Health Risk of the Shallow Groundwater and Its Suitability for Drinking Purpose in Tongchuan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Groundwater Samples
2.3. Chemical Analysis and Data Processing
2.4. Statistical Analysis and Computing
2.4.1. Water Quality Index (WQI)
2.4.2. Human Health Risk Assessment
3. Results and Discussion
3.1. Physicochemical Parameters
3.2. Relationship between Depth of Wells and the Concentration of Physicochemical Parameters
3.3. Hydrochemical Types of Groundwater
3.4. Hydrochemical Correlation Analysis of Water Quality
3.5. Water Quality Index Assessment
3.6. Health Risk Assessment
4. Conclusions
- In summary, the results of this study demonstrated that groundwater in the study area is suitable for drinking in general. WQI approach showed that 77.1% of the samples are of excellent quality, nine samples (18.7%) are of good quality, and two samples (4.2%) are of poor quality.
- NO3−, F−, and Cr6+ are the most significant parameters affecting water quality in this study; 27.1% and 54.2% of the overall samples present a non-carcinogenic health risk through drinking water intake for adults and children, respectively. The CRtotal of 12.5% of the samples ranges from 4.18 × 10−5 to 4 × 10−4 for adults and from 6.89 × 10−5 to 8 × 10−4 for children, which exceeded the acceptable limit (1 × 10−6).
- NO3− considerably contributes to non-carcinogenic risk for both adults and children and is followed by F−, Cr6+ and lastly by NO2−, with respective mean HQ of 0.49, 0.28, 0.02 and 0.02 for adults. For children, the mean HQ for NO3−, NO2−, F− and Cr6+ are 0.95, 0.03, 0.55 and 0.07, respectively. HN4+ has zero contribution to health risk in this study area for both adults and children. The high concentration of NO3− in the study area is due to anthropogenic activities, especially fertilizers in agriculture as also discussed by previous researchers.
- WQI is not enough to conclude whether water is suitable or not for drinking. The assessment of carcinogenic and non-carcinogenic risk on the human body showed that groundwater in Tongchuan was not totally safe. Therefore, water pretreatment before drinking and taking effective measures to prevent groundwater pollution are imperative.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, P.; Meng, X.; Li, M.; Zhang, Y. Appraising groundwater quality and health risks from contamination in a semiarid region of Northwest China. Expo. Health 2016, 8, 361–379. [Google Scholar] [CrossRef]
- Li, W.; Wu, J.; Zhou, C.; Nsabimana, A. Groundwater pollution source identification and apportionment using PMF and PCA-APCS-MLR receptor models in Tongchuan City, China. Arch. Environ. Contam. Toxicol. 2021, 81, 397–413. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Wu, J.; Li, W.; Zhang, Q.; Su, F.; Wang, Y. Groundwater geochemistry and its impacts on groundwater arsenic enrichment, variation, and health risks in Yongning County, Yinchuan Plain of northwest China. Expo. Health 2021. [Google Scholar] [CrossRef]
- Liu, J.; Gao, M.; Jin, D.; Wang, T.; Yang, J. Assessment of groundwater quality and human health risk in the aeolian-sand area of Yulin City, Northwest China. Expo. Health 2020, 12, 671–680. [Google Scholar] [CrossRef]
- Wang, D.; Wu, J.; Wang, Y.; Ji, Y. Finding high-quality groundwater resources to reduce the hydatidosis incidence in the Shiqu county of Sichuan province, China: Analysis, assessment, and management. Expo. Health 2020, 12, 307–322. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, P.; Lyu, Q.; Ren, X.; He, S. Groundwater contamination risk assessment using a modified DRATICL model and pollution loading: A case study in the Guanzhong Basin of China. Chemosphere 2021. [Google Scholar] [CrossRef]
- Mfonka, Z.N.; Ngoupayou, J.R.N.; Kpoumie, A.; Ndjigui, P.D.; Zammouri, M.; Ngouh, A.N.; Mouncherou, O.F.; Mfochive, O.F.; Rakotondrabe, F. Hydrodynamic and groundwater vulnerability assessment of the shallow aquifer of the Foumban locality (Bamoun plateau, Western-Cameroon). Arab J. Geosci. 2019, 12, 165. [Google Scholar] [CrossRef]
- Luque-Espinar, J.A.; Chica-Olmo, M. Impacts of anthropogenic activities on groundwater quality in a detritic aquifer in SE Spain. Expo. Health 2020, 12, 681–698. [Google Scholar] [CrossRef]
- Mthembu, P.P.; Elumalai, V.; Brindha, K.; Li, P. Hydrogeochemical processes and trace metal contamination in groundwater: Impact on human health in the Maputaland coastal aquifer, South Africa. Expo. Health 2020, 12, 403–426. [Google Scholar] [CrossRef]
- Wang, L.; Li, P.; Duan, R.; He, X. Occurrence, controlling factors and health risks of Cr6+ in groundwater in the Guanzhong Basin of China. Expo. Health 2021. [Google Scholar] [CrossRef]
- Li, Y.; Li, P.; Cui, X.; He, S. Groundwater quality, health risk and major influencing factors in the lower Beiluo River watershed of northwest China. Hum. Ecol. Risk Assess. 2021, 27, 1987–2013. [Google Scholar] [CrossRef]
