Different Approaches to Assessing Pollution Load: The Case of Nitrogen-Related Grey Water Footprint of Barley and Soybean in Argentina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- Two growing periods of rainfed malting barley (Hordeum vulgare L.) were analysed: in 2019, a plot of 101 ha (37°29′ S, 59°54′ W, 197 m.a.s.l.) where sunflower was previously produced, and in 2020, a plot of 73 ha (37°9′ S, 58°54′ W, 196 m.a.s.l.) where soybean was previously produced. The sowing and harvest dates were 5 July 5 to 17 December 2019 and 7 July to 9 December 2020, respectively. The malting barley was cultivated by applying direct sowing, with row spacing of 0.17 m and a density of 250 seeds per m2. It was fertilized with urea (46% N), with 220 kg/ha applied the first year and 250 kg/ha the second year.
- In 2020, a rainfed soybean (Glycine max L.) crop of 122 ha (37°30′ S, 58°54′ W, 181 m.a.s.l.) was followed where the predecessor crop was potato. The growing period was from 17 November 2020 to harvest on 5 May 2021. Direct sowing was also applied for this crop, with row spacing of 0.32 m and a density of 35 seeds per m2. Soybean was fertilized with 180 kg/ha superphosphate (0-21-0).
2.2. Methods
2.2.1. Estimating the Pollutant Load: Leaching/Runoff Fraction Approach
2.2.2. Estimating the Pollutant Load: Surplus Approach
2.2.3. Estimating the Pollutant Load: Nitrogen Balance Approach
3. Results
3.1. Estimation of Pollutant Load through the Leaching/Runoff Fraction and Surplus Approach
3.1.1. Estimation of Leaching/Runoff Fractions: α and β
- There were no diffuse pollution mitigation measures such as buffer zones and stream fencing.
- The handling of chemicals was not careful. In some cases, we observed dumped urea on plot access roads, due to a leak in the transport machinery. The amounts were not significant, but this could be avoided to reduce the potential for fertiliser to move into water bodies.
- No cover crop was used; however, direct seeding and crop rotation were applied in the three crop periods. This management also contributes to soil preservation and prevents water and wind erosion.
3.1.2. Determination of Pollutant Load (L)
3.2. Estimation of Pollutant Load through the Nitrogen Balance Approach
3.2.1. Estimation of Pollutant Load through the Nitrogen Balance Approach: Inputs
3.2.2. Estimation of Pollutant Load through the Nitrogen Balance Approach: Outputs
3.3. Grey Water Footprint Applying the Three Approaches for Assessing Pollutant Load: Performance in Barley and Soybean Crops
4. Discussion
4.1. Evaluation of the Three Approaches for Assessing Pollutant Load: Performance in Barley and Soybean Crops
- A.
- The AR in soybean and barley is adjusted according to the crop requirements and the environmental capacity. This management increases the efficiency of fertilisation, e.g., in the case of the barley, AR was high, but Y was high in 2019 and very high in 2020, while nitrogen fertilization was not necessary for soybean. This fertilisation practice reduces the fertiliser availability in the soil and consequently the fertiliser proportion that leaches or runs off to surface and groundwater bodies. However, this does not mean that there is not N leaching/runoff generated by other N inputs, such as mineralisation. Therefore, A1-a and A1-b may not be appropriate for estimating L in barley and soybean crops. In addition, A1-b calculated α using a much higher Ppm value (800 mm) than the Pp during the crop period (100.80 and 203.30 mm in barley 2019 and 2020 and 198.90 mm in soybean in 2020). Pp is a highly influential factor in the leaching/runoff process. Applying a Ppm value contributes to the overestimation of fertiliser loss through leaching/runoff.
- B.
- In both crops, the AR will always be lower than the N offtake by the plant, because the N available in the soil also contributes to crop growth. This calls into question the L estimation by A2. In this study, A2 was complemented by A3 to determine the L-R as a residual term of the N balance.
