Sediment Yield and Reservoir Sedimentation in Highly Dynamic Watersheds: The Case of Koga Reservoir, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Koga Reservoir
2.2. SWAT Model
2.3. Model Data
2.4. SWAT Sediment Simulation
2.5. Model Calibration, Sensitivity, and Verification
2.6. Sediment Rating Curve
2.7. Estimation of Sediment Load to the Reservoir
3. Results and Discussion
3.1. SWAT Flow Simulation
3.2. SWAT Sediment Yield Simulation
3.3. Empirical Reservoir Sedimentation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jaiyeola, A.T.; Bwapwa, J.K. Dynamics of sedimentation and use of genetic algorithms for estimating sediment yields in a river: A critical review. Nat. Resour. Model. 2015, 28, 207–218. [Google Scholar] [CrossRef]
- Pavanelli, D.; Pagliarani, A. SW—Soil and Water: Monitoring water flow, turbidity and suspended sediment load, from an Apennine Catchment Basin, Italy. Biosyst. Eng. 2002, 83, 463–468. [Google Scholar] [CrossRef]
- Russell, M.; Walling, D.; Hodgkinson, R. Suspended sediment sources in two small lowland agricultural catchments in the UK. J. Hydrol. 2001, 252, 1–24. [Google Scholar] [CrossRef]
- Gao, P.; Pasternack, G. Dynamics of suspended sediment transport at field-scale drain channels of irrigation-dominated watersheds in the Sonoran Desert, southeastern California. Hydrol. Process. Int. J. 2007, 21, 2081–2092. [Google Scholar] [CrossRef]
- Gao, P.; Puckett, J. A new approach for linking event-based upland sediment sources to downstream suspended sediment transport. Earth Surf. Process. Landf. 2012, 37, 169–179. [Google Scholar] [CrossRef]
- Sadeghi, S.; Mizuyama, T.; Miyata, S.; Gomi, T.; Kosugi, K.; Fukushima, T.; Mizugaki, S.; Onda, Y. Determinant factors of sediment graphs and rating loops in a reforested watershed. J. Hydrol. 2008, 356, 271–282. [Google Scholar] [CrossRef]
- Elosegi, A.; Díez, J.R.; Flores, L.; Molinero, J. Pools, channel form, and sediment storage in wood-restored streams: Potential effects on downstream reservoirs. Geomorphology 2017, 279, 165–175. [Google Scholar] [CrossRef]
- Hamed, Y.; Albergel, J.; Pépin, Y.; Asseline, J.; Nasri, S.; Zante, P.; Berndtsson, R.; El-Niazy, M.; Balah, M. Comparison between rainfall simulator erosion and observed reservoir sedimentation in an erosion-sensitive semiarid catchment. CATENA 2002, 50, 1–16. [Google Scholar] [CrossRef]
- Nyssen, J.; Poesen, J.; Moeyersons, J.; Haile, M.; Deckers, J. Dynamics of soil erosion rates and controlling factors in the Northern Ethiopian Highlands–towards a sediment budget. Earth Surf. Process. Landf. 2008, 33, 695–711. [Google Scholar] [CrossRef] [Green Version]
- López-Tarazón, J.A.; Batalla, R.J.; Vericat, D.; Francke, T. Suspended sediment transport in a highly erodible catchment: The River Isábena (Southern Pyrenees). Geomorphology 2009, 109, 210–221. [Google Scholar] [CrossRef]
- Da Silva, R.M.; Santos, C.A.; e Silva, L.P.; da Costa Silva, J.F.C. Evaluation of soil loss in Guaraíra basin by GIS and remote sensing based model. J. Urban Environ. Eng. 2007, 1, 44–52. [Google Scholar] [CrossRef]
- Turner, B. The Earth as Transformed by Human Action; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Eswaran, H.; Lal, R.; Reich, P. Land degradation: An overview. In Responses to Land Degradation; Bridges, E.M., Hannam, I.D., Oldeman, L.R., Pening de Vries, F.W.T., Scherr, S.J., Sompatpanit, S., Eds.; Oxford Press: New Delhi, India, 2001; pp. 20–35. [Google Scholar]
- Shiferaw, B.; Holden, S. Soil erosion and smallholders’ conservation decisions in the highlands of Ethiopia. World Dev. 1999, 27, 739–752. [Google Scholar] [CrossRef]
- BCEOM, F.E. Abbay River Basin Integrated Development Master Plan. Project, Volume Xiii—Environment; Ministry of Water Resource: Addis Ababa, Ethiopia, 1998.
