Monitoring of the Operating Membrane Condition Using PZT Based EMI of External Steel Pipe
Abstract
:1. Introduction
2. Monitoring of Operating Conditions of the PZT-Based Membrane
2.1. Electro-Mechanical Impedance Measurement for Pressure Monitoring
2.2. Design of External Pipe for Membrane Monitoring
3. Experimental Verification
3.1. Experimental Setup
3.2. Test Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- David, H.; Furukawa, P.E.; Ch, E. NWRI Final Project Report: A Global Perspective of Low Pressure Membranes; National Water Research Institute: Fountain Valley, CA, USA, 2008. [Google Scholar]
- Guo, H.; Wyart, Y.; Perot, J.; Nauleau, F.; Moulin, P. Low-pressure membrane integrity tests for drinking water treatment: A review. Water Res. 2010, 44, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Laîne, J.M.; Glucina, K.; Chamant, M.; Simonie, P. Acoustic sensor: A novel technique for low pressure membrane. Desalination 1998, 119, 73–77. [Google Scholar] [CrossRef]
- Phillips, M.W.; DiLeo, A.J. A validatable porosimetric technique for verifying the integrity of virus-retentive membranes. Biologicals 1996, 24, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Adham, S.S.; Jacangelo, J.G.; Laine, J.M. Low-pressure membranes: Assessing integrity. J. AWWA 1995, 3, 62–75. [Google Scholar] [CrossRef]
- Johnson, W.T. Automatic monitoring of membrane integrity in microfiltration systems. Desalination 1997, 113, 303–307. [Google Scholar] [CrossRef]
- Johnson, W.T. Predicting log removal performance of membrane systems using in-situ integrity testing. Filtr. Separat. 1998, 1, 26–29. [Google Scholar] [CrossRef]
- Randles, N. Large scale operating experience in membrane systems for water and waste water reclamation. Desalination 1997, 108, 205–211. [Google Scholar] [CrossRef]
- Panglisch, S.; Deinert, U.; Dautzenberg, W.; Kiepke, O.; Gimbel, R. Monitoring the integrity of capillary membranes by particle counters. Desalination 1998, 119, 65–72. [Google Scholar] [CrossRef]
- Banerjee, A.; Lambertson, M.; Lozier, J.; Colvin, C. Monitoring membrane integrity using high sensitivity laser turbidimetry. Water Sci. Technol. Water Suplly 2001, 1, 273–276. [Google Scholar] [CrossRef]
- Crozes, G.F.; Sethi, S.; Mi, B.; Curl, J.; Marinas, B. Improving membrane integrity monitoring indirect methods to reduce plant downtime and increase microbial removal credit. Desalination 2002, 149, 493–497. [Google Scholar] [CrossRef]
- Krantz, W.B.; Lin, C.S.; Sin, P.C.Y.; Yeo, A.; Fane, A.G. An integrity sensor for assessing the performance of low pressure membrane modules in the water industry. Desalination 2011, 283, 117–122. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Kim, J.; Lee, C.; Park, S. Applicability investigation of piezoelectric sensor-based damage detection technique for membrane. Desalin. Water Treat. 2019, 143, 24–28. [Google Scholar] [CrossRef]
- Kim, J.; Lee, C.; Park, S. Artificial neural network-based early-age concrete strength monitoring using dynamic response signals. Sensors 2017, 17, 1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.; Kim, J.; Park, S.; Kim, D.H. Advanced fatigue crack detection using nonlinear self-sensing impedance technique for automated NDE of metallic structures. Res. Nondestruct. Eval. 2015, 26, 107–121. [Google Scholar] [CrossRef]
- Park, S.; Inman, D.J.; Lee, J.J.; Yun, C.B. Piezoelectric sensor-based health monitoring of railroad track using a two-step support vector machine classifier. J. Infrastruct. Syst. 2008, 14, 80–88. [Google Scholar] [CrossRef]
- Bhalla, S.; Soh, C.K. Structural health monitoring by piezo-impedance transducers, I: Modeling. J. Aerospace Eng. 2004, 17, 154–165. [Google Scholar] [CrossRef]
- Giurgiutiu, V.; Rogers, C.A. Modeling of the electro-mechanical (E/M) impedance response of a damaged composite beam. In Proceedings of the ASME Winter Annual Meeting, ASME Aerospace and Materials Divisions, Adaptive Structures and Material Systems, ASME Aerospace Division, Nashville, TN, USA, 14–19 November 1999; Volume 59, pp. 39–46. [Google Scholar]
- Liang, C.; Sun, F.P.; Rogers, C.A. Electro-mechanical impedance modeling of active material systems. Smart Mater. Struct. 1996, 5, 171–186. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Eom, J.; Lee, S.; Lee, Y.-S.; Kim, H.-S. Monitoring of the Operating Membrane Condition Using PZT Based EMI of External Steel Pipe. Water 2021, 13, 3407. https://doi.org/10.3390/w13233407
Kim J, Eom J, Lee S, Lee Y-S, Kim H-S. Monitoring of the Operating Membrane Condition Using PZT Based EMI of External Steel Pipe. Water. 2021; 13(23):3407. https://doi.org/10.3390/w13233407
Chicago/Turabian StyleKim, Junkyeong, Jungyeol Eom, Sangyoup Lee, Yong-Soo Lee, and Hyung-Soo Kim. 2021. "Monitoring of the Operating Membrane Condition Using PZT Based EMI of External Steel Pipe" Water 13, no. 23: 3407. https://doi.org/10.3390/w13233407
APA StyleKim, J., Eom, J., Lee, S., Lee, Y.-S., & Kim, H.-S. (2021). Monitoring of the Operating Membrane Condition Using PZT Based EMI of External Steel Pipe. Water, 13(23), 3407. https://doi.org/10.3390/w13233407