Climate Control of Multidecadal Variability in River Discharge and Precipitation in Western Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Discharge, Precipitation, and Evapotranspiration Data
2.3. Climate Indices
2.4. Methodology
3. Results and Discussion
3.1. River-Discharge Variability
3.2. Precipitation Variability
3.3. Implications and Future Work
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alcamo, J.; Flörke, M.; Märker, M. Future Long-Term Changes in Global Water Resources Driven by Socio-Economic and Climatic Changes. Hydrol. Sci. J. 2007, 52, 247–275. [Google Scholar] [CrossRef]
- Sathasivan, A.; Korotta-Gamage, S.M.; Rahman, A. Uncertainties in Water Supplies Due to Changing Climate and Extreme Weather Events. In Sustainable Water: Resources, Management and Challenges; Gude, V.G., Gadhamshetty, V., Kandiah, R., Eds.; Nova Science Pub Inc.: Hauppauge, NY, USA, 2020; pp. 135–170. [Google Scholar]
- Naiman, R.J.; Latterell, J.J.; Pettit, N.E.; Olden, J.D. Flow Variability and the Biophysical Vitality of River Systems. Comptes Rendus Geosci. 2008, 342, 629–643. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Merz, B.; Aerts, J.; Arnbjerg-Nielsen, K.; Baldi, M.; Becker, A.; Bichet, A.; Blöschl, G.; Bouwer, L.M.; Brauer, A.; Cioffi, F.; et al. Floods and Climate: Emerging Perspectives for Flood Risk Assessment and Management. Nat. Hazards Earth Syst. Sci. 2014, 14, 1921–1942. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Alexander, M. Atmospheric Bridge, Oceanic Tunnel, and Global Climatic Teleconnections. Rev. Geophys. 2007, 45, RG2005. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Szwed, M.; Pińskwar, I. Climate Variability and Floods-A Global Review. Water 2019, 11, 1399. [Google Scholar] [CrossRef] [Green Version]
- Dettinger, M.D.; Cayan, D.R.; McCabe, G.J. Multiscale Streamflow Variability Associated with El Niño/Southern Oscillation. In El Nino and the Southern Oscillation; Diaz, H.F., Markgraf, V., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 113–147. [Google Scholar] [CrossRef]
- Ward, P.J.; Beets, W.; Bouwer, L.M.; Aerts, J.C.J.H.; Renssen, H. Sensitivity of River Discharge to ENSO. Geophys. Res. Lett. 2010, 37, L12402. [Google Scholar] [CrossRef] [Green Version]
- Ward, P.J.; Kummu, M.; Lall, U. Flood Frequencies and Durations and Their Response to El Niño Southern Oscillation: Global Analysis. J. Hydrol. 2016, 539, 358–378. [Google Scholar] [CrossRef] [Green Version]
- Dehghani, M.; Salehi, S.; Mosavi, A.; Nabipour, N.; Shamshirband, S.; Ghamisi, P. Spatial Analysis of Seasonal Precipitation over Iran: Co-Variation with Climate Indices. Int. J. Geo-Inf. 2020, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Le, J.A.; El-Askary, H.M.; Allali, M.; Sayed, E.; Sweliem, H.; Piechota, T.C.; Struppa, D.C. Characterizing El Niño-Southern Oscillation Effects on the Blue Nile Yield and the Nile River Basin Precipitation Using Empirical Mode Decomposition. Earth Syst. Environ. 2020, 4, 699–711. [Google Scholar] [CrossRef]
- Chiew, F.H.S.; McMahon, T.A. Global ENSO-Streamflow Teleconnection, Streamflow Forecasting and Interannual Variability. Hydrol. Sci. J. 2002, 47, 505–522. [Google Scholar] [CrossRef] [Green Version]