- Li, Y.; Li, P.; Liu, L. Source identification and potential ecological risk assessment of heavy metals in the topsoil of the Weining Plain (northwest China). Expo. Health 2021. [Google Scholar] [CrossRef]
- Moya, C.E.R.; Raiber, M.; Taulis, M.; Cox, M.E. Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia: A multivariate statistical approach. Sci. Total Environ. 2015, 508, 411–426. [Google Scholar] [CrossRef]
- World Health Organization (W.H.O). Guidelines for Drinking Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Li, P.; He, S.; Yang, N.; Xiang, G. Groundwater quality assessment for domestic and agricultural purposes in Yan’an City, northwest China: Implications to sustainable groundwater quality management on the Loess Plateau. Environ. Earth Sci. 2018, 77, 775. [Google Scholar] [CrossRef]
- Singh, S.; Janaedhana, R.N.J.; Ramakrishna, C. Evaluation of groundwater quality and its suitability for domestic and irrigation use in parts of the Chandauli-Varanasi region, Uttar Pradesh, India. J. Water Res. Prot. 2015, 7, 572–582. [Google Scholar] [CrossRef][Green Version]
- Abiriga, D.; Vestgarden, L.; Klempe, H. Groundwater contamination from a municipal landfill: Effect of age, landfill closure, and season on groundwater chemistry. Sci. Total Environ. 2020, 737, 140307. [Google Scholar] [CrossRef]
- Beyene, G.; Fufa, F.; Aberra, D. Evaluation of the suitability of groundwater for drinking and irrigation purposes in Jimma Zone of Oromia, Ethiopia. Groundw. Sustain. Dev. 2019, 9, 100216. [Google Scholar] [CrossRef]
- Ketchemen-Tandia, B.; Boum-Nkot, S.; Ebondji, S.; Nlend, B.; Emvoutou, H.; Nzegue, O. Factors Influencing the shallow groundwater quality in four districts with different characteristics in urban area (Douala, Cameroon). J. Geosci. Environ. Prot. 2017, 5, 99–120. [Google Scholar] [CrossRef][Green Version]
- Smahi, D.; Hammoumi, O.; Fekri, A. Assessment of the impact of the landfill on groundwater quality: A case study of the Mediouna site, Casablanca, Morocco. J. Water Res. Prot. 2013, 5, 440–445. [Google Scholar] [CrossRef]
- Li, P.; Tian, R.; Liu, R. Solute geochemistry and multivariate analysis of water quality in the Guohua Phosphorite Mine, Guizhou Province, China. Expo. Health 2019, 11, 81–94. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Orioli, S.; De Maio, M. Assessment of groundwater geochemistry and diffusion of hexavalent chromium contamination in an industrial town of Italy. J. Contam. Hydrol. 2019, 225, 103503. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, P.; Qian, H. Environmental chemistry of groundwater near an industrial area, Northwest China. Asian J. Chem. 2013, 25, 9795–9799. [Google Scholar] [CrossRef]
- Zacchaeus, O.O.; Adeyemi, M.B.; Adedeji, A.A.; Adegoke, K.A.; Anumah, A.O.; Taiwo, A.M.; Ganiyu, S.A. Effects of industrialization on groundwater quality in Shagamu and Ota industrial areas of Ogun state, Nigeria. Heliyon 2020, 6, e04353. [Google Scholar] [CrossRef] [PubMed]
- Papazotos, P.; Vasileiou, E.; Perraki, M. The synergistic role of agricultural activities in groundwater quality in ultramafic environments: The case of the Psachna basin, central Euboea, Greece. Environ. Monit. Assess. 2019, 191, 317. [Google Scholar] [CrossRef]
- Vasileiou, E.; Papazotos, P.; Dimitrakopoulos, D.; Perraki, M. Hydrogeochemical processes and natural background levels of chromium in an ultramafic environment. The case study of Vermio mountain, Western Macedonia, Greece. Water 2021, 13, 2809. [Google Scholar] [CrossRef]
- Chen, J.; Qian, H.; Wu, H.; Gao, Y.; Li, X. Assessment of arsenic and fluoride pollution in groundwater in Dawukou area, Northwest China, and the associated health risk for inhabitants. Environ. Earth Sci. 2017, 73, 314. [Google Scholar] [CrossRef]
- Zissimos, A.M.; Christoforou, I.C.; Christofi, C.; Rigas, M.; Georgiadou, E.C.; Christou, A. Occurrence and distribution of hexavalent chromium in ground and surface waters in Cyprus. Bull. Environ. Contam. Toxicol. 2021, 106, 428–434. [Google Scholar] [CrossRef]
- Papazotos, P.; Vasileiou, E.; Perraki, M. Elevated groundwater concentrations of arsenic and chromium in ultramafic environments controlled by seawater intrusion, the nitrogen cycle, and anthropogenic activities: The case of the Gerania Mountains, NE Peloponnese, Greece. Appl. Geochem. 2020, 121, 104697. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the P.R. China. Technical Guidelines for Risk Assessment of Contaminated Sites, HJ 25.3-2014; China Environmental Science Press: Beijing, China, 2014. [Google Scholar]
- Adimalla, N.; Vasa, S.K.; Li, P. Evaluation of groundwater quality, Peddavagu in Central Telangana (PCT), South India: An insight of controlling factors of fluoride enrichment. Modeling Earth Syst. Environ. 2018, 4, 841–852. [Google Scholar] [CrossRef]
