Application of Machine Learning Techniques in Rainfall–Runoff Modelling of the Soan River Basin, Pakistan
Abstract
:1. Introduction
2. Methodology
2.1. Study Area and Datasets
Data Acquisition
2.2. Single Decision Tree (SDT)
2.3. Tree Boost (TB)
2.4. Decision Tree Forest (DTF)
2.5. Multilayer Perceptron (MLP)
2.6. Gene Expression Programming (GEP)
2.7. Maximal Overlap Discrete Wavelet Transformation (MODWT)
2.8. Model Selection
2.9. Model Performance Evaluation
3. Results and Discussion
3.1. Single Decision Tree (SDT)
3.2. Decision Tree Forest (DTF)
3.3. Tree Boost (TB)
3.4. Multilayer Perceptron (MLP)
3.5. Gene Expression Programming (GEP)
3.6. Comparative Analysis
3.7. Discussion
3.8. Research Limitations and Uncertainties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, T.K.; Talei, A.; Alaghmand, S.; Ooi, M. Choice of rainfall inputs for event-based rainfall-runoff modeling in a catchment with multiple rainfall stations using data-driven techniques. J. Hydrol. 2017, 545, 100–108. [Google Scholar] [CrossRef]
- Tokar, A.S.; Johnson, P.A. Rainfall-Runoff Modeling Using Artificial Neural Networks. J. Hydrol. Eng. 1999, 4, 232–239. [Google Scholar] [CrossRef]
- Tikhamarine, Y.; Malik, A.; Kumar, A.; Souag-Gamane, D.; Kisi, O. Estimation of monthly reference evapotranspiration using novel hybrid machine learning approaches. Hydrol. Sci. J. 2019, 64, 1824–1842. [Google Scholar] [CrossRef]
- Himmelblau, D.M. Basic Principles and Calculations in Chemical Engineering, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 1967. [Google Scholar]
- Bartoletti, N.; Casagli, F.; Marsili-Libelli, S.; Nardi, A.; Palandri, L. Data-driven rainfall/runoff modelling based on a neuro-fuzzy inference system. Environ. Model. Softw. 2018, 106, 35–47. [Google Scholar] [CrossRef]
- Peel, M.C.; McMahon, T.A. Historical development of rainfall-runoff modeling. WIREs Water 2020, 7, e1471. [Google Scholar] [CrossRef]
- Mulvaney, T.J. On the use of self-registering rain and flood gauges in making observations of the relations of rainfall and flood discharges in a given catchment. Trans. Inst. Civil Eng. Irel. 1851, 4, 19–31. [Google Scholar]
- Schreiber, P. About the relationship between precipitation and the flow of water in rivers in Central Europe. Z. Meteorol. 1904, 21, 441–452. (In German) [Google Scholar]
- Sherman, L.K. Streamflow from Rainfall by the Unit-graph Method. Eng. News Rec. 1932, 108, 501–505. [Google Scholar]
- Nash, J.E. The form of the Instantaneous Unit Hydrograph. Int. Assoc. Sci. Hydrol. 1957, 3, 114–121. [Google Scholar]
- Linsley, R.K.; Crawford, N.H. Computation of a synthesis streamflow record on a digital computer. Int. Assoc. Sci. Hydrol. 1960, 5, 526–538. [Google Scholar]
- Huggins, L.F.; Monke, E.J. A Mathematical Model for Simulating the Hydrologic Response of a Watershed. Water Resour. Res. 1968, 4, 529–539. [Google Scholar] [CrossRef]
- Daniell, T.M. Neural Networks—Applications in hydrology and water resources engineering. Natl. Conf. Publ. Proc. Inst. Eng. 1991, 797–902. [Google Scholar]
- French, M.N.; Krajewski, W.; Cuykendall, R.R. Rainfall forecasting in space and time using a neural network. J. Hydrol. 1992, 137, 1–31. [Google Scholar] [CrossRef]
- Asadi, H.; Shahedi, K.; Jarihani, B.; Sidle, R.C. Rainfall-Runoff Modelling Using Hydrological Connectivity Index and Artificial Neural Network Approach. Water 2019, 11, 212. [Google Scholar] [CrossRef] [Green Version]
- Dawson, C.; Wilby, R. An artificial neural network approach to rainfall-runoff modelling. Hydrol. Sci. J. 1998, 43, 47–66. [Google Scholar] [CrossRef]
- Kumar, S.; Roshni, T.; Himayoun, D. A Comparison of Emotional Neural Network (ENN) and Artificial Neural Network (ANN) Approach for Rainfall-Runoff Modelling. Civ. Eng. J. 2019, 5, 2120–2130. [Google Scholar] [CrossRef]
- Poonia, V.; Tiwari, H.L. Rainfall-runoff modeling for the Hoshangabad Basin of Narmada River using artificial neural network. Arab. J. Geosci. 2020, 13, 944. [Google Scholar] [CrossRef]