- Schleiss, A.J.; Franca, M.J.; Juez, C.; De Cesare, G. Reservoir sedimentation. J. Hydraul. Res. 2016, 54, 595–614. [Google Scholar] [CrossRef]
- Marttila, H.; Kløve, B. Dynamics of erosion and suspended sediment transport from drained peatland forestry. J. Hydrol. 2010, 388, 414–425. [Google Scholar] [CrossRef]
- Devlin, D.; Dhuyvetter, K.; McVay, K.; Kastens, T.; Rice, C.; Janssen, K.; Pierzynski, G. Water Quality Best Management Practices, Effectiveness, and Cost for Reducing Contaminant Losses from Cropland; Publication MF-2572, Kansas State University: Manhattan, KS, USA, 2003. [Google Scholar]
- Oehy, C.D.; Schleiss, A.J. Control. of turbidity currents in reservoirs by solid and permeable obstacles. J. Hydraul. Eng. 2007, 133, 637–648. [Google Scholar] [CrossRef]
- Awulachew, S.B.; Erkossa, T.; Smakhtin, V.; Fernando, A. Improved Water and Land Management in the Ethiopian highlands: Its impact on downstream stakeholders dependent on the Blue Nile. In Proceedings of the Intermediate Results Dissemination Workshop, the International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia, 5–6 February 2009. Summary report, abstracts of papers with proceedings on CD-ROM. 2009: IWMI. [Google Scholar]
- Gao, P.; Josefson, M. Event-based suspended sediment dynamics in a central New York watershed. Geomorphology 2012, 139, 425–437. [Google Scholar] [CrossRef]
- Assfaw, A.T. Modeling Impact of Land Use Dynamics on Hydrology and Sedimentation of Megech Dam Watershed, Ethiopia. Sci. World J. 2020. [Google Scholar] [CrossRef]
- Leibowitz, S.G.; Wigington, P.J., Jr.; Schofield, K.A.; Alexander, L.C.; Vanderhoof, M.K.; Golden, H.E. Connectivity of streams and wetlands to downstream waters: An integrated systems framework. JAWRA J. Am. Water Resour. Assoc. 2018, 54, 298–322. [Google Scholar] [CrossRef]
- Fritz, K.M.; Schofield, K.A.; Alexander, L.C.; McManus, M.C.; Golden, H.E.; Lane, C.R.; Kepner, W.G.; LeDuc, S.D.; DeMeester, J.E.; Pollard, A.I. Physical and chemical connectivity of streams and riparian wetlands to downstream waters: A synthesis. JAWRA J. Am. Water Resour. Assoc. 2018, 54, 323–345. [Google Scholar] [CrossRef]
- El-Khoury, A.; Seidou, O.; Lapen, D.R.; Que, Z.; Mohammadian, M.; Sunohara, M.; Bahram, D. Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin. J. Environ. Manag. 2015, 151, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Harms, T.K.; Grimm, N.B. Hot spots and hot moments of carbon and nitrogen dynamics in a semiarid riparian zone. J. Geophys. Res. Biogeosci. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Allen, P. Estimating hydrologic budgets for three Illinois watersheds. J. Hydrol. 1996, 176, 57–77. [Google Scholar] [CrossRef]
- Bisantino, T.; Bingner, R.; Chouaib, W.; Gentile, F.; Trisorio Liuzzi, G. Estimation of runoff, peak discharge and sediment load at the event scale in a medium-size Mediterranean watershed using the AnnAGNPS model. Land Degrad. Dev. 2015, 26, 340–355. [Google Scholar] [CrossRef]
- Jeong, J.; Kannan, N.; Arnold, J.; Glick, R.; Gosselink, L.; Srinivasan, R. Development and integration of sub-hourly rainfall–runoff modeling capability within a watershed model. Water Resour. Manag. 2010, 24, 4505–4527. [Google Scholar] [CrossRef]
- Assefa, T.T.; Jha, M.K.; Tilahun, S.A.; Yetbarek, E.; Adem, A.A.; Wale, A. Identification of erosion hotspot area using GIS and MCE technique for koga watershed in the upper blue Nile Basin, Ethiopia. Am. J. Environ. Sci. 2015, 11, 245. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, B. Variability and change in Koga reservoir volume, Blue Nile, Ethiopia: Variabilitet och förändring i Kogadammens vattenvolym, Blå Nilen, Etiopien. Digitala Vetenskapliga Arkivet 2012. [Google Scholar]
- Ayele, G.T.; Teshale, E.Z.; Yu, B.; Rutherfurd, I.D.; Jeong, J. Streamflow and sediment yield prediction for watershed prioritization in the Upper Blue Nile River Basin, Ethiopia. Water 2017, 9, 782. [Google Scholar] [CrossRef] [Green Version]
- MoWR. Spatial and Hydrological Data; Ministry of Water Resources, The Federal Democratic Republic of Ethiopia: Addis Abeba, Ethiopia, 2009.