4.2. N Balance Approach: The Importance of Initial N Concentration and Mineralization in Pollution Load Estimation
4.3. Study Scales in Pollutant Load Assessment and Grey Water Footprint
4.4. Grey Water Footprint Values Compared with the Literature
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization for the United Nations (FAO). The State of Food and Agriculture (SOFA); FAO: Rome, Italy, 2020; p. 210. [Google Scholar] [CrossRef]
- Mateo-Sagasta, J.; Marjani Zadeh, S.; Turral, H. More People, More Food, Worse Water? A Global Review of Water Pollution from Agricultura; FAO e IWMI: Rome, Italy, 2018; p. 221. Available online: www.fao.org/3/ca0146en/CA0146EN.pdf (accessed on 14 May 2021).
- Falkenmark, M.; Finlayson, C.M.; Gordon, L. Agriculture, water, and ecosystems: Avoiding the costs of going too far. In Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Earthscan: London, UK, 2007; Volume 8, pp. 234–277. [Google Scholar] [CrossRef]
- Food and Agriculture Organization for the United Nations (FAO). The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017; p. 163. Available online: www.fao.org/publications (accessed on 7 April 2021).
- Kanter, D.R.; Searchinger, T.D. A technology-forcing approach to reduce nitrogen pollution. Nat. Sustain. 2018, 1, 544–552. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 6223. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. Global grey water footprint and water pollution levels related to anthropogenic nitrogen loads to fresh water. Environ. Sci. Technol. 2015, 49, 12860–12868. [Google Scholar] [CrossRef]
- United Nations World Water Assessment Programme (WWAP). Water for a Sustainable World; The United Nations World Water Development Report; UNESCO: France, Paris, 2015; pp. 1–67. [Google Scholar]
- Franke, N.A.; Boyacioglu, H.; Hoekstra, A.Y. Grey Water Footprint Accounting: Tier 1 Supporting Guidelines; Value of Water Research Report Series Nº 65; UNESCO-IHE: Delft, The Netherlands, 2013. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011. [Google Scholar]
- Huang, J.; Zhang, H.; Tong, W.; Chen, F. The impact of local crops consumption on the water resources in Beijing. J. Clean. Prod. 2012, 21, 45–50. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrol. Earth Syst. Sci. Discuss. 2010, 7, 2499–2542. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. Discuss. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Van Oel, P.R.; Mekonnen, M.M.; Hoekstra, A.Y. The external water footprint of the Netherlands: Geographically-explicit quantification and impact assessment. Ecol. Econ. 2009, 69, 82–92. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y.; Savernake, H.H.G.; Gautam, R. The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecol. Econ. 2006, 60, 186–203. [Google Scholar] [CrossRef]
- Gil, R.; Bojacá, C.R.; Schrevens, E. Uncertainty of the agricultural grey water footprint based on high resolution primary data. Water Resour. Manag. 2017, 31, 3389–3400. [Google Scholar] [CrossRef]
- Munro, S.A.; Fraser, G.C.; Snowball, J.D.; Pahlow, M. Water footprint assessment of citrus production in South Africa: A case study of the Lower Sundays River Valley. J. Clean. Prod. 2016, 135, 668–678. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Global anthropogenic phosphorus loads to freshwater and associated grey water footprints and water pollution levels: A high-resolution global study. Water Resour. Res. 2018, 54, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Muratoglu, A. Grey water footprint of agricultural production: An assessment based on nitrogen surplus and high-resolution leaching runoff fractions in Turkey. Sci. Total Environ. 2020, 742, 140553. