Are Engineered Geothermal Energy Systems a Viable Solution for Arctic Off-Grid Communities? A Techno-Economic Study
Abstract
:1. Introduction
- Will the hydraulic stimulation technique applied in crystalline basement rocks elsewhere develop a well-connected flowing system in Kuujjuaq? How can this be done? What further local geological and thermo-hydro-mechanical data is required for more accurate predictions?
- Are the deep geothermal energy sources harvested by engineered geothermal energy systems in Kuujjuaq likely to be cost-competitive compared to fossil fuels?
2. Background Information
2.1. Engineered/Enhanced Geothermal Systems
2.2. Nunavik’s Geothermal Potential
3. Geographical and Geological Setting
3.1. Kuujjuaq’s Heating Demand
3.2. Previous Research Undertaken in Kuujjuaq
4. Methods
4.1. Numerical Simulator
- A linear increase from a starting shear dilation angle value to a maximum value over a certain small shear displacement distance;
- An exponential decay with displacement thereafter to a low constant value at greater displacement at a user-specified rate.
4.2. Model Geometry
- Fracture intensity of 0.8 fractures m−1, fracture length and fractal dimension as sampled in the field (Figure 6a);
- Fracture intensity of 0.8 fractures m−1, fracture length increased by a factor of 10 and fractal dimension as sampled in the field (Figure 6b);
- Fracture intensity of 0.8 fractures m−1, fracture length as sampled in the field and fractal dimension decreased by a factor of 2 (Figure 6c).
4.3. Properties of the Medium
4.4. Levelized Cost of Energy
5. Results
- Flow rates able to harvest enough thermal energy during all system operation time to meet the community’s heating demand;
- Water loss maximum 20%;
- Reservoir flow impedance lower than 1 MPa L−1 s−1;
- Thermal drawdown lower than 1 °C/year.
5.1. Initial Fracture Aperture
5.2. Fracture Shear Stiffness
5.3. Fracture Shear Displacement
5.4. Sheared Fractures
5.5. Engineered Geothermal Energy System Design
5.5.1. Best-Case Scenario
5.5.2. Base-Case Scenario
5.6. Thermal Energy and Potential Heat Output
5.7. Recovery Factor
5.8. Levelized Cost of Energy
6. Discussion
- It is sufficiently abundant to meet a significant percentage of the market demand;
- It can be obtained at a cost competitive with existing energy sources.
6.1. Comparison with Other Deep Geothermal Energy Projects
6.2. Comparison with Other Renewable Energy Alternatives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Notation
Symbol | Definition | Unit |
A | Area | m2 |
C | Cost | $ |
e | Thermal energy | W; MWh |
F | Factor | --- |
H | Hydraulic impedance | MPa L−1 s−1 |
i | Imputed interest rate | % |
I | Total capital investment | $ |
I* | Injection well | --- |
l | Length | m |
LCOE | Levelized cost of energy | $ MWh−1 |
N | Number | --- |
O | Annual operation and maintenance cost | ¢ kWh −1 |
P | Pressure | Pa |
∇P | Pressure gradient | Pa m−1 |
Q | Flow rate | m3 s−1 |
q | Heat flux | mW m−2 |
R* | Recovery well | --- |
T | Temperature | °C; K |
t | Time | s; year |
TDS | Total dissolved solids | kg L−1 |
U | Shear displacement | m |
u | Darcy velocity | m s−1 |
V | Volume | m3; km3 |
W | Water | % |
w | Aperture | m |
z | Depth | m |
Greek letters | ||
λ | Thermal conductivity | W m−1 K−1 |
ρc | Volumetric heat capacity | J m−3 K−1 |
σ | Principal stress | Pa |
σ’n | Effective normal stress | Pa |
′n_ref | Reference stress for 90% closure | Pa |
τ | Shear stress | Pa |
ϕ | Angle | ° |
ω | Dynamic viscosity | kg m−1 s−1 |
Subscript | ||
0 | Initial | |
circ | Circulation | |
H | Maximum horizontal principal stress | |
h | Minimum horizontal principal stress | |
rec | Recovered | |
s | Scaling | |
stim | Stimulation | |
th | Thermal | |
V | Vertical principal stress | |
Abbreviation | ||
HSD | Hydrothermal spallation drilling |
References
- Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/energy/ (accessed on 25 January 2021).
- Off-Grid Renewable Energy Solutions to Expand Electricity Access: An Opportunity Not to Be Missed. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Jan/IRENA_Off-grid_RE_Access_2019.pdf (accessed on 22 February 2021).
- Market Snapshot: Overcoming the Challenges of Powering Canada’s Off-Grid Communities. Available online: https://www.cer-rec.gc.ca/en/data-analysis/energy-markets/market-snapshots/2018/market-snapshot-overcoming-challenges-powering-canadas-off-grid-communities.html (accessed on 22 February 2021).
- Energy Access—The Canadian Context. Available online: https://wise.uwaterloo.ca/documents/events/marketing-materials/ae4h/ae4h-blogs/energy_access_canadian_context_infographic_spread_and_section_openac (accessed on 18 November 2019).