- Rodwell, M.J.; Rowell, D.P.; Folland, C.K. Oceanic Forcing of the Wintertime North Atlantic Oscillation and European Climate. Nature 1999, 398, 25–28. [Google Scholar] [CrossRef]
- Parker, D.; Folland, C.; Scaife, A.; Knight, J.; Colman, A.; Baines, P.; Dong, B. Decadal to Multidecadal Variability and the Climate Change Background. J. Geophys. Res. Atmos. 2007, 112, D18115. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.W. Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.W.; Deser, C. North Atlantic Climate Variability: The Role of the North Atlantic Oscillation. J. Mar. Syst. 2009, 78, 28–41. [Google Scholar] [CrossRef]
- Rîmbu, N.; Boroneanţ, C.; Buţǎ, C.; Dima, M. Decadal Variability of the Danube River Flow in the Lower Basin and Its Relation with the North Atlantic Oscillation. Int. J. Climatol. 2002, 22, 1169–1179. [Google Scholar] [CrossRef]
- Stanev, E.V.; Peneva, E.L. Regional Sea Level Response to Global Climatic Change: Black Sea Examples. Glob. Planet. Chang. 2001, 32, 33–47. [Google Scholar] [CrossRef]
- Cullen, H.M.; DeMenocal, P.B. North Atlantic Influence on Tigris-Euphrates Streamflow. Int. J. Climatol. 2000, 20, 853–863. [Google Scholar] [CrossRef]
- Cullen, H.M.; Kaplan, A.; Arkin, P.A.; DeMenocal, P.B. Impact of the North Atlantic Oscillation on Middle Eastern Climate and Streamflow. Clim. Chang. 2002, 55, 315–338. [Google Scholar] [CrossRef]
- Nobre, G.G.; Jongman, B.; Aerts, J.; Ward, P.J. The Role of Climate Variability in Extreme Floods in Europe. Environ. Res. Lett. 2017, 12, 084012. [Google Scholar] [CrossRef]
- Trigo, R.M.; Pozo-Vázquez, D.; Osborn, T.J.; Castro-Díez, Y.; Gámiz-Fortis, S.; Esteban-Parra, M.J. North Atlantic Oscillation Influence on Precipitation, River Flow and Water Resources in the Iberian Peninsula. Int. J. Climatol. 2004, 24, 925–944. [Google Scholar] [CrossRef]
- Lorenzo-Lacruz, J.; Vicente-Serrano, S.M.; López-Moreno, J.I.; González-Hidalgo, J.C.; Morán-Tejeda, E. The Response of Iberian Rivers to the North Atlantic Oscillation. Hydrol. Earth Syst. Sci. 2011, 15, 2581–2597. [Google Scholar] [CrossRef] [Green Version]
- Giuntoli, I.; Renard, B.; Vidal, J.P.; Bard, A. Low Flows in France and Their Relationship to Large-Scale Climate Indices. J. Hydrol. 2013, 482, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Massei, N.; Laignel, B.; Deloffre, J.; Mesquita, J.; Motelay, A.; Lafite, R.; Durand, A. Long-Term Hydrological Changes of the Seine River Flow (France) and Their Relation to the North Atlantic Oscillation over the Period 1950–2008. Int. J. Climatol. 2010, 30, 2146–2154. [Google Scholar] [CrossRef]
- Chevalier, L.; Laignel, B.; Massei, N.; Munier, S.; Becker, M.; Turki, I.; Coynel, A.; Cazenave, A. Hydrological Variability of Major French Rivers over Recent Decades, Assessed from Gauging Station and GRACE Observations. Hydrol. Sci. J. 2014, 59, 1844–1855. [Google Scholar] [CrossRef] [Green Version]
- Massei, N.; Dieppois, B.; Hannah, D.M.; Lavers, D.A.; Fossa, M.; Laignel, B.; Debret, M. Multi-Time-Scale Hydroclimate Dynamics of a Regional Watershed and Links to Large-Scale Atmospheric Circulation: Application to the Seine River Catchment, France. J. Hydrol. 2017, 546, 262–275. [Google Scholar] [CrossRef] [Green Version]