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.; Xu, C.; Yang, L.; Hou, S.; Xia, Q. Measurement and driving factors of grey water footprint efficiency in Yangtze River Basin. Sci. Total Environ. 2022, 802, 149587. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, M.M.; Hoekstra, A.Y. Water footprint benchmarks for crop production: A first global assessment. Ecol. Indic. 2014, 46, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Laspidou, C.S. Grey water footprint of crops and crop-derived products: Analysis of calculation method. In Proceedings of the 4th International Conference on Environmental Management, Engineering, Planning and Economics, Mykonos, Greece, 24–28 June 2014; pp. 2899–2903. [Google Scholar]
- Tozzini, L.; Pannunzio, A.; Soria, P.T. Water Footprint of Soybean, Maize and Wheat in Pergamino, Argentina. Agric. Sci. 2021, 12, 305–323. [Google Scholar] [CrossRef]
- Olivera Rodriguez, P.; Holzman, M.E.; Degano, M.F.; Faramiñán, A.M.G.; Rivas, R.E.; Bayala, M.I. Spatial variability of the green water footprint using a medium-resolution remote sensing technique: The case of soybean production in the Southeast Argentine Pampas. Sci. Total Environ. 2021, 763, 142963. [Google Scholar] [CrossRef]
- Aldaya, M.M.; Rodriguez, C.I.; Fernandez-Poulussen, A.; Merchan, D.; Beriain, M.J.; Llamas, R. Grey water footprint as an indicator for diffuse nitrogen pollution: The case of Navarra, Spain. Sci. Total Environ. 2020, 698, 134338. [Google Scholar] [CrossRef]
- Food and Agriculture Organization for the United Nations (FAO). FAOSTAT Database. Available online: http://www.fao.org/faostat/es/ (accessed on 19 June 2021).
- Fundación Agropecuaria para el Desarrollo de Argentina (FADA). Índice FADA: Participación del Estado en la Renta Agrícola. Available online: https://fundacionfada.org/ (accessed on 12 July 2021).
- Ministerio de Agricultura, Ganadería y Pesca, Argentina. Agricultural Estimates. Available online: http://datosestimaciones.magyp.gob.ar/reportes.php?reporte=Estimaciones (accessed on 16 July 2021).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Degano, M.F.; Rivas, R.E.; Carmona, F.; Niclòs, R.; Sánchez, J.M. Evaluation of the MOD16A2 evapotranspiration product in an agricultural area of Argentina, the Pampas region. Egypt. J. Remote. Sens. Space Sci. 2021, 24, 319–328. [Google Scholar] [CrossRef]
- Holzman, M.E.; Rivas, R.; Piccolo, M.C. Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 181–192. [Google Scholar] [CrossRef]
- Servicio Meteorológico Nacional Argentino. Available online: https://www.smn.gob.ar/ (accessed on 7 June 2020).
- Instituto Nacional de Tecnología Agropecuaria (INTA). GeoINTA. Cartas de Suelos de la Provincia de Buenos Aires, Argentina. Available online: www.visor.geointa.inta.gob.ar (accessed on 24 May 2021).
- Lavado, R.S.; Taboada, M.A. The argentinean Pampas: A key region with a negative nutrient balance and soil degradation needs better nutrient management and conservation programs to sustain its future viability as a world agroresource. J. Soil Water Conserv. 2009, 64, 150–153. [Google Scholar] [CrossRef]
- Vazquez, P.; Zulaica, L. Agriculturization and environmental impacts in a representative area of the ecoregion of the pampas, Argentina. Braz. Geogr. J. Geosci. Humanit. Res. Medium 2014, 5, 20–45. Available online: http://hdl.handle.net/11336/25628 (accessed on 11 May 2021).
- Viglizzo, E.F.; Frank, F.C.; Carreno, L.V.; Jobbágy, E.G.; Pereyra, H.; Clatt, J.; Pincén, D.; Ricard, M.F. Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Glob. Chang. Biol. 2011, 17, 959–973. [Google Scholar] [CrossRef]
- Bolsa de Cereales de Buenos Aires, Argentina. Available online: https://www.bolsadecereales.com/ (accessed on 27 May 2021).