- Khan, F.I.; Hawbolt, K.; Iqbal, M.T. Life cycle analysis of wind-fuel cell integrated system. Renew. Energy 2005, 30, 157–177. [Google Scholar] [CrossRef]
- Ranjitkar, G.; Huang, J.; Tung, T. Application of micro-hydropower technology for remote regions. In Proceedings of the IEEE EIC Climate Change Conference, Ottawa, ON, Canada, 10–12 May 2006; IEEE: Ottawa, ON, Canada, 2006. [Google Scholar]
- Thompson, S.; Duggirala, B. The feasibility of renewable energies at an off-grid community in Canada. Renew. Sustain. Energy Rev. 2009, 13, 2740–2745. [Google Scholar] [CrossRef]
- Ibrahim, H.; Younès, R.; Ilinca, A.; Ramdenee, D.; Dimitrova, M.; Perron, J.; Adegnon, M.; Boulay, D.; Arbez, C. Potential of a hybrid wind-diesel-compressed air system for Nordic remote Canadian areas. Energy Procedia 2011, 6, 795–804. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Yu, Z.; Wang, C.; Li, F.; Schiettekatte, J.; Deslauriers, J.-C.; Bai, L. Optimal design of battery energy storage system for a wind-diesel off-grid power system in a remote Canadian community. IET Gener. Transm. Distrib. 2016, 10, 608–616. [Google Scholar] [CrossRef]
- Stephen, J.D.; Mabee, W.E.; Pribowo, A.; Pledger, S.; Hart, R.; Tallio, S.; Bull, G.Q. Biomass for residential and commercial heating in a remote Canadian aboriginal community. Renew. Energy 2016, 86, 563–575. [Google Scholar] [CrossRef] [Green Version]
- Belzile, P.; Comeau, F.-A.; Raymond, J.; Lamarche, L.; Carreau, M. Arctic climate horizontal ground-coupled heat pump. GRC Trans. 2017, 41, 1958–1978. [Google Scholar]
- McFarlan, A. Techno-economic assessment of pathways for electricity generation in northern remote communities in Canada using methanol and dimethyl ether to replace diesel. Renew. Sustain. Energy Rev. 2018, 90, 863–876. [Google Scholar] [CrossRef]
- Kanzari, I. Évaluation du Potentiel des Pompes à Chaleur Géothermique Pour la Communauté Nordique de Kuujjuaq. Master’s Thesis, Institut National de la Recherche Scientifique (INRS), Québec, QC, Canada, 2019. [Google Scholar]
- Yan, C.; Rousse, D.; Glaus, M. Multi-criteria decision analysis ranking alternative heating systems for remote communities in Nunavik. J. Clean. Prod. 2019, 208, 1488–1497. [Google Scholar] [CrossRef]
- Gunawan, E.; Giordano, N.; Jensson, P.; Newson, J.; Raymond, J. Alternative heating systems for northern remote communities: Techno-economic analysis of ground-coupled heat pumps in Kuujjuaq, Nunavik, Canada. Renew. Energy 2020, 147, 1540–1553. [Google Scholar] [CrossRef]
- Mahbaz, S.B.; Dehghani-Sanij, A.R.; Dusseault, M.B.; Nathawani, J.S. Enhanced and integrated geothermal systems for sustainable development of Canada’s northern communities. Sustain. Energy Technol. Assess. 2020, 37, 100565. [Google Scholar] [CrossRef]
- Quitoras, M.R.; Campana, P.E.; Crawford, C. Exploring electricity generation alternatives for Canadian Arctic communities using a multi-objective genetic algorithm approach. Energy Convers. Manag. 2020, 2010, 112471. [Google Scholar] [CrossRef]
- Majorowicz, J.; Grasby, S.E. Heat flow, depth-temperature variations and stored thermal energy for enhanced geothermal systems in Canada. J. Geophys. Eng. 2010, 7, 232–241. [Google Scholar] [CrossRef] [Green Version]
- Majorowicz, J.; Grasby, S.E. High potential regions for enhanced geothermal systems in Canada. Nat. Resour. Res. 2010, 19, 177–188. [Google Scholar] [CrossRef]
- Kunkel, T.; Ghomshei, M.; Ellis, R. Geothermal energy as an indigenous alternative energy source in British Columbia. J. Ecosyst. Manag. 2012, 13, 1–16. [Google Scholar]
- Grasby, S.E.; Majorowicz, J.; McCune, G. Geothermal Energy Potential for Northern Communities; Report No.: Open File 7350; Geothermal Survey of Canada: Ottawa, ON, Canada, 2013; 50p. [Google Scholar]
- Walsh, W. Geothermal resource assessment of the Clarke Lake Gas Field, Fort Nelson, British Columbia. Bull. Can. Pet. Geol. 2013, 61, 241–251. [Google Scholar] [CrossRef]
- Majorowicz, J.; Grasby, S.E. Geothermal energy for northern Canada: Is it economical? Nat. Resour. Res. 2014, 23, 159–173. [Google Scholar] [CrossRef]
- Majorowicz, J.; Minea, V. Shallow and deep geothermal energy potential in low heat flow/cold climate environment: Northern Quebec, Canada, case study. Environ. Earth Sci. 2015, 74, 5233–5244. [Google Scholar] [CrossRef]
- Minnick, M.; Shewfelt, D.; Hickson, C.; Majorowicz, J.; Rowe, T. Nunavut Geothermal Feasibility Study; Report No.: Topical Report RSI-2828; Qulliq Energy Corporation: Iqaluit, NT, Canada, 2018; 42p. [Google Scholar]
- Majorowicz, J.A.; Grasby, S.E. Heat transition for major communities supported by geothermal energy development of the Alberta Basin, Canada. Geothermics 2020, 88, 101883. [Google Scholar] [CrossRef]
- Majorowicz, J.; Grasby, S.E. Deep geothermal heating potential for the communities of the Western Canadian Sedimentary Basin. Energies 2021, 14, 706. [Google Scholar] [CrossRef]
- Miranda, M.M.; Raymond, J.; Dezayes, C. Uncertainty and risk evaluation of deep geothermal energy source for heat production and electricity generation in remote northern regions. Energies 2020, 13, 4221. [Google Scholar] [CrossRef]
- Grasby, S.E.; Allen, D.M.; Bell, S.; Chen, Z.; Ferguson, G.; Jessop, A.; Kelman, M.; Ko, M.; Majorowicz, J.; Moore, M.; et al. Geothermal Energy Resource Potential of Canada; Report No.: Open File 6914; Geological Survey of Canada: Ottawa, ON, Canada, 2012; 322p. [Google Scholar]
- Hofmann, H.; Weides, S.; Babadagli, T.; Zimmermann, G.; Moeck, I.; Majorowicz, J.; Unsworth, M. Potential for enhanced geothermal systems in Alberta, Canada. Energy 2014, 69, 578–591. [Google Scholar] [CrossRef]
- Hofmann, H.; Babadagli, T.; Yoon, J.S.; Blöcher, G.; Zimmermann, G. A hybrid discrete/finite element modeling study of complex hydraulic fracture development for enhanced geothermal systems (EGS) in granitic basements. Geothermics 2016, 64, 362–381. [Google Scholar] [CrossRef]
- Kazemi, A.R.; Mahbaz, S.B.; Dehghani-Sanij, A.R.; Dusseault, M.B.; Fraser, R. Performance evaluation of an enhanced geothermal system in the Western Canada Sedimentary Basin. Renew. Sustain. Energy Rev. 2019, 113, 109278. [Google Scholar] [CrossRef]
- Gidley, J.L.; Holditch, S.A.; Nierode, D.A.; Veatch, R.W., Jr. Recent Advances in Hydraulic Fracturing; Society of Petroleum Engineers: Richardson, TX, USA, 1989; 461p. [Google Scholar]
- Brown, D.W.; Duchane, D.V.; Heiken, G.; Hriscu, V.T. Mining the Earth’s Heat: Hot Dry Rock Geothermal Energy; Springer: Berlin, Germany, 2012; 669p. [Google Scholar]
- Tester, J.W.; Anderson, B.J.; Batchelor, A.S.; Blackwell, D.D.; DiPippo, R.; Drake, E.M.; Garnish, J.; Livesay, B.; Moore, M.C.; Nichols, K.; et al. The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century; MIT: Idaho Falls, ID, USA; 372p.