- Burt, T.P.; Howden, N.J.K. North Atlantic Oscillation Amplifies Orographic Precipitation and River Flow in Upland Britain. Water Resour. Res. 2013, 49, 3504–3515. [Google Scholar] [CrossRef]
- Shimura, T.; Mori, N.; Mase, H. Ocean Waves and Teleconnection Patterns in the Northern Hemisphere. J. Clim. 2013, 26, 8654–8670. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Schimel, D. Climate Change, Climate Modes, and Climate Impacts. Annu. Rev. Environ. Resour. 2003, 28, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Folland, C.K.; Knight, J.; Linderholm, H.W.; Fereday, D.; Ineson, S.; Hurrel, J.W. The Summer North Atlantic Oscillation: Past, Present, and Future. J. Clim. 2009, 22, 1082–1103. [Google Scholar] [CrossRef]
- Bacon, S.; Carter, D.J.T. A Connection between Mean Wave Height and Atmospheric Pressure Gradient in the North Atlantic. Int. J. Climatol. 1993, 13, 423–436. [Google Scholar] [CrossRef]
- Castelle, B.; Dodet, G.; Masselink, G.; Scott, T. A New Climate Index Controlling Winter Wave Activity along the Atlantic Coast of Europe: The West Europe Pressure Anomaly. Geophys. Res. Lett. 2017, 45, 3586–3596. [Google Scholar] [CrossRef] [Green Version]
- Davies, H.C. Weather Chains during the 2013/2014 Winter and Their Significance for Seasonal Prediction. Nat. Geosci. 2015, 8, 833–837. [Google Scholar] [CrossRef]
- Thorne, C. Geographies of UK Flooding in 2013/4. Geogr. J. 2014, 108, 297–309. [Google Scholar] [CrossRef]
- Wilson, D.; Hannah, D.M.; McGregor, G.R. A Large-Scale Hydroclimatological Perspective on Western European River Flow Regimes. Hydrol. Res. 2013, 44, 809–833. [Google Scholar] [CrossRef]
- Joly, D.; Brossard, T.; Cardot, H.; Cavailhes, J.; Hilal, M.; Wavresky, P. Les Types de Climats En France, Une Construction Spatiale. CyberGeo Eur. J. Geogr. 2010. [Google Scholar] [CrossRef]
- Jalón-Rojas, I.; Schmidt, S.; Sottolichio, A. Turbidity in the Fluvial Gironde Estuary (Southwest France) Based on 10-Year Continuous Monitoring: Sensitivity to Hydrological Conditions. Hydrol. Earth Syst. Sci. 2015, 19, 2805–2819. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated High-Resolution Grids of Monthly Climatic Observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Camarillo-Naranjo, J.M.; Álvarez-Francoso, J.I.; Limones-Rodríguez, N.; Pita-López, M.F.; Aguilar-Alba, M. The Global Climate Monitor System: From Climate Data-Handling to Knowledge Dissemination. Int. J. Digit. Earth 2019, 12, 394–414. [Google Scholar] [CrossRef]
- Barnston, A.G.; Livezey, R.E. Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns. Mon. Weather Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Jones, P.D.; Jonsson, T.; Wheeler, D. Extension to the North Atlantic Oscillation Using Early Instrumental Pressure Observations from Gibraltar and South-West Iceland. Int. J. Climatol. 1997, 17, 1433–1450. [Google Scholar] [CrossRef]
- Trigo, R.M.; Osborn, T.J.; Corte-Real, J.M. The North Atlantic Oscillation Influence on Europe: Climate Impacts and Associated Physical Mechanisms. Clim. Res. 2002, 20, 9–17. [Google Scholar] [CrossRef]
- Bokhari, S.A.A.; Ahmad, B.; Ali, J.; Ahmad, S.; Mushtaq, H.; Rasul, G. Future Climate Change Projections of the Kabul River Basin Using a Multi-Model Ensemble of High-Resolution Statistically Downscaled Data. Earth Syst. Environ. 2018, 2, 477–497. [Google Scholar] [CrossRef]