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development 1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Chanasyk, D.; Mapfumo, E.; Willms, W. Quantification and simulation of surface runoff from fescue grassland watersheds. Agric. Water Manag. 2003, 59, 137–153. [Google Scholar] [CrossRef]
- Arnold, J.G.; Muttiah, R.S.; Srinivasan, R.; Allen, P.M. Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin. J. Hydrol. 2000, 227, 21–40. [Google Scholar] [CrossRef]
- Me, W.; Abell, J.M.; Hamilton, D.P. Modelling Water, sediment and Nutrient Fluxes from a Mixed Land-Use Catchment in New Zealand: Effects of Hydrologic Conditions on SWAT Model Performance; European Geosciences Union: Munich, Germany, 2015. [Google Scholar]
- Neitsch, S.; Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R. Soil and Water Assessment Tool User’s Manual; Blackland Research Center: Temple, TX, USA, 2000. [Google Scholar]
- NMSA. World Weather Information Service; NMSA: Addis Abeba, Ethiopia, 2009. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: Austin, TX, USA, 2011. [Google Scholar]
- Morris, G.L.; Fan, J. Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoirs, and Watersheds for Sustainable Use; McGraw Hill Professional: New York, NY, USA, 1998. [Google Scholar]
- Summer, W.; Klaghofer, E.; Abi-Zeid, I.; Villeneuve, J.P. Critical reflections on long term sediment monitoring programmes demonstrated on the Austrian Danube. Eros. Sediment Trans. Monit. Prog. River Basins 1992, 255–262. [Google Scholar]
- Ndomba, P.M.; Mtalo, F.W.; Killingtveit, Å. A guided SWAT model application on sediment yield modeling in Pangani river basin: Lessons learnt. J. Urban Environ. Eng. 2008, 2, 53–62. [Google Scholar] [CrossRef]
- Yesuf, H.M.; Assen, M.; Alamirew, T.; Melesse, A.M. Modeling of sediment yield in Maybar gauged watershed using SWAT, northeast Ethiopia. Catena 2015, 127, 191–205. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Sadhasivam, N.; Kariminejad, N.; Collins, A.L. Gully erosion spatial modelling: Role of machine learning algorithms in selection of the best controlling factors and modelling process. Geosci. Front. 2020, 11, 2207–2219. [Google Scholar] [CrossRef]
- Williams, J.R. The EPIC Model. Computer Models of Watershed Hydrology; Water Resources Publications: Highlands Ranch, CO, USA, 1995; pp. 909–1000. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Department of Agriculture, Science and Education Administration: Seattle, WA, USA, 1978.
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yanga, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef] [Green Version]
- McCuen, R.H.; Knight, Z.; Cutter, A.G. Evaluation of the Nash–Sutcliffe efficiency index. J. Hydrol. Eng. 2006, 11, 597–602. [Google Scholar] [CrossRef]
- Boskidis, I.; Gikas, G.D.; Sylaios, G.K.; Tsihrintzis, V.A. Hydrologic and water quality modeling of lower Nestos river basin. Water Resour. Manag. 2012, 26, 3023–3051. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Guinot, V.; Cappelaere, B.; Delenne, C.; Ruellandet, D. Towards improved criteria for hydrological model calibration: Theoretical analysis of distance-and weak form-based functions. J. Hydrol. 2011, 401, 1–13. [Google Scholar] [CrossRef]
- Clarke, R.T. Statistical Modelling in Hydrology; John Wiley & Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Lane, E.; Koelzer, V.A. Density of Sediments Deposited in Reservoirs, a Case Study of Methods Used in Measurement and Analysis of Sediment Loads in Streams, Report No. 9, Interagency Committee on Water Resources; University of Iowa: Iowa City, IA, USA, 1943. [Google Scholar]
- Hurni, H. Soil Conservation Manual for Ethiopia: Field Guide for Conservation Implementation; Ministry of Agriculture: Addis Abeba, Ethiopia, 1985.
