasinio, G.; Belluscio, A.; Ardizzone, G. A Low-Cost Drone Based Application for Identifying and Mapping of Coastal Fish Nursery Grounds. Estuar. Coast. Shelf Sci. 2016, 171, 85–98. [Google Scholar] [CrossRef]
- Koh, L.P.; Wich, S.A. Dawn of drone ecology: Low-cost autonomous aerial vehicles for conservation. Trop. Conserv. Sci. 2012, 5, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Toonen, H.M.; Bush, S.R. The digital frontiers of fisheries governance: Fish attraction devices, drones and satellites. J. Environ. Policy Plan. 2020, 22, 125–137. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, S.M.; Ban, N.C.; Morgan, L.E. Pragmatic approaches for effective management of pelagic marine protected areas. Endanger. Species Res. 2014, 26, 59–74. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, J.C.; Baylis, S.M.; Mott, R.; Herrod, A.; Clarke, R.H. Precision wildlife monitoring using unmanned aerial vehicles. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodgson, A.; Kelly, N.; Peel, D. Unmanned aerial vehicles (UAVs) for surveying Marine Fauna: A dugong case study. PLoS ONE 2013, 8, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sykora-Bodie, S.T.; Bezy, V.; Johnston, D.W.; Newton, E.; Lohmann, K.J. Quantifying Nearshore Sea Turtle Densities: Applications of Unmanned Aerial Systems for Population Assessments. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kiszka, J.J.; Mourier, J.; Gastrich, K.; Heithaus, M.R. Using unmanned aerial vehicles (UAVs) to investigate shark and ray densities in a shallow coral lagoon. Mar. Ecol. Prog. Ser. 2016, 560, 237–242. [Google Scholar] [CrossRef]
- Giordano, F.; Mattei, G.; Parente, C.; Peluso, F.; Santamaria, R. Integrating sensors into a marine drone for bathymetric 3D surveys in shallow waters. Sensors 2015, 16, 41. [Google Scholar] [CrossRef] [Green Version]
- Johnston, D.W.; Dale, J.; Murray, K.; Josephson, E.; Newton, E.; Wood, S. Comparing occupied and unoccupied aircraft surveys of wildlife populations: Assessing the gray seal (Halichoerus grypus) breeding colony on Muskeget Island, USA. J. Unmanned Veh. Syst. 2017, 191, 178–191. [Google Scholar] [CrossRef]
- Hodgson, J.C.; Mott, R.; Baylis, S.M.; Pham, T.T.; Wotherspoon, S.; Kilpatrick, A.D.; Raja Segaran, R.; Reid, I.; Terauds, A.; Koh, L.P. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 2018, 9, 1160–1167. [Google Scholar] [CrossRef] [Green Version]
- Hentz, Â.M.K.; Kinder, P.J.; Hubbart, J.A.; Kellner, E. Accuracy and optimal altitude for physical habitat assessment (PHA) of stream environments using unmanned aerial vehicles (UAV). Drones 2018, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- Hentz, Â.M.K.; Silva, C.A.; Dalla Corte, A.P.; Netto, S.P.; Strager, M.P.; Klauberg, C. Estimating forest uniformity in Eucalyptus spp. and Pinus taeda L. stands using field measurements and structure from motion point clouds generated from unmanned aerial vehicle (UAV) data collection. For. Syst. 2018, 27, 1–17. [Google Scholar] [CrossRef]
- Klein Hentz, Â.M.; Strager, M.P. Cicada (Magicicada) Tree Damage Detection Based on UAV Spectral and 3D Data. Nat. Sci. 2018, 10, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Hubbart, J.; Kellner, E.; Kinder, P.; Stephan, K. Challenges in Aquatic Physical Habitat Assessment: Improving Conservation and Restoration Decisions for Contemporary Watersheds. Challenges 2017, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Weisler, W.; Stewart, W.; Anderson, M.B.; Peters, K.J.; Gopalarathnam, A.; Bryant, M. Testing and Characterization of a Fixed Wing Cross-Domain Unmanned Vehicle Operating in Aerial and Underwater Environments. IEEE J. Ocean. Eng. 2018, 43, 969–982. [Google Scholar] [CrossRef]
- Tougher, B.; McGillivary, P. MPA News; 2011; p. 5. [Google Scholar]
- National Oceanic and Atmospheric Administration (NOAA) NOAA Law Enforcement. Available online: https://www.fisheries.noaa.gov/insight/noaa-law-enforcement (accessed on 17 December 2020).