- Kendon, M.; McCarthy, M. The UK’s Wet and Stormy Winter of 2013/2014. Weather 2015, 70, 40–47. [Google Scholar] [CrossRef]
- Neumann, J.; Arnal, L.; Magnusson, L.; Cloke, H. The 2013/14 Thames Basin Floods: Do Improved Meteorological Forecasts Lead to More Skillful Hydrological Forecasts at Seasonal Time Scales? J. Hydrometeorol. 2018, 19, 1059–1075. [Google Scholar] [CrossRef]
- Garnier, E. Lessons Learned from the Past for a Better Resilience to Contemporary Risks. Disaster Prev. Manag. An Int. J. 2019, 28, 786–803. [Google Scholar] [CrossRef]
- Bohorquez, P.; del Moral-Erencia, J.D. 100 Years of Competition between Reduction in Channel Capacity and Streamflow during Floods in the Guadalquivir River (Southern Spain). Remote Sens. 2017, 9, 727. [Google Scholar] [CrossRef] [Green Version]
- Ulbrich, U.; Christoph, M.; Pinto, J.G.; Corte-Real, J. Dependence of Winter Precipitation over Portugal on NAO and Baroclinic Wave Activity. Int. J. Climatol. 1999, 19, 379–390. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; López-Moreno, J.I. Hydrological Response to Different Time Scales of Climatological Drought: An Evaluation of the Standardized Precipitation Index in a Mountainous Mediterranean Basin. Hydrol. Earth Syst. Sci. 2005, 9, 523–533. [Google Scholar] [CrossRef] [Green Version]
- Heape, R.; Hirschi, J.; Sinha, B. Asymmetric Response of European Pressure and Temperature Anomalies to NAO Positive and NAO Negative Winters. Weather 2013, 3, 73–80. [Google Scholar] [CrossRef]
- Fritier, N.; Massei, N.; Laignel, B.; Durand, A.; Dieppois, B.; Deloffre, J. Links between NAO Fluctuations and Inter-Annual Variability of Winter-Months Precipitation in the Seine River Watershed (North-Western France). Comptes Rendus Geosci. 2012, 344, 396–405. [Google Scholar] [CrossRef]
- Boé, J. Modulation of Soil Moisture-Precipitation Interactions over France by Large Scale Circulation. Clim. Dyn. 2013, 40, 875–892. [Google Scholar] [CrossRef]
- Hermida, L.; López, L.; Merino, A.; Berthet, C.; García-Ortega, E.; Sánchez, J.L.; Dessens, J. Hailfall in Southwest France: Relationship with Precipitation, Trends and Wavelet Analysis. Atmos. Res. 2015, 156, 174–188. [Google Scholar] [CrossRef]
- Hall, R.J.; Hanna, E. North Atlantic Circulation Indices: Links with Summer and Winter UK Temperature and Precipitation and Implications for Seasonal Forecasting. Int. J. Climatol. 2018, 38, e660–e677. [Google Scholar] [CrossRef]
- Burvingt, O.; Masselink, G.; Scott, T.; Davidson, M.; Russell, P. Climate Forcing of Regionally-Coherent Extreme Storm Impact and Recovery on Embayed Beaches. Mar. Geol. 2018, 401, 112–128. [Google Scholar] [CrossRef]
- Castelle, B.; Dodet, G.; Masselink, G.; Scott, T. Increased Winter-Mean Wave Height, Variability, and Periodicity in the Northeast Atlantic over 1949–2017. Geophys. Res. Lett. 2018, 45, 3586–3596. [Google Scholar] [CrossRef] [Green Version]