- Breede, K.; Dzebisashvili, K.; Liu, X.; Falcone, G. A systematic review of enhanced (or engineered) geothermal systems: Past, present and future. Geotherm. Energy 2013, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Min, K.-B.; Song, Y. Observations of hydraulic stimulations in seven enhanced geothermal system projects. Renew. Energy 2015, 79, 56–65. [Google Scholar] [CrossRef]
- Olasolo, P.; Juárez, M.C.; Olasolo, J.; Morales, M.P.; Valdani, D. Enhanced geothermal systems (EGS): A review. Renew. Sustain. Energy Rev. 2016, 56, 133–144. [Google Scholar] [CrossRef]
- Lu, S.-M. A global review of enhanced geothermal system (EGS). Renew. Sustain. Energy Rev. 2018, 81, 2902–2921. [Google Scholar] [CrossRef]
- Kumari, W.G.P.; Ranjith, P.G. Sustainable development of enhanced geothermal systems based on geotechnical research—A review. Earth-Sci. Rev. 2019, 199, 102955. [Google Scholar] [CrossRef]
- Kelkar, S.; Gabriel, G.W.; Rehfeldt, K. Lessons learned from the pioneering hot dry rock project at Fenton Hill, USA. Geothermics 2016, 63, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Parker, R. The rosemanowes HDR project 1983-1991. Geothermics 1999, 28, 603–615. [Google Scholar] [CrossRef]
- Richards, H.G.; Parker, R.H.; Green, A.S.P.; Jones, R.H.; Nicholls, J.D.M.; Nicol, D.A.C.; Randall, M.M.; Richards, S.; Stewart, R.C.; Willis-Richards, J. The performance and characteristics of the experimental hot dry rock geothermal reservoir at Rosemanowes, Cornwall (1985–1988). Geothermics 1994, 23, 73–109. [Google Scholar] [CrossRef]
- Genter, A.; Evans, K.; Cuenot, N.; Fritsch, D.; Sanjuan, B. Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS). Comptes Rendus Geosci. 2010, 342, 502–516. [Google Scholar] [CrossRef]
- Comeau, F.-A.; Raymond, J.; Malo, M.; Dezayes, C.; Carreau, M. Geothermal potential of northern Quebec: A regional assessment. GRC Trans. 2017, 41, 1076–1094. [Google Scholar]
- Census Profile, 2016 Census. Available online: https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/details/page.cfm?Lang=E&Geo1=POPC&Code1=1466&Geo2=PR&Code2=24&SearchText=Kuujjuaq&SearchType=Begins&SearchPR=01&B1=All&GeoLevel=PR&GeoCode=1466&TABID=1&type=0 (accessed on 6 October 2020).
- Carte Interactive. Available online: https://sigeom.mines.gouv.qc.ca/signet/classes/I1108_afchCarteIntr (accessed on 5 May 2019).
- Miranda, M.M.; Giordano, N.; Raymond, J.; Pereira, A.J.S.C.; Dezayes, C. Thermophysical properties of surficial rocks: A tool to characterize geothermal resources of remote northern regions. Geotherm. Energy 2020, 8, 4. [Google Scholar] [CrossRef]
- Miranda, M.M.; Marquez, M.I.V.; Raymond, J.; Dezayes, C. A numerical approach to infer terrestrial heat flux from shallow temperature profiles in remote northern regions. Geothermics 2021, 93, 102064. [Google Scholar] [CrossRef]
- Miranda, M.M.; Dezayes, C.; Giordano, N.; Kanzari, I.; Raymond, J.; Carvalho, J. Fracture network characterization as input for geothermal energy research: Preliminary data from Kuujjuaq, northern Quebec, Canada. In Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 12–14 February 2018. [Google Scholar]
- Miranda, M.M. Assessment of the Deep Geothermal Energy Source Potential in Remote Northern Regions: A Study Undertaken in the Subarctic Off-Grid Community of Kuujjuaq, Nunavik, Canada. Ph.D. Thesis, Institut National de la Recherche Scientifique (INRS), Québec, QC, Canada, 2021. [Google Scholar]
- Jing, Z.; Willis-Richards, J.; Watanabe, K.; Hashida, T. A three-dimensional stochastic rock mechanics model of engineered geothermal systems in fractured crystalline rock. J. Geophys. Res. 2000, 150, 23663–23679. [Google Scholar] [CrossRef]
- Murphy, H.; Dash, Z. The shocking behavior of fluid flow in deformable joints. GRC Transactions 1985, 9, 115–118. [Google Scholar]
- Lee, H.S.; Cho, T.F. Hydraulic characteristics of rough fractures in linear flow under normal and shear load. Rock Mech. Rock Eng. 2002, 35, 299–318. [Google Scholar] [CrossRef]
- Goodman, R.E. Methods of Geological Engineering in Discontinuous Rocks; West Publishing Company: New York, NY, USA, 1976; 484p. [Google Scholar]
- Bandis, S.C.; Lumsden, A.C.; Barton, N.R. Fundamentals of rock joint deformation. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1983, 20, 249–268. [Google Scholar] [CrossRef]
- Barton, N.; Quadros, E.F. Joint aperture and roughness in the prediction of flow and groutability of rock masses. Int. J. Rock Mech. Min. Sci. 1997, 34, 252.e1–252.e14. [Google Scholar] [CrossRef]
- Keller, A.A. High resolution cat imaging of fractures in consolidated materials. Int. J. Rock Mech. Min. Sci. 1997, 34, 155.e1–155.e16. [Google Scholar] [CrossRef]
- Keller, A.A. High resolutions, non-destructive measurement and characterization of fracture apertures. Int. J. Rock Mech. Min. Sci. 1998, 35, 1037–1050. [Google Scholar] [CrossRef]