- Viglizzo, E.F.; Ricard, M.F.; Jobbágy, E.G.; Frank, F.C.; Carreno, L.V. Assessing the cross-scale impact of 50 years of agricultural transformation in Argentina. Field Crops Res. 2011, 124, 186–194. [Google Scholar] [CrossRef]
- Código Alimentario Argentino. Chapter XII: Water Drinks, Water and Aerated Water. Law 18.284. Argentina. Available online: http://www.anmat.gov.ar/alimentos/códigoa/CAPITULO_XII.pdf (accessed on 16 June 2020).
- Ares, M.G.; Holzman, M.; Entraigas, I.; Varni, M.; Fajardo, L.; Vercelli, N. Surface moisture area during rainfall–run-off events to understand the hydrological dynamics of a basin in a plain region. Hydrol. Process. 2018, 32, 1351–1362. [Google Scholar] [CrossRef]
- Zabala, M.E.; Murillo, R.S.; Dietrich, S.; Gorocito, M.; Vives, L.; Manzano, M.; Varni, M. Hydrological dataset of a sub-humid continental plain basin (Buenos Aires, Argentina). Data Brief 2020, 33, 106400. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils 1. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Reussi Calvo, N.I.; Wyngaard, N.; Orcellet, J.; Sainz Rozas, H.R.; Echeverría, H.E. Predicting field-apparent nitrogen mineralization from anaerobically incubated nitrogen. Soil Sci. Soc. Am. J. 2018, 82, 502–508. [Google Scholar] [CrossRef]
- Quemada, M.; Cabrera, M.L. Temperature and moisture effects on C and N mineralization from surface applied clover residue. Plant Soil 1997, 189, 127–137. [Google Scholar] [CrossRef]
- Landriscini, M.R.; Galantini, J.A.; Duval, M.E.; Capurro, J.E. Nitrogen balance in a plant-soil system under different cover crop-soybean cropping in Argentina. Appl. Soil Ecol. 2019, 133, 124–131. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Cassman, K.G.; Specht, J.E.; Walters, D.T.; Weiss, A.; Dobermann, A. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Res. 2008, 108, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, R. Balance de nitrógeno en cultivos de trigo. Publ. INTA Rafaela 2006, 105, 23–35. [Google Scholar]
- PROFERTIL. Research and Development Department. Available online: https://www.profertil.com.ar/ (accessed on 11 June 2020).
- Rozas, H.R.; Echeverría, H.E.; Picone, L.I. Denitrification in Maize Under No–Tillage: Effect of Nitrogen Rate and Application Time. Soil Sci. Soc. Am. J. 2001, 65, 1314–1323. [Google Scholar] [CrossRef]
- Rozas, H.R.; Echeverría, H.E.; Barbieri, P. Desnitrificación en un suelo bajo siembra directa en función de la presencia de plantas de maíz y de la dosis de nitrógeno. Ciencia del Suelo 2004, 22, 27–35. Available online: http://www.suelos.org.ar/publicaciones/vol_22n1/saint_rozas_27-35.pdf (accessed on 16 April 2021).
- Scopel, E.; Triomphe, B.; Ribeiro, M.D.S.; Séguy, L.; Denardin, J.E.; Kochann, R.A. Direct seeding mulch-based cropping systems (DMC) in Latin America. In New Directions for a Diverse Planet: Proceedings for the 4th International Crop Science Congress, Brisbane, Australia; Crop Science Society of America: Fitchburg, WI, USA, 2004; Volume 26, pp. 1–16. Available online: http://www.cropscience.org.au/icsc2004/pdf/1406_scopele.pdf (accessed on 7 April 2021).
- Ferraris, G.N.; Couretot, L.A.; Toribio, M. Pérdidas de nitrógeno por volatilización y su implicancia en el rendimiento del cultivo de maíz: Efectos de fuente, dosis y uso de inhibidores. Informaciones Agronómicas 2009, 43, 19–22. Available online: https://www.ipni.net/publication/ia-lacs.nsf/0/B5B2034B84BF8FF6852579950075F445/$FILE/19.pdf (accessed on 3 May 2021).