- Shamseldin, A.Y.; Nasr, A.E.; Oconnor, K.M. Comparison of different forms of the Multi-layer Feed-Forward Neural Network method used for river flow forecasting. Hydrol. Earth Syst. Sci. 2002, 6, 671–684. [Google Scholar] [CrossRef]
- Sharghi, E.; Nourani, V.; Najafi, H.; Molajou, A. Emotional ANN (EANN) and Wavelet-ANN (WANN) Approaches for Markovian and Seasonal Based Modeling of Rainfall-Runoff Process. Water Resour. Manag. 2018, 32, 3441–3456. [Google Scholar] [CrossRef]
- Shoaib, M.; Shamseldin, A.Y.; Melville, B.W. Comparative study of different wavelet based neural network models for rainfall–runoff modeling. J. Hydrol. 2014, 515, 47–58. [Google Scholar] [CrossRef]
- Shoaib, M.; Shamseldin, A.; Melville, B.; Khan, M.M. A comparison between wavelet based static and dynamic neural network approaches for runoff prediction. J. Hydrol. 2016, 535, 211–225. [Google Scholar] [CrossRef]
- Abbot, J.; Marohasy, J. Application of artificial neural networks to rainfall forecasting in Queensland, Australia. Adv. Atmos. Sci. 2012, 29, 717–730. [Google Scholar] [CrossRef]
- Gomes, E.P.; Blanco, C.J.C. Daily rainfall estimates considering seasonality from a MODWT-ANN hybrid model. J. Hydrol. Hydromech. 2021, 69, 13–28. [Google Scholar] [CrossRef]
- Hammad, M.; Shoaib, M.; Salahudin, H.; Baig, M.A.I.; Khan, M.M.; Ullah, M.K. Rainfall forecasting in upper Indus basin using various artificial intelligence techniques. Stoch. Environ. Res. Risk Assess. 2021, 35, 2213–2235. [Google Scholar] [CrossRef]
- Lee, J.; Kim, C.-G.; Lee, J.E.; Kim, N.W.; Kim, H. Application of Artificial Neural Networks to Rainfall Forecasting in the Geum River Basin, Korea. Water 2018, 10, 1448. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.-F.; Wu, M.-C. A hybrid neural network model for typhoon-rainfall forecasting. J. Hydrol. 2009, 375, 450–458. [Google Scholar] [CrossRef]
- Mekanik, F.; Imteaz, M.; Gato-Trinidad, S.; Elmahdi, A. Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes. J. Hydrol. 2013, 503, 11–21. [Google Scholar] [CrossRef]
- Toth, E.; Brath, A.; Montanari, A. Comparison of short-term rainfall prediction models for real-time flood forecasting. J. Hydrol. 2000, 239, 132–147. [Google Scholar] [CrossRef]
- Adnan, R.M.; Petroselli, A.; Heddam, S.; Santos, C.A.G.; Kisi, O. Short term rainfall-runoff modelling using several machine learning methods and a conceptual event-based model. Stoch. Environ. Res. Risk Assess. 2020, 35, 597–616. [Google Scholar] [CrossRef]
- Mehr, A.D.; Nourani, V. Season Algorithm-Multigene Genetic Programming: A New Approach for Rainfall-Runoff Modelling. Water Resour. Manag. 2018, 32, 2665–2679. [Google Scholar] [CrossRef]
- Nourani, V.; Tajbakhsh, A.D.; Molajou, A. Data mining based on wavelet and decision tree for rainfall-runoff simulation. Hydrol. Res. 2018, 50, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Sharghi, E.; Nourani, V.; Molajou, A.; Najafi, H. Conjunction of emotional ANN (EANN) and wavelet transform for rainfall-runoff modeling. J. Hydroinform. 2018, 21, 136–152. [Google Scholar] [CrossRef] [Green Version]
- Aytek, A.; Asce, M.; Alp, M. An application of artificial intelligence for rainfall-runoff modeling. J. Earth Syst. Sci. 2008, 117, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Nourani, V.; Tajbakhsh, A.D.; Molajou, A.; Gokcekus, H. Hybrid Wavelet-M5 Model Tree for Rainfall-Runoff Modeling. J. Hydrol. Eng. 2019, 24, 04019012. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.-C.; Jung, H.-S.; Lee, M.J.; Lee, S. Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea. Geomat. Nat. Hazards Risk 2017, 8, 1185–1203. [Google Scholar] [CrossRef] [Green Version]
- Raza, A.; Shoaib, M.; Khan, A.; Baig, F.; Faiz, M.A.; Khan, M.M. Application of non-conventional soft computing approaches for estimation of reference evapotranspiration in various climatic regions. Theor. Appl. Clim. 2019, 139, 1459–1477. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Guidelines for Computing Crop Water Requeriments, Rome. 1998. Available online: http://www.kimberly.uidaho.edu/water/fao56/fao56.pdf%5Cnhttp://linkinghub.elsevier.com/retrieve/pii/S1161030110001103 (accessed on 24 August 2020).