- Fomin, S.; Jing, Z.; Hashida, T. The effect of thermal, chemical, hydrological, and mechanical factors on water/rock interaction in HDR geothermal systems. In Engineering Properties of Rocks; Zhang, L., Ed.; Elsevier: Berlin, Germany, 2004; Volume 2, pp. 649–654. [Google Scholar]
- Simard, M.; Lafrance, I.; Hammouche, H.; Legouix, C. Géologie de la Région de Kuujjuaq et de la Baie d’Ungava (SRNC 24J, 24K); Report No.: RG 2013-04; Gouvernement du Québec: Québec, QC, Canada, 2013; 62p. [Google Scholar]
- Lanyon, G.W.; Batchelor, A.S.; Ledingham, P. Results from a discrete fracture network model of a hot dry rock system. In Proceedings of the 18th Workshop on Geothermal Reservoir Engineering, Stanford, CA, US, 26–28 January 1993. [Google Scholar]
- Evans, K.F.; Moriya, H.; Niitsuma, H.; Jones, R.H.; Phillips, W.S.; Genter, A.; Sausse, J.; Jung, R.; Baria, R. Microseismicity and permeability enhancement of hydrogeologic structures during massive fluid injections into granite at 3 km depth at the Soultz HDR site. Geophys. J. Int. 2005, 160, 388–412. [Google Scholar] [CrossRef]
- Arjang, B.; Herget, G. In situ ground stresses in the Canadian hardrock mines: An update. Int. J. Rock Mech. Min. Sci. 1997, 34, 15. [Google Scholar] [CrossRef]
- Alejano, L.R.; González, J.; Muralha, J. Comparison of different techniques of tilt testing and basic friction angle variability assessment. Rock Mech. Rock Eng. 2012, 45, 1023–1035. [Google Scholar] [CrossRef]
- Achtziger-Zupancic, P.; Loew, S.; Mariéthoz, G. A new global database to improve predictions of permeability distribution in crystalline rocks at site scale. J. Geophys. Res. Solid Earth 2017, 122, 3513–3539. [Google Scholar] [CrossRef]
- Bottomley, D.J. A Review of Theories on the Origins of Saline Waters and Brines in the Canadian Precambrian Shield; Atomic Energy Control Board: Ottawa, ON, Canada, 1996; 32p. [Google Scholar]
- Mouchot, J.; Genter, A.; Cuenot, N.; Scheiber, J.; Seibel, O.; Bosia, C.; Ravier, G. First year of operation from EGS geothermal plants in Alsace, France: Scaling issues. In Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 12–14 February 2018. [Google Scholar]
- Frick, S.; van Wees, J.D.; Kaltschmitt, M.; Schröder, G. Economic performance and environmental assessment. In Geothermal Energy Systems: Exploration, Development, and Utilization; Huenges, E., Ed.; Wiley: Weinheim, Germany, 2010; pp. 373–421. [Google Scholar]
- Beckers, K.F.; McCabe, K. GEOPHIRES V2.0: Updated geothermal techno-economic simulation tool. Geotherm. Energy 2019, 7, 5. [Google Scholar] [CrossRef]
- Limberger, J.; Calcagno, P.; Manzella, A.; Trumpy, E.; Boxem, T.; Pluymaekers, M.P.D.; van Wees, J.-D. Assessing the prospective resource base for enhanced geothermal systems in Europe. Geotherm. Energy Sci. 2014, 2, 55–71. [Google Scholar] [CrossRef] [Green Version]
- Sanyal, S.K.; Morrow, J.W.; Butler, S.J.; Robertson-Tait, A. Cost of electricity from enhanced geothermal systems. In Proceedings of the 32nd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 22–24 January 2007. [Google Scholar]
- Lance, J. Personal Communication; FCNQ: Quebec, QC, Canada, 2021. [Google Scholar]
- @RISK. Available online: https://www.palisade.com/risk/default.asp (accessed on 18 June 2020).
- Snow, D.T. Anisotropic permeability of fracture media. Water Resour. Res. 1969, 5, 1273–1289. [Google Scholar] [CrossRef]
- Willis-Richards, J.; Watanabe, K.; Takahashi, H. Progress toward a stochastic rock mechanics model of engineered geothermal systems. J. Geophys. Res. 1996, 101, 17481–17496. [Google Scholar] [CrossRef]
- Eshelby, J.D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 1957, 241, 376–396. [Google Scholar]
- Beardsmore, G.R.; Rybach, L.; Blackwell, D.; Baron, C. A protocol for estimating and mapping global EGS potential. GRC Trans. 2010, 34, 301–312. [Google Scholar]
- Giordano, N.; Kanzari, I.; Miranda, M.M.; Dezayes, C.; Raymond, J. Underground thermal energy storage in subarctic climates: A feasibility study conducted in Kuujjuaq (QC, Canada). In Proceedings of the IGSHPA, Stockholm, Sweden, 18–20 September 2018. [Google Scholar]
- Karanasios, K.; Parker, P. Tracking the transition to renewable electricity in remote indigenous communities in Canada. Energy Policy 2018, 118, 169–181. [Google Scholar] [CrossRef]
- Zweifel, P.; Praktiknjo, A.; Erdmann, G. Energy Economics: Theory and Applications; Springer: Berlin, Germany, 2017; 333p. [Google Scholar]
- Glassley, W.E. Geothermal Energy: Renewable Energy and the Environment; CRC Press: Boca Raton, FL, USA, 2010; 285p. [Google Scholar]
- McClure, M.W.; Horne, R.N. An investigation of stimulation mechanisms in Enhanced Geothermal Systems. Int. J. Rock Mech. Min. Sci. 2014, 72, 242–260. [Google Scholar] [CrossRef] [Green Version]