- MacDonald, M.; WWDSE. Koga Irrigation Project, Irrigation and Drainage Design Report; WWDSE: Addis Ababa, Ethiopia, 2005. [Google Scholar]
Data | Application | Data Use and Description | Source |
---|---|---|---|
3 stations meteorological data | Meteorological forcing | Daily max., and min., temperature, humidity, radiation, wind speed, and precipitation. | NMSA |
DEM and digitized stream network | Watershed delineation | 30 m resolution to define slope classes. | MoWR |
Land use | Defining HRUs | 30 m resolution, six basic land-cover classes. | MoWR |
Soil characteristics | Defining HRUs | 30 m resolution, nine soil types. | MoWR |
Statistical Efficiency Criterion | Model Performance Ratings | ||||||
---|---|---|---|---|---|---|---|
Objective Function | Characteristics | Function Category | Statistic Equation | Reference | Value Range | Performance Classification | References |
ENS | Most common; emphasize on high flows; neglect the low flows | Distance-based | [51,52] | 0.75 < ENS ≤ 1 | Very good | [50,53] | |
0.65 < ENS ≤ 0.75 | Good | ||||||
0.5 < ENS ≤ 0.65 | Satisfactory | ||||||
0.4 < ENS ≤ 0.5 | Acceptable | ||||||
ENS ≤ 0.4 | Unsatisfactory | ||||||
R2 | Emphasize on high flows | Weak form-based | [52,54] | 0.7 < R2 < 1 | Very good | [50] | |
0.6 < R2 < 0.7 | Good | ||||||
0.5 < R2 < 0.6 | Satisfactory | ||||||
R2 < 0.5 | Unsatisfactory | ||||||
±PBIAS | Monotony; cannot be used alone | Weak form-based | [55] | PBIAS < ±10 | Very good | [54] | |
±10 ≤ PBIAS < ±15 | Good | ||||||
±15 ≤ PBIAS < ±25 | Satisfactory | ||||||
PBIAS ≥ ±25 | Unsatisfactory |
Parameter Description | Parameter Code | Range | Initial Value | Adjusted Value |
---|---|---|---|---|
Available water capacity (mm water/mm soil) | SOL_AWC | ±25% | ** | 12% |
Soil Depth (mm) | SOL_Z | ±25% | ** | −10% |
Initial SCS CN II value | CN2 | ±25% | * | 14% |
Baseflow Alpha factor (days) | ALPHA_BF | 0–1 | 0.048 | 0.048 |
Threshold water depth in shallow aquifer for flow | GWQMN | 0–5000 | 0.0 | 2500 |
Manning’s N value for the main channel | Ch_N2 | 0–1 | 0.014 | 0.014 |
Effective hydraulic conductivity in main channel alluvium | Ch_K2 | 0–150 | 0 | 0 |
Soil evaporation compensation factor | ESCO | 0–1 | 0.95 | 0.40 |
Average slope Steepness (m/m) | SLOPE | ±25% | ** | 10% |
Groundwater percolation delay(day) | GW_DELAY | ±10% | * | 31 |
Monthly Simulation | Mean Annual Streamflow (m3/s) | Model Performance | |||
---|---|---|---|---|---|
Observed | Simulated | NSE | R2 | PBIAS (%) | |
Calibration (1991–2000) | 5.31 | 4.86 | 0.78 | 0.82 | 8.45 |
Validation (2002–2007) | 4.68 | 4.13 | 0.75 | 0.78 | 11.83 |
Monthly Simulation | Model Performance | ||
---|---|---|---|
NSE | R2 | PBIAS (%) | |
Calibration (1991–2000) | 0.73 | 0.75 | 7.8 |
Validation (2002–2007) | 0.80 | 0.79 | 6.4 |