- Shoaib, M.; Shamseldin, A.Y.; Melville, B.W. Hybrid Wavelet Neural Network Approach. In Network Modelling, Studies in Computational Intelligence; Springer: Cham, Switzerland, 2016; pp. 127–143. [Google Scholar]
- Shoaib, M.; Shamseldin, A.Y.; Khan, S.; Sultan, M.; Ahmad, F.; Sultan, T.; Dahri, Z.H.; Ali, I. Input Selection of Wavelet-Coupled Neural Network Models for Rainfall-Runoff Modelling. Water Resour. Manag. 2018, 33, 955–973. [Google Scholar] [CrossRef]
- Nabi, G.; Hussain, F.; Wu, R.-S.; Nangia, V.; Bibi, R. Micro-Watershed Management for Erosion Control Using Soil and Water Conservation Structures and SWAT Modeling. Water 2020, 12, 1439. [Google Scholar] [CrossRef]
- Hussain, F.; Nabi, G.; Wu, R.-S. Spatiotemporal Rainfall Distribution of Soan River Basin, Pothwar Region, Pakistan. Adv. Meteorol. 2021, 2021, 6656732. [Google Scholar] [CrossRef]
- Ashraf, A. Risk modeling of soil erosion under different land use and rainfall conditions in Soan river basin, sub-Himalayan region and mitigation options. Model. Earth Syst. Environ. 2019, 6, 417–428. [Google Scholar] [CrossRef]
- Hussain, F. Impact of Rainfall and Landuse Pattern on Water and Sediment Yield in Soan Basin; University of Engineering and Technology: Lahore, Pakistan, 2016. [Google Scholar]
- Stone, M. Cross-Validatory Choice and Assessment of Statistical Predictions. J. R. Stat. Soc. Ser. B Stat. Methodol. 1974, 36, 111–133. [Google Scholar] [CrossRef]
- Adamowski, J.; Sun, K. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J. Hydrol. 2010, 390, 85–91. [Google Scholar] [CrossRef]
- Hu, C.; Wu, Q.; Li, H.; Jian, S.; Li, N.; Lou, Z. Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation. Water 2018, 10, 1543. [Google Scholar] [CrossRef] [Green Version]
- Quilty, J.; Adamowski, J. Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework. J. Hydrol. 2018, 563, 336–353. [Google Scholar] [CrossRef]
- Kotsiantis, S.B. Supervised Machine Learning: A Review of Classification Techniques. Informatica 2007, 31, 249–268. [Google Scholar]
- Breiman, L. Arcing the Edge; Technical Report 486; University of California: Berkeley, CA, USA, 1998. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Webros, P.J. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 1974. [Google Scholar]
- Goodfellow, Y.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Bishop, M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Babs, T. The Mathematics of Neural Networks. 2018. Available online: https://medium.com/coinmonks/the-mathematics-of-neural-network-60a112dd3e05 (accessed on 24 August 2020).
- Ferreira, C. Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. Complex Syst. 2001, 13, 87–129. [Google Scholar]
- Grossmann, A.; Morlet, J. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 2009, 15, 126–139. [Google Scholar] [CrossRef] [Green Version]
- Walden, A.T. Wavelet Analysis of Discrete Time Series. In Progress in Mathematics; Springer: Berlin/Heidelberg, Germany; Volume 202, pp. 627–641.