- Evans, K.; Cornet, F.; Hayashi, K.; Hashida, T.; Ito, T.; Matsuki, K.; Wallroth, T. Stress and rock mechanics issues of relevance to HDR/HWR engineered geothermal systems: A review of developments during the past 15 years. Geothermics 1999, 28, 455–474. [Google Scholar] [CrossRef]
- Jalali, M.; Gischig, V.; Doetsch, J.; Näf, R.; Krietsch, H.; Klepikova, M.; Amann, F.; Giardini, D. Transmissivity changes and microseismicity induced by small-scale hydraulic fracturing tests in crystalline rock. Geophys. Res. Lett. 2018, 45, 2265–2273. [Google Scholar] [CrossRef] [Green Version]
- Norbeck, J.H.; McClure, M.W.; Horne, R.N. Field observations at the Fenton Hill enhanced geothermal system test site support mixed-mechanism stimulation. Geothermics 2018, 74, 135–149. [Google Scholar] [CrossRef]
- Jing, Y.; Jing, Z.; Willis-Richards, J.; Hashida, T. A simple 3-D thermoelastic model for assessment of the long-term performance of the Hijiori deep geothermal reservoir. J. Volcanol. Geotherm. Res. 2014, 269, 14–22. [Google Scholar] [CrossRef]
- Gilman, J.R.; Ozgen, C. Reservoir Simulation: History Matching and Forecasting; Society of Petroleum Engineers: Richardson, TX, USA, 2013; 129p. [Google Scholar]
- Pine, R.J.; Batchelor, A.S. Downward migration of shearing in jointed rock during hydraulic injections. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1984, 21, 249–263. [Google Scholar] [CrossRef]
- Sicking, C.; Malin, P. Fracture seismic: Mapping subsurface connectivity. Geosciences 2019, 9, 508. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Yin, S.; Yuan, Y. Estimation of fracture stiffness, in situ stresses, and elastic parameters of naturally fractured geothermal reservoirs. Int. J. Geomech. 2015, 15, 04014033. [Google Scholar] [CrossRef]
- Chen, Z.; Narayan, S.P.; Yang, Z.; Rahman, S.S. An experimental investigation of hydraulic behaviour of fractures and joints in granitic rock. Int. J. Rock Mech. Min. Sci. 2000, 37, 1061–1071. [Google Scholar] [CrossRef]
- Barton, N. Shear strength criteria for rock, rock joints, rockfill and rock masses: Problems and some solutions. J. Rock Mech. Geotech. Eng. 2013, 5, 249–261. [Google Scholar] [CrossRef] [Green Version]
- Frash, L.P. Laboratory-Scale Study of Hydraulic Fracturing in Heterogeneous Media for Enhanced Geothermal Systems and General Well Stimulation. Ph.D. Thesis, Colorado School of Mines, Golden, CO, USA, 2014. [Google Scholar]
- Mao, R.; Feng, Z.; Liu, Z.; Zhao, Y. Laboratory hydraulic fracturing test on large-scale pre-cracked granite specimens. J. Nat. Gas Sci. Eng. 2017, 44, 278–286. [Google Scholar] [CrossRef]
- Deb, P.; Düber, S.; Carducci, C.G.C.; Clauser, C. Laboratory-scale hydraulic fracturing dataset for benchmarking of enhanced geothermal system simulation tools. Sci. Data 2020, 7, 220. [Google Scholar] [CrossRef]
- Hu, L.; Ghassemi, A.; Pritchett, J.; Garg, S. Characterization of laboratory-scale hydraulic fracturing for EGS. Geothermics 2020, 83, 101706. [Google Scholar] [CrossRef]
- Deb, P.; Salimzadeh, S.; Vogler, D.; Düber, S.; Clauser, C.; Settgast, R.R. Verification of coupled hydraulic fracturing simulators using laboratory-scale experiments. Rock Mech. Rock Eng. 2021, 54, 2881–2902. [Google Scholar] [CrossRef]
- Weydt, L.M.; Ramírez-Guzmán, Á.A.; Pola, A.; Lepillier, B.; Kummerow, J.; Mandrone, G.; Comina, C.; Deb, P.; Norini, G.; Gonzalez-Partida, E.; et al. Petrophysical and mechanical rock property database of the Los Humeros and Acoculco geothermal fields (Mexico). Earth Syst. Sci. Data 2021, 13, 571–598. [Google Scholar] [CrossRef]
- Koelbel, T.; Genter, A. Enhanced geothermal systems: The soultz-sous-forêts project. In Towards 100% Renewable Energy: Techniques, Costs and Regional Case-Studies; Uyar, T.S., Ed.; Springer: Cham, Switzerland, 2017; pp. 243–248. [Google Scholar]
- Jing, Z.; Watanabe, K.; Willis-Richards, J.; Hashida, T. A 3-D water/rock chemical interaction model for prediction of HDR/HWR geothermal reservoir performance. Geothermics 2002, 31, 1–28. [Google Scholar] [CrossRef]
- Farquharson, J.I.; Kushnir, A.R.L.; Wild, B.; Baud, P. Physical property evolution of granite during experimental chemical stimulations. Geotherm. Energy 2020, 8, 14. [Google Scholar] [CrossRef]
- Saadat, A.; Frick, S.; Kranz, S.; Regenspurg, S. Energetic use of EGS reservoirs. In Geothermal Energy Systems: Exploration, Development, and Utilization; Huenges, E., Ed.; Wiley: Weinheim, Germany, 2010; pp. 303–372. [Google Scholar]
- Grant, M.A.; Bixley, P.F. Geothermal Reservoir Engineering; Academic Press: Oxford, UK, 2011; 379p. [Google Scholar]
- Brown, D. A Hot Dry Rock geothermal energy concept utilizing supercritical CO2 instead of water. In Proceedings of the 25th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 24–26 January 2000. [Google Scholar]