- Dodet, G.; Castelle, B.; Masselink, G.; Scott, T.; Davidson, M.; Floc’h, F.; Jackson, D.; Suanez, S. Beach Recovery from Extreme Storm Activity during the 2013–2014 Winter along the Atlantic Coast of Europe. Earth Surf. Process. Landf. 2019, 44, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Scott, T.; Masselink, G.; McCarroll, R.J.; Castelle, B.; Dodet, G.; Saulter, A.; Scaife, A.A.; Dunstone, N. Atmospheric Controls and Long Range Predictability of Directional Waves in the United Kingdom & Ireland. Earth Sp. Sci. Open Arch. 2020, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Wiggins, M.; Scott, T.; Masselink, G.; Russell, P.; McCarroll, R.J. Coastal Embayment Rotation: Response to Extreme Events and Climate Control, Using Full Embayment Surveys. Geomorphology 2019, 327, 385–403. [Google Scholar] [CrossRef]
- Tsanis, I.; Tapoglou, E. Winter North Atlantic Oscillation Impact on European Precipitation and Drought under Climate Change. Theor. Appl. Climatol. 2019, 135, 323–330. [Google Scholar] [CrossRef]
- Zanardo, S.; Nicotina, L.; Hilberts, A.G.J.; Jewson, S.P. Modulation of Economic Losses from European Floods by the North Atlantic Oscillation. Geophys. Res. Lett. 2019, 46, 2563–2572. [Google Scholar] [CrossRef]
- Dias, J.M.A.; Gonzalez, R.; Ferreira, Ó. Natural versus Anthropic Causes in Variations of Sand Export from River Basins: An Example from the Guadiana River Mouth (Southwestern Iberia). Polish Geol. Inst. Spec. Pap. 2004, 11, 95–102. [Google Scholar]
- Jalón-Rojas, I.; Schmidt, S.; Sottolichio, A. Comparison of Environmental Forcings Affecting Suspended Sediments Variability in Two Macrotidal, Highly-Turbid Estuaries. Estuar. Coast. Shelf Sci. 2017, 198, 529–541. [Google Scholar] [CrossRef]
- Dunstone, N.; Smith, D.; Scaife, A.; Hermanson, L.; Eade, R.; Robinson, N.; Andrews, M.; Knight, J. Skilful Predictions of the Winter North Atlantic Oscillation One Year Ahead. Nat. Geosci. 2016, 9, 809–814. [Google Scholar] [CrossRef]
- Scaife, A.A.; Comer, R.; Dunstone, N.; Fereday, D.; Folland, C.; Good, E.; Gordon, M.; Hermanson, L.; Ineson, S.; Karpechko, A.; et al. Predictability of European Winter 2015/2016. Atmos. Sci. Lett. 2017, 18, 38–44. [Google Scholar] [CrossRef]
- Smith, D.M.; Scaife, A.A.; Eade, R.; Athanasiadis, P.; Bellucci, A.; Bethke, I.; Bilbao, R.; Borchert, L.F.; Caron, L.P.; Counillon, F.; et al. North Atlantic Climate Far More Predictable than Models Imply. Nature 2020, 583, 796–809. [Google Scholar] [CrossRef]
River | Gauging Station | Basin Area (103 km2, %) | Data Gaps | DJFM River Flow (1959–2018) (m3/s) | ||
---|---|---|---|---|---|---|
Total | Upstream the Station | Mean | SD | |||
1. Spey | Boat o Brig | 3.06 | 2.86 (93.5%) | - | 83.5 | 20.1 |
2. Almond | Craigiehall | 0.38 | 0.37 (98.4%) | 2010 | 9.3 | 2.9 |
3. Tyne | Bywell | 2.88 | 2.18 (75.7%) | - | 67.5 | 17.1 |
4. Trent | Colwick | 10.39 | 7.49 (72.1/) | - | 124.7 | 36.6 |
5. Severn | Saxons-Upton | 11.42 | 6.85 (60%) | - | 147.2 | 44.3 |
6. Wye | Redbrook | 4.14 | 4.01 (96.9%) | - | 123.2 | 37.7 |
7. Thames | Kingston | 13.48 | 9.95 (73.8%) | - | 110.0 | 51.4 |
8. Tamar | Gunnislake | 0.96 | 0.92 (95.8%) | - | 38.2 | 10.7 |
9. Seine | Poses/Vernon | 76.24 | 65/64.6 (85.2%/84.7%) | - | 729.2 | 282.3 |
10. Loire | Montjean | 117.50 | 109.93 (93.6%) | - | 1428.8 | 536.9 |
11. Rhone | Beaucaire | 97.63 | 95.59 (97.91%) | - | 2049.2 | 502.2 |
12. Dordogne | Lamonzie/Bergerac | 24.07 | 14.29/14.04 (59.4%/58.4%) | - | 420.1 | 146.0 |