- Choi, B.Y.; Yun, S.T.; Yu, S.Y.; Lee, P.K.; Park, S.S.; Chae, G.T. Hydrochemistry of urban groundwater in Seoul, South Korea: Effect of land use and pollutant recharge. Environ. Geol. 2005, 48, 979–990. [Google Scholar] [CrossRef]
- Johnson, R. Drinking water quality: Testing and interpreting your results. In NDSU; USDA-NIFA: North Dakota State University: Fargo, ND, USA, 2019. [Google Scholar]
- Wei, Y.; Fan, W.; Wang, W.; Deng, L. Identification of nitrate pollution sources of groundwater and analysis of potential pollution paths in loess regions: A case study in Tongchuan region, China. Environ. Earth Sci. 2017, 76, 423. [Google Scholar] [CrossRef]
- Wang, Y.; Li, P. Appraisal of shallow groundwater quality with human health risk assessment in different seasons in rural areas of the Guanzhong Plain (China). Environ. Res. 2021. [Google Scholar] [CrossRef]
- Wu, C.; Fang, C.; Wu, X.; Zhu, G. Health-risk assessment of arsenic and groundwater quality classification using random forest in the Yanchi Region of Northwest China. Expo. Health 2020, 12, 761–774. [Google Scholar] [CrossRef]
- Ni, F.; Liu, G.; Ye, J.; Ren, H.; Yang, S. ArcGIS-based rural drinking water quality health risk assessment. J. Water Res. Prot. 2009, 1, 351–361. [Google Scholar] [CrossRef][Green Version]
- Wu, J.; Sun, Z. Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Expo. Health 2016, 8, 311–329. [Google Scholar] [CrossRef]
- Li, X.; Wu, H.; Qian, H.; Gao, Y. Groundwater chemistry regulated by hydrochemical processes and geological structures: A case study in Tongchuan, China. Water 2018, 10, 338. [Google Scholar] [CrossRef][Green Version]
- Xiao, J.; Jin, Z.D.; Zhang, F. Geochemical controls on fluoride concentrations in natural waters from the middle Loess Plateau, China. J. Geochem. Explor. 2015, 159, 252–261. [Google Scholar] [CrossRef]
- World Health Organization (W.H.O). Guidelines for Drinking Water Quality, 3rd ed.; Incorporating the First and Second Addendum; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- World Health Organization (W.H.O). Guidelines for Drinking-Water Quality, 4th ed.; Incorporating the First Addendum; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- General Administration of Quality Supervision, Inspection and Quarantine of China, Standardization Administration of China. Standards for Groundwater Quality (GB/T 14848–2017.); General Administration of Quality Supervision: Beijing, China, 2017.
- Vasileiou, E.; Papazotos, P.; Dimitrakopoulos, D.; Perraki, M. Expounding the origin of chromium in groundwater of the Sarigkiol basin, Western Macedonia, Greece: A cohesive statistical approach and hydrochemical study. Environ. Monit. Assess. 2019, 191, 509. [Google Scholar] [CrossRef]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water analysis. Trans. Am. Geophys. Union 1954, 25, 914–928. [Google Scholar] [CrossRef]
- Durov, S.A. Natural waters and graphic representation of their composition. Dokl. Akad. Nauk. SSSR 1948, 59, 87–90. [Google Scholar]
- Boufekane, A.; Saighi, O. Assessing groundwater quality for irrigation using geostatistical method—Case of Wadi Nil Plain (North-East Algeria). Groundw. Sustain. Dev. 2019, 8, 179–186. [Google Scholar] [CrossRef]
- Bordalo, A.A.; Teixeira, R.; Wiebe, W.J. A water quality index applied to an international shared river basin: The case of the Douro River. Environ. Manag. 2006, 38, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Qian, H.; Wu, J. Groundwater quality assessment based on improved water quality index in Pengyang County, Ningxia, Northwest China. E-J. Chem. 2010, 7, S209–S216. [Google Scholar] [CrossRef]
- Şener, Ş.; Şener, E.; Davraz, A. Assessment of groundwater quality and health risk in drinking water basin using GIS. J. Water Health 2016, 15, 112–132. [Google Scholar] [CrossRef] [PubMed]
- Varol, S.; Davraz, A. Evaluation of potential human health risk and investigation of drinking water quality in Isparta city center (Turkey). J. Water Health 2015, 14, 471–488. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Janardhana, R.N.J.; Ramakrishna, C. Assessment and monitoring of groundwater quality in semi-arid region. Groundw. Sustain. Dev. 2020, 11, 100381. [Google Scholar] [CrossRef]
- Tirkey, P.; Bhattacharya, T.; Chakraborty, S. Water quality indices- important tools for water quality assessment: A review. Int. J. Adv. Chem. 2013, 1, 15–28. [Google Scholar] [CrossRef]
- Hamed, S.; Omid, N.; Mahbobehv, G.; Abooalfazl, A.; Mansooreh, D.; Majid, R.; Mohammad, D.; Vahide, O.; Maryam, H. Groundwater quality evaluation and risk assessment of nitrate using monte carlo simulation and sensitivity analysis in rural areas of Divandarreh County, Kurdistan province, Iran. Int. J. Environ. Anal. Chem. 2020. [Google Scholar] [CrossRef]
- U.S.E.P.A. Supplemental Environmental Projects (SEP) Policy 2015 Update. EPA. 2015: Washington. Available online: https://www.epa.gov/sites/default/files/2015-04/documents/sepupdatedpolicy15.pdf (accessed on 13 October 2020).