- Pruess, K. Enhanced geothermal systems (EGS) using CO2 as working fluid—A novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 2006, 35, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Pruess, K. On production behavior of enhanced geothermal systems with CO2 as working fluid. Energy Convers. Manag. 2008, 49, 1446–1454. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Gong, F.; Wang, X.; Lin, Q.; Qu, Z.; Zhang, W. Performance of enhanced geothermal system (EGS) in fractured geothermal reservoirs with CO2 as working fluid. Appl. Therm. Eng. 2019, 152, 215–230. [Google Scholar] [CrossRef]
- Karanasios, K.; Parker, P. Recent developments in renewable energy in remote aboriginal communities, Quebec, Canada. Pap. Can. Econ. Dev. 2016, 16, 98–108. [Google Scholar]
- Bonalumi, D. Enhanced geothermal systems with captured CO2. Energy Procedia 2018, 148, 744–750. [Google Scholar] [CrossRef]
- Baroudi, H.A.; Awoyomi, A.; Patchigolla, K.; Jonnalagadda, K.; Anthony, E.J. A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilization and storage. Appl. Energy 2021, 287, 116510. [Google Scholar] [CrossRef]
- Olasolo, P.; Juárez, M.C.; Morales, M.P.; Olasolo, A.; Agius, M.R. Analysis of working fluids applicable in Enhanced Geothermal Systems: Nitrous oxide as an alternative working fluid. Energy 2018, 157, 150–161. [Google Scholar] [CrossRef]
- Augustine, C.R. Updated US Geothermal Supply Characterization and Representation for Market Penetration Model Input; Report No.: NREL/TP-6A20-47459; NREL: Golden, CO, USA, 2011; 103p. [Google Scholar]
- Richard, M.-A. Production D’électricité avec des Systèmes Géothermiques Stimulés au Québec: Analyse des Résultats d’un Outil de Simulation; Report No.: IREQ-2016-0001; Hydro Québec Institut de Recherche: Varennes, QC, Canada, 2016; 164p. [Google Scholar]
- Kaczmarczyk, M.; Tomaszewska, B.; Operacz, A. Sustainable utilization of low entalphy geothermal resources to electricity generation through a cascade system. Energies 2020, 13, 2495. [Google Scholar] [CrossRef]
- Operacz, A.; Chowaniec, J. Perspectives of geothermal water use in the Podhale Basin according to geothermal step distribution. Geol. Geophys. Environ. 2018, 44, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Sowizdzal, A.; Chmielowska, A.; Tomaszewska, B.; Operacz, A.; Chowaniec, J. Could geothermal water and energy use improve living conditions? Environmental effects from Polans. Arch. Environ. Prot. 2019, 45, 109–118. [Google Scholar]
- Giordano, N.; Raymond, J. Alternative and sustainable heat production for drinking water needs in a subarctic climate (Nunavik, Canada): Borehole thermal energy storage to reduce fossil fuel dependency in off-grid communities. Appl. Energy 2019, 252, 113463. [Google Scholar] [CrossRef]
- Javadi, H.; Ajarostaghi, S.S.M.; Rosen, M.A.; Pourfallah, M. Performance of ground heat exchangers: A comprehensive review of recent advances. Energy 2019, 178, 207–233. [Google Scholar] [CrossRef]
- Javadi, H.; Ajarostaghi, S.S.M.; Rosen, M.A.; Pourfallah, M. A comprehensive review of backfill materials and their effect on ground heat exchanger performance. Sustainability 2018, 10, 4486. [Google Scholar] [CrossRef] [Green Version]
- Javadi, H.; Ajarostaghi, S.S.M.; Pourfallah, M.; Zaboli, M. Performance analysis of helical ground heat exchangers with different configurations. Appl. Therm. Eng. 2019, 154, 24–36. [Google Scholar] [CrossRef]
- Bremen, L.V. Large-scale variability of weather dependent renewable energy sources. In Management of Weather and Climate Risk in the Energy Industry; Troccoli, A., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 186–206. [Google Scholar]
- Cherry, J.E.; Knapp, C.; Trainor, S.; Ray, A.J.; Tedesche, M.; Walker, S. Planning for climate change impacts on hydropower in the Far North. Hydrol. Earth Syst. Sci. 2017, 21, 133–151. [Google Scholar] [CrossRef] [Green Version]
- Reinecker, J.; Gutmanis, J.; Foxford, A.; Cotton, L.; Dalby, C.; Law, R. Geothermal exploration and reservoir modelling of the United Downs deep geothermal project, Cornwall (UK). Geothermics 2021, 97, 102226. [Google Scholar] [CrossRef]
- Somma, R.; Blessent, D.; Raymond, J.; Constance, M.; Cotton, L.; Natale, G.; Fedele, A.; Jurado, M.J.; Marcia, K.; Miranda, M.M.; et al. Review of recent drilling projects in unconventional geothermal resources at Campi Flegrei Caldera, Cornubian Batholith, and Williston Sedimentary Basin. Energies 2021, 14, 3306. [Google Scholar] [CrossRef]
- Operacz, A.; Bielec, B.; Tomaszewska, B.; Kaczmarczyk, M. Physicochemical composition variability and hydraulic conditions in a geothermal borehole—The latest study in Podhale Basin, Poland. Energies 2020, 13, 3882. [Google Scholar] [CrossRef]
Parameter | Symbol | Unit | Worst-Case Scenario | Base-Case Scenario | Best-Case Scenario | References |