Elevation (m) | Original | F Value | Relative | Computed Sed. Distribution | Revised | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (Ha) | Volume (m3 106) | Depth (p) | Area (ha) | Area (ha) | V. incre. (106 m3) | C. Vol. (106 m3) | Area (ha) | Volume (106 m3) | ||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) |
2020 | 2582 | 182.9 | 1.000 | 0.0 | 0.0 | 0.05 | 2.54 | 2582.0 | 180.5 | |
2019 | 2400 | 158.0 | 0.944 | 0.736 | 9.8 | 0.11 | 2.37 | 2390.6 | 155.6 | |
2018 | 2236 | 134.8 | 0.889 | 0.945 | 12.5 | 0.13 | 2.26 | 2222.2 | 132.5 | |
2017 | 2072 | 113.3 | 0.833 | 1.075 | 14.2 | 0.15 | 2.12 | 2057.1 | 111.2 | |
2016 | 1906 | 93.4 | 0.778 | 1.163 | 15.4 | 0.16 | 1.98 | 1890.3 | 91.4 | |
2015 | 1724 | 75.2 | 0.722 | 1.222 | 16.2 | 0.16 | 1.82 | 1707.9 | 73.4 | |
2014 | 1544 | 58.9 | 0.667 | 1.258 | 16.7 | 0.17 | 1.65 | 1527.9 | 57.2 | |
2013 | 1345 | 44.5 | 0.611 | 1.275 | 16.9 | 0.17 | 1.49 | 1328.7 | 43.0 | |
2012 | 1106 | 32.2 | 0.556 | 1.276 | 16.9 | 0.17 | 1.32 | 1089.6 | 30.9 | |
2011 | 932 | 22.1 | 0.500 | 1.261 | 16.7 | 0.17 | 1.15 | 915.8 | 21.0 | |
2010 | 683 | 14.0 | 0.444 | 1.231 | 16.3 | 0.16 | 0.98 | 667.2 | 13.0 | |
2009 | 435 | 8.5 | 0.389 | 1.186 | 15.7 | 0.15 | 0.82 | 419.8 | 7.7 | |
2008 | 298 | 4.8 | 0.333 | 1.126 | 14.9 | 0.14 | 0.67 | 283.6 | 4.1 | |
2007 | 185 | 2.4 | 0.000 | 0.278 | 1.049 | 13.9 | 0.13 | 0.53 | 171.6 | 1.9 |
2006 | 94 | 1.1 | 0.077 | 0.222 | 0.952 | 12.6 | 0.12 | 0.39 | 81.8 | 0.7 |
2005 | 39 | 0.5 | 0.271 | 0.167 | 0.831 | 11.0 | 0.10 | 0.28 | 28.3 | 0.2 |
2004 | 18 | 0.2 | 0.679 | 0.111 | 0.677 | 9.0 | 0.08 | 0.18 | 9.3 | 0.0 |
2003 | 6.2 | 0.1 | 2.061 | 0.056 | 0.468 | 6.2 | 0.10 | 0.10 | 0.0 | 0.0 |
2002 | 0.0 | 0.0 | 0.000 | 0.000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayele, G.T.; Kuriqi, A.; Jemberrie, M.A.; Saia, S.M.; Seka, A.M.; Teshale, E.Z.; Daba, M.H.; Ahmad Bhat, S.; Demissie, S.S.; Jeong, J.; et al. Sediment Yield and Reservoir Sedimentation in Highly Dynamic Watersheds: The Case of Koga Reservoir, Ethiopia. Water 2021, 13, 3374. https://doi.org/10.3390/w13233374
Ayele GT, Kuriqi A, Jemberrie MA, Saia SM, Seka AM, Teshale EZ, Daba MH, Ahmad Bhat S, Demissie SS, Jeong J, et al. Sediment Yield and Reservoir Sedimentation in Highly Dynamic Watersheds: The Case of Koga Reservoir, Ethiopia. Water. 2021; 13(23):3374. https://doi.org/10.3390/w13233374
Chicago/Turabian StyleAyele, Gebiaw T., Alban Kuriqi, Mengistu A. Jemberrie, Sheila M. Saia, Ayalkibet M. Seka, Engidasew Z. Teshale, Mekonnen H. Daba, Shakeel Ahmad Bhat, Solomon S. Demissie, Jaehak Jeong, and et al. 2021. "Sediment Yield and Reservoir Sedimentation in Highly Dynamic Watersheds: The Case of Koga Reservoir, Ethiopia" Water 13, no. 23: 3374. https://doi.org/10.3390/w13233374