- Percival, B.; Walden, A.T. The Maximal Overlap Discrete Wavelet Transform. In Wavelet Methods for Time Series Analysis; Cambridge University Press: Cambridge, UK, 2000; pp. 159–205. [Google Scholar]
- Ramana, R.V.; Krishna, B.; Kumar, S.R.; Pandey, N.G. Monthly Rainfall Prediction Using Wavelet Neural Network Analysis. Water Resour. Manag. 2013, 27, 3697–3711. [Google Scholar] [CrossRef] [Green Version]
- Bracewell, R.N.; Bracewell, R.N. The Fourier Transform and Its Applications; McGraw-Hill: New York, NY, USA, 1986; Volume 31999. [Google Scholar]
- May, R.J.; Dandy, G.C.; Maier, H.; Nixon, J.B. Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems. Environ. Model. Softw. 2008, 23, 1289–1299. [Google Scholar] [CrossRef]
- Ribeiro, G.H.T.; Neto, P.S.G.D.M.; Cavalcanti, G.D.C.; Tsang, I.R. Lag selection for time series forecasting using Particle Swarm Optimization. In Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; pp. 2437–2444. [Google Scholar] [CrossRef]
- Maheswaran, R.; Khosa, R. Wavelet-Volterra coupled model for monthly stream flow forecasting. J. Hydrol. 2012, 450–451, 320–335. [Google Scholar] [CrossRef]
- Mills, G. Ireland’s water budget—Model validation and a greenhouse experiment. Ir. Geogr. 2001, 34, 124–134. [Google Scholar] [CrossRef]
- Wu, C.; Chau, K.W. Prediction of rainfall time series using modular soft computing methods. Eng. Appl. Artif. Intell. 2013, 26, 997–1007. [Google Scholar] [CrossRef] [Green Version]
- Sharafati, A.; Pezeshki, E. A strategy to assess the uncertainty of a climate change impact on extreme hydrological events in the semi-arid Dehbar catchment in Iran. Theor. Appl. Clim. 2019, 139, 389–402. [Google Scholar] [CrossRef]
- Ghani, M.W.; Arshad, M.; Shabbir, A.; Shakoor, A.; Mehmood, N.; Ahmad, I. Investigation of potential water harvesting sites at potohar using modeling approach. Pakistan J. Agric. Sci. 2013, 50, 723–729. [Google Scholar]
- Hussain, F.; Wu, R.-S.; Nabi, G.; Hussain, B. A Study on Rainfall, Runoff and Sediment Yield Relations in Small Watersheds of Pothwar Region Pakistan. In Proceedings of the 2017 Conference on Sustainable Development for Environmental Resources, Zhongli, Taiwan, December 2017. [Google Scholar]
- Ouma, Y.O.; Cheruyot, R.; Wachera, A.N. Rainfall and runoff time-series trend analysis using LSTM recurrent neural network and wavelet neural network with satellite-based meteorological data: Case study of Nzoia hydrologic basin. Complex Intell. Syst. 2021, 1–24. [Google Scholar] [CrossRef]
- Jhong, Y.-D.; Chen, C.-S.; Lin, H.-P.; Chen, S.-T. Physical Hybrid Neural Network Model to Forecast Typhoon Floods. Water 2018, 10, 632. [Google Scholar] [CrossRef] [Green Version]
Datasets | Min. | Max. | Mean | Mode | S.D. |
---|---|---|---|---|---|
Training (1999–2012) | |||||
Rainfall (mm) | 0 | 95.48 | 2.61 | 0 | 5.78 |
Runoff (m3/s) | 2.16 | 1407.69 | 25.49 | 4.90 | 74.00 |
Testing (2013–2017) | |||||
Rainfall (mm) | 0 | 74.60 | 3.08 | 0 | 6.03 |
Runoff (m3/s) | 1.96 | 1559.74 | 33.42 | 5.89 | 72.81 |
Serial No. | Station Name | Latitude (°N) | Longitude (°E) | Altitude (m) | Agency |
---|---|---|---|---|---|
1 | Murree | 33.9070 | 73.3943 | 2025 | PMD |
2 | Rawalpindi | 33.5651 | 73.0169 | 540 | PMD |
3 | Kotli Sattian | 33.8082 | 73.5255 | 1352 | PMD |
4 | Chakwal | 32.9328 | 72.8630 | 522 | PMD |
5 | Fateh Jung | 33.5635 | 72.6375 | 514 | SAWCRI |