- Hem, J.D. Study and Interpretation of the Chemical Characteristics of Natural Water. US Geological Survey. 3 ed, Water-Supply, 1985. Paper 2254, 263. Available online: https://pubs.usgs.gov/wsp/wsp2254/html/pdf.html (accessed on 21 November 2020).
- Mechenich, C.; Andrews, E. Evaluating the condition of your private water supply. Interpreting 1993, 3558, 1–8. [Google Scholar]
- Freeze, R.A.; Cherry, J.A. Grounndwater; Prentice-Hall: Englewood Cliffs, NJ, USA, 1979; p. 604. [Google Scholar]
- Davis, S.N.; De Wiest, R.J.M. Hydrogeology; John Wiley and Sons: Hoboken, NJ, USA, 1966; Volume 463, p. 824. [Google Scholar]
- Adimalla, N. Occurrence, health risks, and geochemical mechanisms of fluoride and nitrate in groundwater of the rock-dominant semi-arid region, Telangana State, India. Hum. Ecol. Risk Assess. 2018, 25, 81–103. [Google Scholar] [CrossRef]
- Mohan, D.S.R.; Singh, V.K.; Steele, P.; Pittman, C.U. Fluoride removal from water using bio-char, a green waste, low-cost adsorbent: Equilibrium uptake and sorption dynamics modeling. Ind. Eng. Chem. Res. 2012, 51, 900–914. [Google Scholar] [CrossRef]
- Emenike, C.P.; Tenebe, I.T.; Jarvis, P. Fluoride contamination in groundwater sources in Southwestern Nigeria: Assessment using multivariate statistical approach and human health risk. Ecotoxicol. Environ. Saf. 2018, 156, 391–402. [Google Scholar] [CrossRef][Green Version]
- Kaoud, H.; Kalifa, B. Effect of fluoride, cadmium and arsenic intoxication on brain and learning–memory ability in rats. Toxicol. Lett. 2010, 196, S53. [Google Scholar] [CrossRef]
- Kimambo, V.; Bhattacharya, P.; Mtalo, F.; Mtamba, J.; Ahmad, A. Fluoride occurrence in groundwater systems at global scale and status of defluoridation—State of the art. Groundw. Sustain. Dev. 2019, 9, 100223. [Google Scholar] [CrossRef]
- Sivasankar, V.; Darchen, A.; Omine, K.; Sakthivel, R. Fluoride: A world ubiquitous compound, its chemistry, and ways of contamination. In Surface Modified Carbons as Scavengers for Fluoride from Water; Sivasankar, V., Ed.; Springer: Cham, Switzerland, 2016; pp. 5–32. [Google Scholar] [CrossRef]
- Vithanage, M.; Bhattacharya, P. Fluoride in drinking water: Health effects and remediation. In CO2 Sequestration Biofuels and Depollution; Lichtfouse, E., Schwarzbauer, J., Robert, D., Eds.; Springer: Cham, Switzerland, 2015; pp. 105–151. [Google Scholar] [CrossRef]
- Saxena, V.; Ahmed, S. Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ. Geol. 2003, 43, 731–736. [Google Scholar] [CrossRef]
- Rango, T.; Kravchenko, J.; Atlaw, B.; McCornick, P.G.; Jeuland, M.; Merola, B.; Vengosh, A. Groundwater quality and its health impact: An assessment of dental fluorosis in rural inhabitants of the Main Ethiopian Rift. Environ. Int. 2012, 43, 37–47. [Google Scholar] [CrossRef][Green Version]
- Marghade, D.; Malpe, D.B.; Zade, A.B. Major ion chemistry of shallow groundwater of a fast growing city of Central India. Environ. Monit. Assess. 2012, 184, 2405–2418. [Google Scholar] [CrossRef]
- Ravikumar, P.; Somashekar, R.K.; Prakash, K.L. A comparative study on usage of Durov and Piper diagrams to interpret hydrochemical processes in groundwater from SRLIS river basin, Karnataka, India. Elixir Earth Sci. 2015, 80, 31073–31077. [Google Scholar]