- Meisinger, J.J.; Delgado, J.A. Principles for managing nitrogen leaching. J. Soil Water Conserv. 2002, 57, 485–498. Available online: https://www.jswconline.org/ (accessed on 3 May 2021).
- Webb, J.; Harrison, R.; Ellis, S. Nitrogen fluxes in three arable soils in the UK. Eur. J. Agron. 2000, 13, 207–223. [Google Scholar] [CrossRef]
- Ferraris, G.N.; Gonzalez Anta, G. Contribución del Nitrógeno Lnorgánico y de la FBN a la Nutrición Nitrogenada de Soja en Argentina. 2014. Available online: https://www.agrositio.com.ar/noticia/68947-contribucion-del-nitrogeno-inorganico-y-de-la-fbn-a-la-nutricion-nitrogenada-de-soja-en-argentina (accessed on 22 June 2021).
- Martínez, J.; Galantini, J.; López, F.; Duval, M. Índices de mineralización del nitrógeno. Boletín del Cerzos 2014, 25, 15–25. [Google Scholar]
- Alvarez, R.; Steinbach, H.S. Modeling apparent nitrogen mineralization under field conditions using regressions and artificial neural networks. J. Agron. 2011, 103, 1159–1168. [Google Scholar] [CrossRef]
- Faculty of Agronomy of the University of Buenos Aires (FAUBA). Cronos Model Barley. Available online: http://cronocebada.agro.uba.ar/ (accessed on 2 June 2021).
- Faculty of Agronomy of the University of Buenos Aires (FAUBA). Cronos Model Soybean. Available online: http://cronosoja.agro.uba.ar/ (accessed on 2 June 2021).
- Collino, D.J.; Salvagiotti, F.; Perticari, A.; Piccinetti, C.; Ovando, G.; Urquiaga, S.; Racca, R.W. Biological nitrogen fixation in soybean in Argentina: Relationships with crop, soil, and meteorological factors. Plant Soil 2015, 392, 239–252. [Google Scholar] [CrossRef]
- Liu, C.; Kroeze, C.; Hoekstra, A.Y.; Gerbens-Leenes, W. Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecol. Indic. 2012, 18, 42–49. [Google Scholar] [CrossRef]
- Fox, R.H.; Piekielek, W.P. Management and urease inhibitor effects on nitrogen use efficiency in no-till corn. J. Prod. Agric. 1993, 6, 195–200. [Google Scholar] [CrossRef]
- Eagles, H.A.; Bedggood, A.G.; Panozzo, J.F.; Martin, P.J. Cultivar and environmental effects on malting quality in barley. Aust. J. Agric. Res. 1995, 46, 831–844. [Google Scholar] [CrossRef]
- Bolsa de Comercio de Rosario. Grain Arbitration Chamber. “Standard V- Barley”, Annex A—Malting Barley. Available online: https://www.cac.bcr.com.ar/es/arbitraje-y-calidad/normas-de-comercializacion (accessed on 13 June 2021).