6 | Talagang | 32.9172 | 72.4081 | 457 | SAWCRI |
7 | Gujjar Khan | 33.2616 | 73.3058 | 458 | WAPDA |
8 | Pendigheb | 33.2452 | 72.266 | 310 | WAPDA |
9 | Taxila | 33.7463 | 72.8397 | 549 | WAPDA |
10 | Khanpur Dam | 33.8018 | 72.9305 | 545 | WAPDA |
11 | Makhad (gauging station) | 33.0281 | 71.7393 | 252 | WAPDA |
Lag Order (Lo) | Input Variables |
---|---|
Lo0 | Rt |
Lo1 | Rt-1 |
Lo2 | Rt-1, Rt-2 |
Lo3 | Rt-1, Rt-2, Rt-3 |
Lo4 | Rt-1, Rt-2, Rt-3, Rt-4 |
Lo5 | Rt-1, Rt-2, Rt-3, Rt-4, Rt-5 |
Lo6 | Rt-1, Rt-2, Rt-3, Rt-4, Rt-5, Rt-6 |
Lo7 | Rt-1, Rt-2, Rt-3, Rt-4, Rt-5, Rt-6, Rt-7 |
Lo8 | Rt-1, Rt-2, Rt-3, Rt-4, Rt-5, Rt-6, Rt-7, Rt-8 |
Lo9 | Rt-1, Rt-2, Rt-3, Rt-4, Rt-5, Rt-6, Rt-7, Rt-8, Rt-9 |
Lo10 | Rt-1, Rt-2, Rt-3, Rt-4, Rt-5, Rt-6, Rt-7, Rt-8, Rt-9, Rt-10 |
ML Technique | Parameters | |||||
---|---|---|---|---|---|---|
SDT | Min. rows in a node | Min. size node to split | Max. tree levels | Cross-validation trees | Smooth min. spikes | - |
5 | 10 | 10 | 10 | 3 | - | |
TB | Max. trees in series | Min. size node to split | Trimming factor | Min. trees in series | Smooth min. spikes | Random percent |
400 | 10 | 0.01 | 10 | 5 | 20 | |
DTF | Trees in forest | Min. size node to split | Max. tree levels | Random predictor control | - | |
200 | 2 | 50 | square root of total predictors | - | ||
MLP | Hidden layers | Min. neurons | Max. neurons | Cross-validation | Max. iteration | Alg. |
1 | 2 | 20 | V-fold | 10,000 | LV–Marquardt | |
GEP | Population size | Max. initial pop. | Max. generation | Gene per chromosome | Gene head length | Fitness threshold |
50 | 10,000 | 2000 | 4 | 8 | 1 |
ML Technique | Lag Order | Wavelet Filter | Level | Testing | ||
---|---|---|---|---|---|---|
NSE | RMSE | R2 | ||||
SDT | Lo4 | - | 0.22 | 65.52 | 0.22 | |
MODWT-DTF | Lo3 | db4 | 3 | 0.90 | 23.79 | 0.94 |
MODWT-TB | Lo3 | db4 | 3 | 0.17 | 66.42 | 0.24 |
MODWT-MLP | Lo4 | db4 | 3 | 0.33 | 60.57 | 0.33 |
MODWT-GEP | Lo6 | db4 | 3 | 0.30 | 60.85 | 0.31 |
ML Technique | Performance below Q3 | Performance above Q3 | ||||
---|---|---|---|---|---|---|
NSE | RMSE | R2 | NSE | RMSE | R2 | |
SDT | 0.04 | 22.23 | 0.05 | 0.31 | 57.49 | 0.28 |
MODWT-DTF | 0.85 | 8.53 | 0.55 | 0.90 | 21.54 | 0.94 |
MODWT-TB | 0.79 | 10.12 | 0.08 | 0.11 | 65.65 | 0.16 |
MODWT-MLP | 0.28 | 18.54 | 0.12 | 0.37 | 54.99 | 0.29 |
MODWT-GEP | 0.28 | 18.56 | 0.17 | 0.30 | 57.95 | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.T.; Shoaib, M.; Hammad, M.; Salahudin, H.; Ahmad, F.; Ahmad, S. Application of Machine Learning Techniques in Rainfall–Runoff Modelling of the Soan River Basin, Pakistan. Water 2021, 13, 3528. https://doi.org/10.3390/w13243528
Khan MT, Shoaib M, Hammad M, Salahudin H, Ahmad F, Ahmad S. Application of Machine Learning Techniques in Rainfall–Runoff Modelling of the Soan River Basin, Pakistan. Water. 2021; 13(24):3528. https://doi.org/10.3390/w13243528
Chicago/Turabian StyleKhan, Muhammad Tariq, Muhammad Shoaib, Muhammad Hammad, Hamza Salahudin, Fiaz Ahmad, and Shakil Ahmad. 2021. "Application of Machine Learning Techniques in Rainfall–Runoff Modelling of the Soan River Basin, Pakistan" Water 13, no. 24: 3528. https://doi.org/10.3390/w13243528
APA StyleKhan, M. T., Shoaib, M., Hammad, M., Salahudin, H., Ahmad, F., & Ahmad, S. (2021). Application of Machine Learning Techniques in Rainfall–Runoff Modelling of the Soan River Basin, Pakistan. Water, 13(24), 3528. https://doi.org/10.3390/w13243528