- Lloyd, J.A.; Heathcote, J.A. Natural Inorganic Hydrochemistry in Relation to Groundwater: An Introduction; O.U. Press: New York, NY, USA, 1985; p. 296. [Google Scholar]
- Xu, P.; Feng, W.; Qian, H.; Zhang, Q. Hydrogeochemical characterization and irrigation quality assessment of shallow groundwater in the Central-Western Guanzhong Basin, China. Int. J. Environ. Res. Public Health 2019, 16, 1492. [Google Scholar] [CrossRef][Green Version]
- Singh, S.; Janardhana, R.N.J.; Ramakrishna, C. Hydrogeochemical assessment of surface and groundwater resources of Korba coalfield, Central India: Environmental implications. Arab J. Geosci. 2017, 10, 318. [Google Scholar] [CrossRef]
- He, S.; Wu, J. Hydrogeochemical characteristics, groundwater quality, and health risks from hexavalent chromium and nitrate in groundwater of Huanhe formation in Wuqi County, Northwest China. Expo. Health 2019, 11, 125–137. [Google Scholar] [CrossRef]
- Li, P.; He, X.; Guo, W. Spatial groundwater quality and potential health risks due to nitrate ingestion through drinking water: A case study in Yan’an City on the Loess Plateau of northwest China. Hum. Ecol. Risk Assess. 2019, 25, 11–31. [Google Scholar] [CrossRef]
- Liu, L.; Wu, J.; He, S.; Wang, L. Occurrence and distribution of groundwater fluoride and manganese in the Weining Plain (China) and their probabilistic health risk quantification. Expo. Health 2021. [Google Scholar] [CrossRef]
- Ji, Y.; Wu, J.; Wang, Y.; Elumalai, V.; Subramani, T. Seasonal variation of drinking water quality and human health risk assessment in Hancheng City of Guanzhong Plain, China. Expo. Health 2020, 12, 469–485. [Google Scholar] [CrossRef]
- He, X.; Wu, J.; He, S. Hydrochemical characteristics and quality evaluation of groundwater in terms of health risks in Luohe aquifer in Wuqi County of the Chinese Loess Plateau, northwest China. Hum. Ecol. Risk Assess. 2019, 25, 32–51. [Google Scholar] [CrossRef]
Indices | Sample Size | Min | Max | Mean | Median | Standard Deviation | Chinese Standards | WHO Guidelines | Detection Limits | % Exceeding Standards |
---|---|---|---|---|---|---|---|---|---|---|
pH | 48 | 7.05 | 8.39 | 7.77 | 7.79 | 0.30 | 6.5–8.5 | 6.5–8.5 | 0.01 | 0 1,2 |
TH | 48 | 175 | 731 | 350 | 340 | 115 | 450 | 500 | 1 | 17 1, 10.4 2 |
TDS | 48 | 252 | 1224 | 540 | 512 | 216 | 1000 | 1000 | 5 | 4.2 1,2 |
EC | 48 | 519 | 1501 | 870 | 824 | 352 | / | / | 0.01 | / |
Na+ | 48 | 4.8 | 282.0 | 51.8 | 29.6 | 65.7 | 200 | 200 | 2 | 8.3 1,2 |
K+ | 48 | 0.88 | 73.10 | 3.99 | 2.04 | 10.36 | / | / | 0.01 | 0 1,2 |
Ca2+ | 48 | 4.8 | 282.0 | 51.8 | 29.6 | 65.7 | / | / | 0.5 | 36 2 |
Cr6+ | 48 | BDL | 0.071 | 0.027 | 0.010 | 0.030 | 0.05 | 0.05 | 0.0002 | 6.2 1,2 |
Mg2+ | 48 | 2.4 | 57.1 | 26.4 | 26.1 | 11.3 | / | / | 0.5 | 4.2 2 |
Cl− | 48 | 2.0 | 144.0 | 37.5 | 18.0 | 40.0 | 250 | 250 | 0.5 | 0 1,2 |
SO42− | 48 | 4.80 | 572.00 | 79.19 | 48.00 | 93.76 | 250 | 500 | 0.5 | 2 1,2 |
HCO3− | 48 | 201 | 604 | 389 | 384 | 91 | / | / | 1 | / |
NO3−-N | 48 | BDL | 262.00 | 32.66 | 16.41 | 49.25 | 20 | 50 | 0.009 | 45.8 1, 18.5 2 |