- dos Santos Cordeiro, C.F.; Echer, F.R. Interactive effects of nitrogen-fixing bacteria inoculation and nitrogen fertilization on soybean yield in unfavorable edaphoclimatic environments. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Martinez, J.P.; Barbieri, P.A.; Sainz Rozas, H.R.; Echeverria, H.E. Inclusion of cover crops in cropping sequences with soybean predominance in the southeast of the Humid Argentine Pampa. Open Agric. 2013, 7, 3–10. Available online: http://hdl.handle.net/20.500.12123/1452 (accessed on 27 April 2021). [CrossRef]
- Deibert, E.J.; Bijeriego, M.; Olson, R.A. Utilization of 15N Fertilizer by Nodulating and Non-Nodulating Soybean Isolines 1. Agron. J. 1979, 71, 717–723. [Google Scholar] [CrossRef]
- Mendes, I.D.C.; Reis Junior, F.B.D.; Hungria, M.; Sousa, D.M.G.D.; Campo, R.J. Adubação nitrogenada suplementar tardia em soja cultivada em latossolos do Cerrado. Pesq. Agropec. Bras. 2008, 43, 1053–1060. [Google Scholar] [CrossRef] [Green Version]
- McCoy, J.M.; Kaur, G.; Golden, B.R.; Orlowski, J.M.; Cook, D.; Bond, J.A.; Cox, M.S. Nitrogen fertilization of soybean in Mississippi increases seed yield but not profitability. Agron. J. 2018, 110, 1505–1512. [Google Scholar] [CrossRef]
- Hungria, M.; Nogueira, M.A.; Araujo, R.S. Alternative methods of soybean inoculation to overcome adverse conditions at sowing. Afr. J. Agric. Res. 2015, 10, 2329–2338. [Google Scholar] [CrossRef] [Green Version]
- Reussi Calvo, N.I.; Sainz Rozas, H.; Echeverría, H.; Berardo, A. Contribution of anaerobically incubated nitrogen to the diagnosis of nitrogen status in spring wheat. Agron J. 2013, 105, 321–328. [Google Scholar] [CrossRef]
- Pagani, A.; Echeverría, H.E.; Sainz Rozas, H.R.; Barbieri, P. Dosis optima económica de nitrógeno en maíz bajo siembra directa en el sudeste bonaerense. Cienc. Suelo 2009, 26, 183–193. [Google Scholar]
- Alvarez, C.R.; Alvarez, R.; Steinbach, H.S. Predictions of available nitrogen content in soil profile depth using available nitrogen concentration in surface layer. Commun. Soil Sci. Plant Anal. 2001, 32, 759–769. [Google Scholar] [CrossRef]
- Montaner, J.G.; Maddonni, G.A.; DiNapoli, M.R. Modeling grain yield and grain yield response to nitrogen in spring wheat crops in the Argentinean Southern Pampa. Field Crops Res. 1997, 51, 241–252. [Google Scholar] [CrossRef]
- Barbieri, P.A.; Echeverría, H.E.; Sainz Rozas, H.R. Economic optimal nitrogen rate for wheat as affected by fertilization timing in Southeastern Buenos Aires Province. Cienc. Suelo 2009, 27, 115–125. [Google Scholar]
- Calviño, P.; Echeverria, H.E.; Redolatti, M. Wheat nitrogen fertilization diagnosis following soybean under no tillage in the southeast of Buenos Aires Province. Cienc. Suelo 2002, 20, 36–42. [Google Scholar]
- Egelkraut, T.M.; Kissel, D.E.; Cabrera, M.L.; Adkins, W. Predicting N mineralized in a Georgia Coastal Plain field. Nutr. Cycling Agroecosyst. 2003, 66, 1–12. [Google Scholar] [CrossRef]
- Zebarth, B.J.; Drury, C.F.; Tremblay, N.; Cambouris, A.N. Opportunities for improved fertilizer nitrogen management in production of arable crops in eastern Canada: A review. Can. J. Soil Sci. 2009, 89, 113–132. [Google Scholar] [CrossRef]
- Kundu, D.K.; Ladha, J.K. Enhancing soil nitrogen use and biological nitrogen fixation in wetland rice. Exp. Agric. 1995, 31, 261–278. [Google Scholar] [CrossRef]
- Dharmakeerthi, R.S.; Kay, B.D.; Beauchamp, E.G. Factors contributing to changes in plant available nitrogen across a variable landscape. Soil Sci. Soc. Am. J. 2005, 69, 453–462. [Google Scholar] [CrossRef]
- Karyotis, T.; Mitsimponas, T.; Tziouvalekas, M.; Noulas, C. Net nitrogen and sulfur mineralization in mountainous soils amended with indigenous plant residues. Commun. Soil Sci. Plant Anal. 2006, 37, 2805–2817. [Google Scholar] [CrossRef]
- Andriulo, A.E.; Reynoso, L.R.M.; Portela, S.I.; Irizar, A.B.; Restovich, S.B.; Bortolato, M.; Dalpiaz, M.J.; Garcia, L.S.; Torti, M.J.; Darder, M.L.; et al. Guía de Buenas Prácticas para el Manejo de Nutrientes (N y P) en la Pampa Ondulada: Desarrollo de Índices de Riesgo de Contaminación por N y P; INTA: Pergamino, Argentina, 2011; Available online: http://hdl.handle.net/20.500.12123/8055 (accessed on 28 May 2021).