---|---|---|---|---|---|---|
Maximum horizontal principal stress | σH | MPa | 213 | 181 | 152 | [51] |
Direction maximum horizontal principal stress | σH | ° | N215°E | [51] | ||
Minimum horizontal principal stress | σh | MPa | 138 | 106 | 84 | [51] |
Direction minimum horizontal principal stress | σh | ° | N305°E | [51] | ||
Vertical principal stress | σV | MPa | 121 | 108 | 97 | [51] |
In situ fluid pressure | Ppore | MPa | 49 | 43 | 39 | [51] |
Reservoir temperature | Treservoir | °C | 33 | 88 | 167 | [28] |
Permeability | κ | m2 | 10−18 | 10−17 | 10−16 | [62,63] |
Geological materials | ||||||
Thermal conductivity | λrock | W m−1 K−1 | 2.4 | 2.0 | 1.5 | [28] |
Volumetric heat capacity | ρcrock | MJ m−3 K−1 | 2.1 | 2.4 | 2.7 | [28] |
Young’s modulus | E | GPa | 100 | 71.5 | 43 | [64] |
Poisson’s ratio | ν | --- | 0.16 | 0.23 | 0.30 | [64] |
Asperity strength factor | Fasperity | --- | 0.6 | 0.5 | 0.4 | --- |
Basic friction angle | ϕbasic | ° | 26 | 24.5 | 23 | [65] |
Initial shear dilation angle | ϕdilation, 0 | ° | 0 | 2.5 | 5 | --- |
Peak shear dilation angle | ϕdilation, peak | ° | 5.0 | 10 | 20 | --- |
Ultimate shear dilation angle | ϕdilation, ultimate | ° | 2.5 | 5.0 | 10 | --- |
Peak shear displacement | Upeak | mm | 2.5 | 5.0 | 10 | --- |
Residual shear displacement | Uresidual | mm | 1.25 | 2.5 | 5 | --- |
Reference stress for 90% closure | σn, ref | MPa | 40 | 50 | 60 | --- |
In situ fluid | ||||||
Density | ρfluid | kg m−3 | 1012 | 1080 | 1112 | --- |
Dynamic viscosity | ω | kg m−1 s−1 | 10−4 | 10−4 | 10−4 | --- |
Circulation fluid | ||||||
Re-injection temperature | Tinjection | °C | 30 | 30 | 50 | --- |
Density | ρfluid | kg m−3 | 993 | 993 | 985 | --- |
Specific heat | cfluid | J kg−1 K−1 | 4180 | 4180 | 4180 | --- |
Cost | Sanyal et al. [72] (Optimistic Scenario) | Factor of 2 (Likely Scenario) | Factor of 5 (Pessimistic Scenario) | |
---|---|---|---|---|
Stimulation per well (M$) | Minimum | 0.5 | 1.0 | 2.5 |
Mean | 0.75 | 1.5 | 3.75 | |
Maximum | 1.0 | 2.0 | 5.0 | |
Power plant and other surface facilities ($ kWh−1) | Minimum | 1800 | 3600 | 9000 |
Mean | 2000 | 4000 | 10,000 | |
Maximum | 2200 | 4400 | 11,000 | |
Annual operation and maintenance (¢ kWh −1) | Minimum | 2.0 | 4.0 | 10.0 |
Maximum | 3.5 | 7.0 | 17.5 |
Parameter Code | Parameter Description | Unit | Variable Type | Distribution |
---|---|---|---|---|
Cwells | Wells cost | $ | Discrete | Uniform |
Cstimulation | Stimulation cost | $ | Continuous | Triang (min, mean, max) |
Cplant | Power plant and other surface facilities cost | $ kW−1 | Continuous | Triang (min, mean, max) |
Oannual | Annual operations and maintenance cost | ¢ kWh−1 | Continuous | Uniform (min, max) |
eannual | Annually consumed energy | MWh | Continuous | Uniform (min, max) |
i | Imputed interest rate | % | Continuous | Single value |
t | Project lifetime | year | Continuous | Single value |
Configuration 1 | Fault Offset (m) | Spacing between Wells (m) | Open Hole Length (m) | Vstim (km3) | Pstim (MPa) | Pcirc (MPa) | Qrec (L s−1) | Wloss (%) | H (MPa L−1 s−1) | Tdrawdown (°C/year) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I* | R* | I* | R* | |||||||||
Fracture network 1 | ||||||||||||
A | 0.10 | 700 | 600 | 0.8 | 25 | 28 | 10 | −5 | 52.9 | 18.1 | 0.28 | 0.16 |
A | 0.01 | 700 | 600 | 0.8 | 25 | 28 | 9 | −5 | 47.4 | 17.6 | 0.30 | 0.12 |
A | 0.001 | 500 | 600 | 0.8 | 29 | 35 | 6 | −4 | 49.0 | 15.5 | 0.20 | 0.10 |
B | 0.10 | 700 | 500 | 0.4 | 23 | 28 | 7 | −5 | 22.4 | 20.4 | 0.54 | 0.60 |
B | 0.01 | 700 | 500 | 0.4 | 25 | 30 | 7 | −5 | 28.8 | 18.2 | 0.42 | 0.73 |
Fracture network 2 | ||||||||||||
A | 0.10 | 700 | 600 | 0.8 | 7 | 14 | 2 | 0 | 55.6 | 13.7 | 0.04 | 0.03 |
A | 0.01 | 700 | 600 | 0.8 | 4 | 9 | 2 | −1 | 56.4 | 2.1 | 0.05 | 0.03 |
A | 0.001 | 600 | 600 | 0.8 | 5 | 10 | 2 | −1 | 50.1 | 5.3 | 0.06 | 0.02 |
B | 0.10 | 700 | 600 | 0.4 | 2 | 4 | 1 | −1 | 22.8 | 11.8 | 0.09 | 0.50 |
B | 0.01 | 700 | 600 | 0.4 | 3 | 5 | 1 | −1 | 26.1 | 3.4 | 0.08 | 0.35 |
Fracture network 3 | ||||||||||||
A | 0.10 | 700 | 600 | 0.8 | 23 | 24 | 8 | −4 | 50.7 | 8.0 | 0.24 | 0.07 |
A | 0.01 | 600 | 600 | 0.8 | 23 | 24 | 6 | −4 | 46.8 | 9.9 | 0.21 | 0.05 |
A | 0.001 | 500 | 600 | 0.8 | 26 | 32 | 6 | −4 | 51.8 | 5.0 | 0.19 | 0.04 |
B | 0.10 | 700 | 600 | 0.4 | 22 | 24 | 3 | −3 | 22.3 | 2.9 | 0.27 | 0.45 |
B | 0.01 | 700 | 600 | 0.4 | 22 | 24 | 4 | −3 | 22.9 | 20.5 | 0.31 | 0.56 |
Configuration 1 | Fault Offset (m) | Spacing between Wells (m) | Open Hole Length (m) | Vstim (km3) | Pstim (MPa) | Pcirc (MPa) | Qrec (L s−1) | Wloss (%) | H (MPa L−1 s−1) | Tdrawdown (°C/year) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I* | R* | I* | R* | |||||||||
Fracture network 2 | ||||||||||||
A | 0.10 | 700 | 600 | 0.8 | 47 | 44 | 14 | −2 | 93.3 | 0.4 | 0.17 | 0.47 |
A | 0.01 | 700 | 600 | 0.8 | 47 | 44 | 16 | −4 | 96.6 | 10.6 | 0.21 | 0.58 |