NH4+ | 48 | BDL | 0.13 | 0.00 | 0.00 | 0.02 | 0.50 | 1.5 | 0.025 | 0 1,2 |
NO2−-N | 48 | BDL | 0.46 | 0.07 | 0.01 | 0.13 | 1 | 3 | 0.013 | 0 1,2 |
F- | 48 | 0.18 | 2.34 | 0.47 | 0.42 | 0.33 | 1 | 1.5 | 0.01 | 4.2 1,2 |
Parameters | Range | Water Type | % of Samples |
---|---|---|---|
TH | <75 | Soft | 0 |
75–150 | Moderately hard | 0 | |
150–300 | Hard | 35.4 | |
>300 | Very hard | 64.6 | |
TDS | <500 | Desirable for drinking | 47.9 |
500–1000 | Permissible for drinking | 47.9 | |
<1000 | Fresh water | 95.8 | |
>1000 | Brackish | 4.2 |
K+ | Na+ | Ca2+ | Mg2+ | NH4+ | Cl− | SO42− | HCO3− | NO3− | NO2− | TDS | TH | pH | F− | EC | Cr6+ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K+ | 1 | −0.030 | 0.164 | 0.056 | 0.099 | 0.036 | 0.061 | 0.150 | 0.163 | −0.011 | 0.145 | 0.166 | −0.110 | −0.054 | 0.137 | −0.06 |
Na+ | 1 | −0.186 | 0.313 | −0.015 | 0.727 | 0.745 | 0.360 | −0.097 | 0.108 | 0.765 | −0.036 | 0.287 | 0.602 | 0.742 | 0.375 | |
Ca2+ | 1 | 0.103 | 0.346 | 0.255 | 0.225 | 0.334 | 0.521 | 0.017 | 0.436 | 0.916 | −0.721 | −0.500 | 0.469 | −0.354 | ||
Mg2+ | 1 | 0.395 | 0.525 | 0.342 | 0.271 | 0.509 | 0.335 | 0.551 | 0.494 | 0.143 | 0.188 | 0.488 | 0.23 | |||
NH4+ | 1 | 0.311 | 0.103 | 0.072 | 0.431 | 0.482 | 0.295 | 0.462 | −0.115 | −0.051 | 0.277 | −0.06 | ||||
Cl− | 1 | 0.623 | 0.243 | 0.456 | 0.304 | 0.860 | 0.436 | 0.083 | 0.343 | 0.857 | 0.14 | |||||
SO42− | 1 | 0.148 | −0.000 | −0.025 | 0.804 | 0.335 | −0.118 | 0.107 | 0.804 | −0.02 | ||||||
HCO3 | 1 | 0.012 | 0.054 | 0.504 | 0.401 | −0.223 | 0.230 | 0.469 | 0.340 | |||||||
NO3− | 1 | 0.364 | 0.395 | 0.662 | −0.108 | −0.045 | 0.384 | −0.01 | ||||||||
NO2− | 1 | 0.207 | 0.151 | 0.259 | 0.347 | 0.141 | 0.343 | |||||||||
TDS | 1 | 0.604 | −0.123 | 0.274 | 0.980 | 0.18 | ||||||||||
TH | 1 | −0.571 | −0.360 | 0.607 | −0.22 | |||||||||||
pH | 1 | 0.598 | −0.148 | 0.379 | ||||||||||||
F− | 1 | 0.209 | 0.703 | |||||||||||||
EC | 1 | 0.10 | ||||||||||||||
Cr6+ | 1 |
Parameters | Chinese Standards | Weight (wi) | Relative Weight (Wi) |
---|---|---|---|
pH | 6.5–8.5 | 4 | 0.0714 |
TH | 450 | 5 | 0.0893 |
TDS | 1000 | 5 | 0.0893 |
Na+ | 200 | 2 | 0.0536 |
Cr6+ | 0.05 | 5 | 0.0893 |
Cl− | 250 | 2 | 0.0357 |
SO42− | 250 | 4 | 0.0714 |
NO3− | 20 | 5 | 0.0893 |
NH4+ | 0.5 | 5 | 0.0893 |
NO2− | 1 | 4 | 0.0893 |
F− | 1 | 4 | 0.0714 |
Samples | WQI | Water Quality | Samples | WQI | Water Quality | Samples | WQI | Water Quality |
---|---|---|---|---|---|---|---|---|
TW1-002 | 15.02 | Excellent | TW1-038 | 22.99 | Excellent | TW1-060 | 51.38 | Good |
TW1-003 | 14.75 | Excellent | TW1-039 | 13.70 | Excellent | TW1-061 | 26.24 | Excellent |
TW1-004 | 16.73 | Excellent | TW1-041 | 51.76 | Good | TW2-014 | 46.40 | Excellent |
TW1-005 | 20.98 | Excellent | TW1-043 | 57.22 | Good | TW2-018 | 64.38 | Good |
TW1-007 | 25.96 | Excellent | TW1-046 | 24.53 | Excellent | TW2-021 | 187.45 | Poor |
TW1-008 | 39.18 | Excellent | TW1-047 | 76.75 | Good | TW2-022 | 44.63 | Excellent |
TW1-009 | 41.89 | Excellent | TW1-048 | 18.71 | Excellent | TW2-037 | 17.05 | Excellent |
TW1-010 | 12.24 | Excellent | TW1-049 | 51.04 | Good | TW2-042 | 32.21 | Excellent |
TW1-012 | 30.86 | Excellent | TW1-050 | 16.25 | Excellent | TW2-043 | 13.98 | Excellent |