- Portela, S.I.; Andriulo, A.E.; Sasal, M.C.; Mary, B.; Jobbágy, E.G. Fertilizer vs. organic matter contributions to nitrogen leaching in cropping systems of the Pampas: 15 N application in field lysimeters. Plant Soil 2006, 289, 265–277. [Google Scholar] [CrossRef]
- Rimski-Korsakov, H. La Lixiviación de Nitratos en la Región Pampeana: Análisis de Procesos y Factores Determinantes. Ph.D. Thesis, Buenos Aires University, Buenos Aires, Argentina, 1997. [Google Scholar]
- Rimski-Korsakov, H.; Rubio, G.; Lavado, R.S. Fate of the nitrogen from fertilizers in field-grown maize. Nutr. Cycling Agroecosyst. 2012, 93, 253–263. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Orr, S. An improved water footprint methodology linking global consumption to local water resources: A case of Spanish tomatoes. J. Environ. Manag. 2009, 90, 1219–1228. [Google Scholar] [CrossRef]
- Rodríguez, C.I.; Ruiz de Galarreta, V.A.; Kruse, E.E. Analysis of water footprint of potato production in the pampean region of Argentina. J. Clean. Prod. 2015, 90, 91–96. [Google Scholar] [CrossRef]
- Ercin, A.E.; Aldaya, M.M.; Hoekstra, A.Y. The water footprint of soy milk and soy burger and equivalent animal products. Ecol. Indic. 2012, 18, 392–402. [Google Scholar] [CrossRef] [Green Version]
- Reis, A.; Santos, A.C.D.; Anache, J.A.A.; Mendiondo, E.M.; Wendland, E.C. Water footprint analysis of temporary crops produced in São Carlos (SP), Brazil. RBRH 2020, 25, 1–17. [Google Scholar] [CrossRef]
- Viglizzo, E.F.; Frank, F.C. Land-use options for Del Plata Basin in South America: Tradeoffs analysis based on ecosystem service provision. Ecol. Econ. 2006, 57, 140–151. [Google Scholar] [CrossRef]
- Gonzalez, M.; Miglioranza, K.S.; Shimabukuro, V.M.; Londono, O.M.Q.; Martinez, D.E.; Aizpún, J.E.; Moreno, V.J. Surface and groundwater pollution by organochlorine compounds in a typical soybean system from the south Pampa, Argentina. Environ. Earth Sci. 2012, 65, 481–491. [Google Scholar] [CrossRef]
- Phelinas, P.; Choumert, J. Is GM Soybean cultivation in Argentina sustainable? World Dev. 2017, 99, 452–462. [Google Scholar] [CrossRef] [Green Version]
Category | Factor | Leaching-Runoff Potential | Very Low | Low | High | Very High | |
---|---|---|---|---|---|---|---|
Score | 0 | 0.33 | 0.67 | 1 | |||
Weight α, β | |||||||
Environmental Factors | Atmospheric input | N-deposition (AD-gN/m2/y) | 10, 10 | x | |||
Soil | Texture (relevant for leaching) | 15, 15 | Loam | ||||
Texture (relevant for runoff) | 10, 10 | Loam | |||||
Natural drainage (relevant for leaching) | 15, 15 | Well drainage | |||||
Natural drainage (relevant for runoff) | 5, 10 | Well drainage | |||||
Climate | Precipitation (mm/y) | 15, 15 | 600–1200 | ||||
Agricultural Practice Factors | Biological N fixation 1 (BNF-kg/ha) | 10, 10 | 35 | ||||
Application rate (AR- kgN/ha) | 10, 0 | High | |||||
Plant uptake (crop yield) (Y- t/ha) | 5, 0 | Very high 2 | High 3 | ||||