13. Garonne | Tonneins | 56.55 | 51.5 (91.1%) | - | 869.0 | 320.4 |
14. Adour | St. Vincent de Paul | 16.82 | 7.83 (46.6%) | - | 137.9 | 52.4 |
15. Ebro | Tortosa | 85.52 | 84.23 (98.5%) | - | 535.6 | 287.4 |
16. Douro | Regua/Pocinho | 97.48 | 91.5/81.29 (93.87%/83.4%) | - | 672.0 | 498.1 |
17. Tagus | Santarem/Almourol | 71.61 | 68.43/67.48 (95.6%/94.2%) | 2008, 2015 | 611.52 | 502.4 |
18. Guadalquivir | Alcalá del Río | 57.02 | 46.13 (80.9%) | - | 225.4 | 263.1 |
River Basin | RWEPA | RNAO | RNAO (Jones) | REA | RSCAN | RWP | REP | RPNA | RWR | RTNH | RPOL |
---|---|---|---|---|---|---|---|---|---|---|---|
1. Spey | 0.09 | 0.56 * | 0.55 * | 0.20 | −0.47 * | 0 | 0.1 | 0.09 | −0.12 | 0.03 | −0.22 |
2. Almond | 0.30 | 0.56 * | 0.52 * | 0.45 * | −0.39 * | 0.12 | 0.13 | 0.26 | −0.19 | 0 | −0.41 * |
3. Tyne | 0.52 * | 0.37 * | 0.34 * | 0.46 * | −0.18 | 0.10 | 0.21 | 0.20 | −0.25 | −0.04 | −0.38 * |
4. Trent | 0.80 * | 0.02 | 0.10 | 0.47 * | 0.14 | 0.23 | 0.1 | 0.22 | −0.34 * | −0.07 | −0.36 * |
5. Severn | 0.83 * | 0.04 | 0.16 | 0.48 * | 0.14 | 0.12 | 0.09 | 0.09 | −0.34 * | −0.06 | −0.36 * |
6. Wye | 0.83 * | 0.24 | 0.31 | 0.59 * | 0.03 | 0.16 | 0.14 | 0.15 | −0.28 | 0.01 | −0.40 * |
7. Thames | 0.72 * | −0.08 | 0.03 | 0.50 * | 0.18 | 0.06 | 0.04 | 0.10 | −0.26 | 0.08 | −0.20 |
8. Tamar | 0.83 * | 0.22 | 0.26 | 0.46 * | 0.13 | 0.09 | 0.12 | 0.01 | −0.46 * | 0.06 | −0.43 * |
9. Seine | 0.41 * | 0.28 * | 0.23 | 0.19 | −0.16 | 0.20 | 0.26 * | 0.17 | −0.27 * | −0.09 | −0.30 * |
10. Loire | 0.58 * | −0.05 | −0.01 | 0.16 | 0.15 | 0.05 | 0.21 | 0.20 | −0.38 * | −0.12 | −0.17 |
11. Rhone | 0.64 * | −0.15 | −0.13 | 0.30 * | 0.23 | 0.12 | 0.19 | 0.17 | −0.34 * | −0.09 | −0.25 |
12. Dordogne | 0.66 * | −0.10 | −0.05 | 0.19 | 0.31 * | 0.05 | 0.20 | 0.17 | −0.38 * | −0.16 | −0.16 |
13. Garonne | 0.56 * | −0.21 | −0.19 | 0.05 | 0.45 * | −0.04 | 0.22 | −0.02 | −0.30 * | −0.12 | −0.01 |
14. Adour | 0.63 * | −0.06 | −0.05 | 0.11 | 0.39 * | −0.01 | 0.23 | 0.02 | −0.36 * | −0.08 | −0.13 |
15. Ebro | 0.27 * | −0.44 * | −0.31 | −0.02 | 0.30 | −0.18 | 0.20 | −0.01 | −0.08 | −0.15 | 0.20 |
16. Douro | 0.48 * | −0.48 * | −0.40 * | 0.43 * | 0.31 * | 0.04 | 0.08 | 0.08 | −0.14 | −0.08 | −0.01 |
17. Tagus | 0.31 * | −0.57 * | −0.45 * | 0.31 * | 0.23 | −0.02 | 0.01 | −0.04 | −0.04 | −0.06 | 0.20 |
18. Guadalquivir | 0.07 | −0.72 * | −0.60 * | 0.12 | 0.17 | −0.13 | −0.05 | −0.02 | −0.04 | −0.21 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalón-Rojas, I.; Castelle, B. Climate Control of Multidecadal Variability in River Discharge and Precipitation in Western Europe. Water 2021, 13, 257. https://doi.org/10.3390/w13030257
Jalón-Rojas I, Castelle B. Climate Control of Multidecadal Variability in River Discharge and Precipitation in Western Europe. Water. 2021; 13(3):257. https://doi.org/10.3390/w13030257
Chicago/Turabian StyleJalón-Rojas, Isabel, and Bruno Castelle. 2021. "Climate Control of Multidecadal Variability in River Discharge and Precipitation in Western Europe" Water 13, no. 3: 257. https://doi.org/10.3390/w13030257
APA StyleJalón-Rojas, I., & Castelle, B. (2021). Climate Control of Multidecadal Variability in River Discharge and Precipitation in Western Europe. Water, 13(3), 257. https://doi.org/10.3390/w13030257