TW1-013 | 12.02 | Excellent | TW1-051 | 14.03 | Excellent | TW2-044 | 33.59 | Excellent |
TW1-014 | 18.41 | Excellent | TW1-052 | 166.56 | Poor | TW2-045 | 39.97 | Excellent |
TW1-023 | 13.20 | Excellent | TW1-053 | 39.17 | Excellent | TW2-057 | 23.71 | Excellent |
TW1-025 | 14.05 | Excellent | TW1-054 | 59.63 | Good | TW2-058 | 19.68 | Excellent |
TW1-032 | 16.13 | Excellent | TW1-055 | 25.67 | Excellent | TW2-066 | 54.70 | Good |
TW1-036 | 21.27 | Excellent | TW1-058 | 23.88 | Excellent | TW2-067 | 50.18 | Good |
TW1-037 | 38.25 | Excellent | TW1-059 | 31.14 | Excellent | TW2-069 | 15.90 | Excellent |
Samples | Adults | Children | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HQNH4+ | HQNO3− | HQNO2− | HQF− | HQCr6+ | HQT | HQNH4+ | HQNO32− | HQNO2− | HQF− | HQCr6+ | HQT | |
TW1-002 | 0.00 | 0.06 | 0.00 | 0.15 | 0.00 | 0.21 | 0.00 | 0.10 | 0.01 | 0.24 | 0.00 | 0.35 |
TW1-003 | 0.00 | 0.06 | 0.00 | 0.34 | 0.00 | 0.41 | 0.00 | 0.10 | 0.00 | 0.57 | 0.00 | 0.68 |
TW1-004 | 0.00 | 0.00 | 0.12 | 0.25 | 0.11 | 0.48 | 0.00 | 0.00 | 0.19 | 0.42 | 0.21 | 0.82 |
TW1-005 | 0.00 | 0.00 | 0.01 | 0.34 | 0.00 | 0.36 | 0.00 | 0.00 | 0.02 | 0.57 | 0.00 | 0.59 |
TW1-008 | 0.00 | 0.37 | 0.00 | 0.31 | 0.00 | 0.68 | 0.00 | 0.61 | 0.01 | 0.52 | 0.00 | 1.13 |
TW1-009 | 0.00 | 0.26 | 0.01 | 0.50 | 0.00 | 0.76 | 0.00 | 0.43 | 0.01 | 0.84 | 0.00 | 1.28 |
TW1-010 | 0.00 | 0.00 | 0.00 | 0.27 | 0.00 | 0.27 | 0.00 | 0.00 | 0.00 | 0.45 | 0.00 | 0.45 |
TW1-012 | 0.00 | 0.11 | 0.00 | 0.28 | 0.00 | 0.39 | 0.00 | 0.18 | 0.00 | 0.47 | 0.00 | 0.65 |
TW1-013 | 0.00 | 0.07 | 0.00 | 0.26 | 0.00 | 0.33 | 0.00 | 0.12 | 0.00 | 0.43 | 0.00 | 0.55 |
TW1-014 | 0.00 | 0.18 | 0.00 | 0.13 | 0.00 | 0.32 | 0.00 | 0.31 | 0.00 | 0.22 | 0.00 | 0.53 |
TW1-023 | 0.00 | 0.00 | 0.01 | 0.28 | 0.00 | 0.29 | 0.00 | 0.00 | 0.01 | 0.47 | 0.00 | 0.48 |
TW1-025 | 0.00 | 0.12 | 0.00 | 0.29 | 0.00 | 0.41 | 0.00 | 0.19 | 0.00 | 0.48 | 0.00 | 0.68 |
TW1-032 | 0.00 | 0.25 | 0.00 | 0.20 | 0.00 | 0.45 | 0.00 | 0.42 | 0.01 | 0.33 | 0.00 | 0.76 |
TW1-036 | 0.00 | 0.15 | 0.00 | 0.24 | 0.00 | 0.39 | 0.00 | 0.25 | 0.00 | 0.40 | 0.00 | 0.65 |
TW1-037 | 0.00 | 0.61 | 0.01 | 0.18 | 0.00 | 0.81 | 0.00 | 1.01 | 0.02 | 0.31 | 0.00 | 1.34 |
TW1-038 | 0.00 | 0.29 | 0.00 | 0.21 | 0.00 | 0.50 | 0.00 | 0.48 | 0.00 | 0.35 | 0.00 | 0.84 |
TW1-039 | 0.00 | 0.09 | 0.00 | 0.30 | 0.00 | 0.40 | 0.00 | 0.15 | 0.01 | 0.51 | 0.00 | 0.67 |
TW1-041 | 0.00 | 1.08 | 0.01 | 0.21 | 0.00 | 1.30 | 0.00 | 1.80 | 0.02 | 0.35 | 0.00 | 2.16 |
TW1-043 | 0.00 | 0.33 | 0.00 | 0.32 | 0.00 | 0.66 | 0.00 | 0.55 | 0.00 | 0.54 | 0.00 | 1.09 |
TW1-046 | 0.00 | 0.07 | 0.00 | 0.19 | 0.00 | 0.26 | 0.00 | 0.12 | 0.00 | 0.32 | 0.00 | 0.44 |
TW1-047 | 0.00 | 2.15 | 0.01 | 0.24 | 0.00 | 2.39 | 0.00 | 3.58 | 0.01 | 0.40 | 0.00 | 3.99 |
TW1-048 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | 0.55 | 0.00 | 0.55 |
TW1-049 | 0.00 | 1.16 | 0.00 | 0.25 | 0.00 | 1.42 | 0.00 | 1.94 | 0.01 | 0.42 | 0.00 | 2.36 |
TW1-050 | 0.00 | 0.12 | 0.00 | 0.28 | 0.00 | 0.40 | 0.00 | 0.21 | 0.00 | 0.46 | 0.00 | 0.67 |
TW1-051 | 0.00 | 0.00 | 0.00 | 0.30 | 0.00 | 0.30 | 0.00 | 0.00 | 0.00 | 0.51 | 0.00 | 0.51 |