Management practice | 10, 15 | Average |
A1 | A2 | |||||||
---|---|---|---|---|---|---|---|---|
A1-a | A1-b | |||||||
α 1 | AR 3 | α 1 | β 2 | Surplus 4 | ||||
AR 3 | Offtake 5 | |||||||
(kgN/ha) | (kgN/ha) | (kgN/ha) | ||||||
Barley 2019 | 0.10 | 101.00 | 0.13 | 0.42 | 101.00 | 103.00 | ||
Barley 2020 | 115.00 | 115.00 | 153.00 | |||||
Soybean 2020 | 0.00 | 0.43 | 0.00 | 248.00 | ||||
L 6a | (kgN/ha) | 10.00 | 13.00 | 0.00 | ||||
L 6b | 11.50 | 15.00 | 0.00 | |||||
L 6c | 0.00 | 0.00 | 0.00 |
Nitrogen Balance | Barley 2019 | Barley 2020 | Soybean 2020 |
---|---|---|---|
Inputs (kgN/ha) | |||
Ni 1 | 80.00 | 85.00 | 86.00 |
AR 2 | 101.00 | 115.00 | 0.00 |
BNF 3 | 00.00 | 00.00 | 38.00 |
Nmin 4 | 16.00 | 18.00 | 124.00 |
Total | 197.00 | 218.00 | 248.00 |
Outputs (kgN/ha) | |||
Offtake 5 | 103.00 | 153.00 | 248.00 |
V 6 | 1.50 | 1.50 | 0.00 |
L-R (L) 7 | 39.00 | 27.00 | 0.00 |
Total | 143.50 | 181.50 | 248.00 |
Pollution Load Estimation Method | Strengths | Weaknesses |
---|---|---|
Leaching/runoff fraction approach | Applicable to pesticides, herbicides and fungicides 1 | Generally considers a constant value of α = 10 (A1-a) |
Requires less input data | Considers fertilization as the only N input and output | |
Applicable at regional and global scales | Estimates at a lower level of detail | |
Surplus approach | Applicable to pesticides, herbicides and fungicides 1 | Considers fertilization as the only N input and output |
Applicable at regional and global scales | Requires more input data | |
Functional only in cases where crop can offtake compound | ||
N balance approach | Considers different N input and output flows in plant–soil–atmosphere system | Requires more input data |
Preferably applicable at local and medium scales |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivera Rodriguez, P.; Holzman, M.E.; Mujica, C.R.; Rivas, R.E.; Aldaya, M.M. Different Approaches to Assessing Pollution Load: The Case of Nitrogen-Related Grey Water Footprint of Barley and Soybean in Argentina. Water 2021, 13, 3558. https://doi.org/10.3390/w13243558
Olivera Rodriguez P, Holzman ME, Mujica CR, Rivas RE, Aldaya MM. Different Approaches to Assessing Pollution Load: The Case of Nitrogen-Related Grey Water Footprint of Barley and Soybean in Argentina. Water. 2021; 13(24):3558. https://doi.org/10.3390/w13243558
Chicago/Turabian StyleOlivera Rodriguez, Paula, Mauro Ezequiel Holzman, Claudio Ramón Mujica, Raúl Eduardo Rivas, and Maite M. Aldaya. 2021. "Different Approaches to Assessing Pollution Load: The Case of Nitrogen-Related Grey Water Footprint of Barley and Soybean in Argentina" Water 13, no. 24: 3558. https://doi.org/10.3390/w13243558
APA StyleOlivera Rodriguez, P., Holzman, M. E., Mujica, C. R., Rivas, R. E., & Aldaya, M. M. (2021). Different Approaches to Assessing Pollution Load: The Case of Nitrogen-Related Grey Water Footprint of Barley and Soybean in Argentina. Water, 13(24), 3558. https://doi.org/10.3390/w13243558