- Lee, J.; South, A.B.; Jennings, S. Developing reliable, repeatable, and accessible methods to provide high-resolution estimates of fishing-effort distributions from vessel monitoring system (VMS) data. ICES J. Mar. Sci. 2010, 67, 1260–1271. [Google Scholar] [CrossRef] [Green Version]
- Watson, J.T.; Haynie, A.C. Using vessel monitoring system data to identify and characterize trips made by fishing vessels in the United States North Pacific. PLoS ONE 2016, 11, e0165173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Mirelis, G.; Lindegarth, M.; Sköld, M. Using vessel monitoring system data to improve systematic conservation planning of a multiple-use marine protected area, the Kosterhavet National Park (Sweden). AMBIO 2014, 43, 162–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGillivary, P.A.; Schwehr, K.D.; Fall, K. Enhancing AIS to improve whale-ship collision avoidance and maritime security. In MTS/IEEE Biloxi—Marine Technology for Our Future: Global and Local Challenges, Oceans 2009; IEEE Oceans: Biloxi, MS, USA, 2009. [Google Scholar] [CrossRef]
- Castley, J.G.; Hill, W.; Pickering, C.M. Developing ecological indicators of visitor use of protected areas: A new integrated framework from Australia. Australas. J. Environ. Manag. 2009, 16, 196–207. [Google Scholar] [CrossRef]
- Wardell, M.J.; Moore, S.A. Collection, Storage and Application of Visitor Use Data in Protected Areas: Guiding Principles and Case Studies; CRC for Sustainable Tourism: Queensland, Australia, 2005. [Google Scholar]
- Garda, A.B.; Moreira, J.C.; Burns, R.C.; Souza, T.V.S.B. Manual de Métodos Para Monitoramento do Número de Visitas em Unidades de Conservação Federais; ICMBio, Instituto Chico Mendes de Conservação da Biodiversidade, 1a Edição: Brasiliia, Brazxil, 2020. [Google Scholar]
- Moreira, J.C.; Burns, R.C. Visitor monitoring in the Tapajós National Forest, Brazil. In Visitor Management in Tourism Destinations; Albrecht, J.N., Ed.; CABI: Oxford, UK, 2017; pp. 91–101. [Google Scholar]
- Burns, R.C.; Gregory, L.; Moreira, J.C. A profile of visitors to Brazil Amazon Protected Areas: Anavilhanas National Park (Amazonas) and Tapajós National Forest (Pará). Mark. Tour. Rev. 2019, 4, 1–31. [Google Scholar]
- Garcia, L.V.M.; Moreira, J.C.; Burns, R.C. Visitor Use Planning at Mariquinha Waterfall, Campos Gerais National Park, Brazil. In Tourism and Protected Areas in Brazil: Challenges and Perspectives; Cunha, A., McCool, S., Magro, T., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2018; pp. 157–178. [Google Scholar]
- Burns, R.C.; Moreira, J.C. Development of a Systematic Visitor Monitoring Program for Brazil Parks and Protected Areas. In Proceedings of the 9th International Conference on Monitoring and Management of Visitors in Protected Areas, 2018, Bordeaux. In Abstract Book of the 9th International Conference on Monitoring and Management of Visitors in Recreational and Protected Areas (Mmv9); Bordeaux Science Agro: Bordeaux, France, 2018; pp. 427–428. [Google Scholar]
- Burns, R.C.; Andrew, R.G.; Allen, M.E.; Schwarzmann, D.; Moreira, J.C. Conceptualizing the National marine sanctuary visitor counting process for marine protected areas. J. Ecotour. 2020, 19, 362–372. [Google Scholar] [CrossRef]
Method | Principal Means of Obtaining Data | Type of Use Data | Type of Visitor Data | Sources of Bias/Error | Costs to Administrators | Costs to Visitors |
---|---|---|---|---|---|---|
Voluntary Self-Registration | Registration at station or office | Activity, length of stay, group size, travel mode, date | General demographics and behavior | Inaccurate information reported | Low | Low |
Mandatory Permits Self-Registration | Online, station or office, visitor center | Activity, length of stay, group size, travel mode, date | General demographics and behavior | Inaccurate information reported | Moderate: Issuing and enforcement | Moderate: must obtain before use |
Random Direct Field Observation | Obtrusive/unobtrusive observation | Activity, group size, travel mode, date | None. Requires additional survey methods | Unobserved and/or incorrect observations, double counting, use fluctuations | Moderate: staff on sampling days, design difficulties | Low-Moderate: onsite contract |