A | 0.001 | 700 | 600 | 0.8 | 48 | 45 | 16 | −4 | 88.2 | 18.2 | 0.23 | 0.90 |
B | 0.10 | 700 | 600 | 0.8 | 43 | 45 | 3 | −1 | 29.8 | 9.7 | 0.13 | 0.87 |
B | 0.01 | 700 | 600 | 0.8 | 43 | 45 | 4 | −2 | 32.2 | 2.7 | 0.19 | 0.73 |
Design | Power Plant and Other Surface Facilities Cost (M$) | ||||||
---|---|---|---|---|---|---|---|
Factor of 2 (Likely Scenario) | Factor of 5 (Pessimistic Scenario) | ||||||
Minimum | Mean | Maximum | Minimum | Mean | Maximum | ||
Configuration A | Q = 52.9 | 90 | 100 | 110 | 225 | 250 | 275 |
Q = 47.4 | 79 | 88 | 97 | 198 | 220 | 242 | |
Q = 49.0 | 86 | 96 | 106 | 216 | 240 | 264 | |
Q = 55.6 | 97 | 108 | 119 | 243 | 270 | 297 | |
Q = 56.4 | 97 | 108 | 119 | 243 | 270 | 297 | |
Q = 50.1 | 90 | 100 | 110 | 225 | 250 | 275 | |
Q = 50.7 | 86 | 96 | 106 | 216 | 240 | 264 | |
Q = 46.8 | 79 | 88 | 97 | 198 | 220 | 242 | |
Q = 51.8 | 86 | 96 | 106 | 216 | 240 | 264 | |
Q = 93.3 | 68 | 76 | 84 | 171 | 190 | 209 | |
Q = 96.6 | 72 | 80 | 88 | 180 | 200 | 220 | |
Q = 88.2 | 61 | 68 | 75 | 153 | 170 | 187 | |
Configuration B | Q = 22.4 | 40 | 44 | 48 | 99 | 110 | 121 |
Q = 28.8 | 50 | 56 | 62 | 126 | 140 | 154 | |
Q = 22.8 | 40 | 44 | 48 | 99 | 110 | 121 | |
Q = 26.1 | 45 | 50 | 55 | 113 | 125 | 138 | |
Q = 22.3 | 38 | 42 | 46 | 95 | 105 | 116 | |
Q = 22.9 | 40 | 44 | 48 | 99 | 110 | 121 | |
Q = 29.8 | 22 | 24 | 26 | 54 | 60 | 66 | |
Q = 32.2 | 25 | 28 | 31 | 63 | 70 | 77 |
Design | Capital Cost (M$) | ||||||
---|---|---|---|---|---|---|---|
Factor of 2 | Factor of 5 | ||||||
Minimum | Mean | Maximum | Minimum | Mean | Maximum | ||
Configuration A | Q = 52.9 | 104 | 114 | 124 | 244 | 269 | 294 |
Q = 47.4 | 91 | 102 | 112 | 215 | 239 | 261 | |
Q = 49.0 | 100 | 110 | 121 | 233 | 259 | 283 | |
Q = 55.6 | 111 | 122 | 134 | 260 | 289 | 315 | |
Q = 56.4 | 111 | 122 | 134 | 261 | 289 | 315 | |
Q = 50.1 | 103 | 114 | 125 | 244 | 269 | 295 | |
Q = 50.7 | 99 | 110 | 121 | 233 | 259 | 283 | |
Q = 46.8 | 92 | 102 | 112 | 216 | 239 | 260 | |
Q = 51.8 | 99 | 110 | 121 | 235 | 259 | 284 | |
Q = 93.3 | 81 | 90 | 99 | 189 | 209 | 228 | |
Q = 96.6 | 85 | 94 | 104 | 199 | 219 | 239 | |
Q = 88.2 | 74 | 82 | 90 | 170 | 189 | 208 | |
Configuration B | Q = 22.4 | 53 | 58 | 63 | 116 | 129 | 142 |
Q = 28.8 | 63 | 70 | 77 | 142 | 159 | 174 | |
Q = 22.8 | 53 | 58 | 63 | 115 | 129 | 142 | |
Q = 26.1 | 58 | 64 | 70 | 129 | 144 | 158 | |
Q = 22.3 | 51 | 56 | 61 | 112 | 124 | 135 | |
Q = 22.9 | 53 | 58 | 63 | 115 | 129 | 140 | |
Q = 29.8 | 35 | 38 | 42 | 70 | 79 | 86 | |
Q = 32.2 | 38 | 42 | 46 | 79 | 89 | 98 |
Design | Levelized Cost of Energy ($ MWh−1) | |||||||
---|---|---|---|---|---|---|---|---|
Heat | CHP | |||||||
Optimistic | Likely | Pessimistic | Optimistic | Likely | Pessimistic | |||
Configuration A | Best-case | Q = 52.9 | 136 | 247 | 584 | 134 | 244 | 576 |
Q = 47.4 | 121 | 221 | 517 | 120 | 218 | 510 | ||
Q = 49.0 | 132 | 239 | 561 | 130 | 236 | 553 | ||
Q = 55.6 | 145 | 265 | 625 | 143 | 262 | 616 | ||
Q = 56.4 | 145 | 265 | 626 | 143 | 262 | 617 | ||
Q = 50.1 | 136 | 247 | 584 | 134 | 244 | 577 | ||
Q = 50.7 | 131 | 239 | 561 | 130 | 235 | 553 | ||
Q = 46.8 | 123 | 221 | 517 | 122 | 218 | 510 | ||
Q = 51.8 | 132 | 239 | 563 | 130 | 235 | 555 | ||
Base-case | Q = 93.3 | 111 | 195 | 453 | --- | --- | --- | |
Q = 96.6 | 114 | 205 | 475 | --- | --- | --- | ||
Q = 88.2 | 102 | 178 | 410 | --- | --- | --- | ||
Configuration B | Q = 22.4 | 75 | 126 | 280 | --- | --- | --- | |
Q = 28.8 | 88 | 152 | 343 | --- | --- | --- | ||
Q = 22.8 | 75 | 126 | 279 | --- | --- | --- | ||
Q = 26.1 | 82 | 139 | 312 | --- | --- | --- | ||
Q = 22.3 | 73 | 121 | 268 | --- | --- | --- | ||
Q = 22.9 | 75 | 126 | 278 | --- | --- | --- | ||
Q = 29.8 | 54 | 83 | 170 | --- | --- | --- | ||
Q = 32.2 | 58 | 91 | 192 | --- | --- | ---- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda, M.; Raymond, J.; Willis-Richards, J.; Dezayes, C. Are Engineered Geothermal Energy Systems a Viable Solution for Arctic Off-Grid Communities? A Techno-Economic Study. Water 2021, 13, 3526. https://doi.org/10.3390/w13243526
Miranda M, Raymond J, Willis-Richards J, Dezayes C. Are Engineered Geothermal Energy Systems a Viable Solution for Arctic Off-Grid Communities? A Techno-Economic Study. Water. 2021; 13(24):3526. https://doi.org/10.3390/w13243526
Chicago/Turabian StyleMiranda, Mafalda, Jasmin Raymond, Jonathan Willis-Richards, and Chrystel Dezayes. 2021. "Are Engineered Geothermal Energy Systems a Viable Solution for Arctic Off-Grid Communities? A Techno-Economic Study" Water 13, no. 24: 3526. https://doi.org/10.3390/w13243526
APA StyleMiranda, M., Raymond, J., Willis-Richards, J., & Dezayes, C. (2021). Are Engineered Geothermal Energy Systems a Viable Solution for Arctic Off-Grid Communities? A Techno-Economic Study. Water, 13(24), 3526. https://doi.org/10.3390/w13243526