Convenient Direct Field Observation | Obtrusive/unobtrusive observation | Activity, group size, travel mode, date | None. Requires additional survey methods | Disproportionate sampling, unobserved and/or incorrect observations | Low: staff make observations at convenience | Low-Moderate: observed onsite |
Mail or Internet Survey | Random sample of users by mail/online | Detailed info on use, activity, visit | Detailed info on human dimensions and behavior | Inadequate sampling, low response rates, inaccurate info | Moderate: study design, implementation | Low: contact is off-site |
Onsite Survey | Random sample surveyed or interviewed onsite | Moderate info on use, activity, visit | Moderate info on human dimensions and behavior | Inadequate sampling, low response rates, inaccurate info | Moderate-High: study design, implementation, staff onsite | High: imposes time constraints |
Cordon Sampling | Visitors surveyed at check point on access routes when exiting | Activity, length of stay, group size, travel mode, date | Moderate info on human dimensions and behavior | Unobserved access points, double counting, use fluctuations | High: staff onsite sampling | Moderate-High: imposes time constraints |
Aerial Observation | Tallies recorded during random flight transects | Spatial and temporal use density | None, requires additional survey methods | Inadequate flight transects, incorrect observations, visual obstructions | High: pilots, observers, flight costs | Low: No contact with visitors |
Time-lapse or triggered photography | Data extracted from photos | Activity, time spent in location, group size, date | None, requires additional survey methods | Unobserved access, equipment failure, double counting, resolution | Moderate: equipment costs, installation, analysis | Moderate: privacy concerns |
Video | Data extracted from videos | Activity, time spent in location, group size, date | None, requires additional survey methods | Unobserved access, equipment failure, double counting, resolution | Moderate: equipment costs, installation, analysis | Moderate: privacy concerns |
Automated Visitor Counters | Total use recorded by counters | Number of visits | None, requires additional survey methods | Unobserved access, equipment failure, double counting | Low-Moderate: equipment and upkeep costs | Low: no interference |
Electrical Traffic Counter | Total counts of vehicles entering or exiting | Vehicle counts, travel mode, date | None, requires additional survey methods | Unobserved access, equipment failure, double counting, inaccurate counts | Low-Moderate: equipment and upkeep costs | Low: no interference |
GPS | GPS units or other required hardware | Spatial and temporal use, movement | None, requires additional survey methods | Equipment failure, positional error | Moderate-High: equipment costs | High: privacy concerns |
Acoustics, buoys, and drones | Satellite technology, sensors, cameras | Spatial and temporal use, movement | None, requires additional survey methods | Equipment failure, spatial resolution, inaccuracy | High: equipment costs | High: privacy concerns |
Vessel monitoring system | Satellite technology, locations | Spatial and temporal use, movement | None, requires additional survey methods | Equipment failure | High: equipment costs, data acquisition | High: privacy concerns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrew, R.G.; Burns, R.C.; Schwarzmann, D.; Allen, M.E.; Moreira, J.C. Blue Water Visitor Monitoring Potential: A Literature Review and Alternative Proposal. Water 2021, 13, 305. https://doi.org/10.3390/w13030305
Andrew RG, Burns RC, Schwarzmann D, Allen ME, Moreira JC. Blue Water Visitor Monitoring Potential: A Literature Review and Alternative Proposal. Water. 2021; 13(3):305. https://doi.org/10.3390/w13030305
Chicago/Turabian StyleAndrew, Ross G., Robert C. Burns, Danielle Schwarzmann, Mary E. Allen, and Jasmine Cardozo Moreira. 2021. "Blue Water Visitor Monitoring Potential: A Literature Review and Alternative Proposal" Water 13, no. 3: 305. https://doi.org/10.3390/w13030305
APA StyleAndrew, R. G., Burns, R. C., Schwarzmann, D., Allen, M. E., & Moreira, J. C. (2021). Blue Water Visitor Monitoring Potential: A Literature Review and Alternative Proposal. Water, 13(3), 305. https://doi.org/10.3390/w13030305