TW1-052 | 0.01 | 3.12 | 0.12 | 0.21 | 0.00 | 3.46 | 0.01 | 5.20 | 0.20 | 0.35 | 0.00 | 5.76 |
TW1-053 | 0.00 | 0.75 | 0.00 | 0.25 | 0.00 | 1.01 | 0.00 | 1.25 | 0.01 | 0.42 | 0.00 | 1.68 |
TW1-054 | 0.00 | 1.12 | 0.00 | 0.17 | 0.00 | 1.30 | 0.00 | 1.87 | 0.00 | 0.29 | 0.00 | 2.16 |
TW1-055 | 0.00 | 0.36 | 0.00 | 0.20 | 0.00 | 0.55 | 0.00 | 0.59 | 0.00 | 0.33 | 0.00 | 0.92 |
TW1-058 | 0.00 | 0.25 | 0.00 | 0.12 | 0.00 | 0.37 | 0.00 | 0.41 | 0.01 | 0.20 | 0.00 | 0.61 |
TW1-059 | 0.00 | 0.51 | 0.00 | 0.18 | 0.00 | 0.69 | 0.00 | 0.85 | 0.00 | 0.31 | 0.00 | 1.16 |
TW1-060 | 0.00 | 1.32 | 0.01 | 0.19 | 0.00 | 1.52 | 0.00 | 2.21 | 0.01 | 0.32 | 0.00 | 2.54 |
TW1-061 | 0.00 | 0.38 | 0.00 | 0.24 | 0.00 | 0.63 | 0.00 | 0.63 | 0.00 | 0.41 | 0.00 | 1.05 |
TW2-014 | 0.00 | 0.78 | 0.00 | 0.91 | 0.27 | 1.96 | 0.00 | 1.30 | 0.00 | 1.52 | 1.04 | 3.86 |
TW2-018 | 0.00 | 0.28 | 0.10 | 1.54 | 0.23 | 2.16 | 0.00 | 0.47 | 0.17 | 2.58 | 0.90 | 4.11 |
TW2-021 | 0.00 | 4.32 | 0.06 | 0.32 | 0.00 | 4.71 | 0.00 | 7.21 | 0.11 | 0.54 | 0.00 | 7.85 |
TW2-022 | 0.00 | 0.98 | 0.00 | 0.24 | 0.00 | 1.23 | 0.00 | 1.64 | 0.00 | 0.41 | 0.00 | 2.05 |
TW2-037 | 0.00 | 0.20 | 0.01 | 0.44 | 0.00 | 0.64 | 0.00 | 0.33 | 0.01 | 0.73 | 0.00 | 1.07 |
TW2-042 | 0.01 | 0.40 | 0.05 | 0.36 | 0.00 | 0.83 | 0.01 | 0.67 | 0.09 | 0.61 | 0.00 | 1.37 |
TW2-043 | 0.00 | 0.08 | 0.00 | 0.29 | 0.00 | 0.37 | 0.00 | 0.14 | 0.00 | 0.48 | 0.00 | 0.62 |
TW2-044 | 0.00 | 0.43 | 0.10 | 0.28 | 0.02 | 0.83 | 0.00 | 0.71 | 0.17 | 0.46 | 0.09 | 1.43 |
TW2-045 | 0.00 | 0.69 | 0.08 | 0.49 | 0.00 | 1.26 | 0.00 | 1.15 | 0.13 | 0.81 | 0.00 | 2.10 |
TW2-057 | 0.00 | 0.34 | 0.02 | 0.39 | 0.00 | 0.75 | 0.00 | 0.57 | 0.04 | 0.65 | 0.00 | 1.26 |
TW2-058 | 0.00 | 0.19 | 0.00 | 0.36 | 0.02 | 0.57 | 0.00 | 0.32 | 0.00 | 0.59 | 0.09 | 1.01 |
TW2-066 | 0.00 | 1.13 | 0.01 | 0.32 | 0.00 | 1.45 | 0.00 | 1.88 | 0.01 | 0.53 | 0.00 | 2.42 |
TW2-067 | 0.00 | 0.62 | 0.06 | 0.32 | 0.25 | 1.25 | 0.00 | 1.03 | 0.10 | 0.54 | 0.97 | 2.64 |
TW2-069 | 0.00 | 0.00 | 0.00 | 0.29 | 0.00 | 0.29 | 0.00 | 0.00 | 0.00 | 0.48 | 0.00 | 0.48 |
Min | 0.00 | 0.00 | 0.00 | 0.12 | 0.00 | 0.21 | 0.00 | 0.00 | 0.00 | 0.20 | 0.00 | 0.35 |
Max | 0.01 | 4.32 | 0.12 | 1.54 | 0.27 | 4.71 | 0.01 | 7.21 | 0.20 | 2.58 | 1.04 | 7.85 |
Mean | 0.00 | 0.54 | 0.02 | 0.31 | 0.02 | 0.89 | 0.00 | 0.90 | 0.03 | 0.52 | 0.07 | 1.52 |
Samples | Adults | Children | Samples | Adults | Children | Samples | Adults | Children |
---|---|---|---|---|---|---|---|---|
TW1-002 | 0 | 0 | TW1-038 | 0 | 0 | TW1-060 | 0 | 0 |
TW1-003 | 0 | 0 | TW1-039 | 0 | 0 | TW1-061 | 0 | 0 |
TW1-004 | 1.00 × 10−4 | 2.00 × 10−4 | TW1-041 | 0 | 0 | TW2-014 | 4.95 × 10−4 | 8.16 × 10−4 |
TW1-005 | 0 | 0 | TW1-043 | 0 | 0 | TW2-018 | 4.25 × 10−4 | 7.01 × 10−4 |
TW1-007 | 0 | 0 | TW1-046 | 0 | 0 | TW2-021 | 0 | 0 |
TW1-008 | 0 | 0 | TW1-047 | 0 | 0 | TW2-022 | 0 | 0 |
TW1-009 | 0 | 0 | TW1-048 | 0 | 0 | TW2-037 | 0 | 0 |
TW1-010 | 0 | 0 | TW1-049 | 0 | 0 | TW2-042 | 0 | 0 |
TW1-012 | 0 | 0 | TW1-050 | 0 | 0 | TW2-043 | 0 | 0 |
TW1-013 | 0 | 0 | TW1-051 | 0 | 0 | TW2-044 | 4.18 × 10−5 | 6.89 × 10−5 |
TW1-014 | 0 | 0 | TW1-052 | 0 | 0 | TW2-045 | 0 | 0 |
TW1-023 | 0 | 0 | TW1-053 | 0 | 0 | TW2-057 | 0 | 0 |
TW1-025 | 0 | 0 | TW1-054 | 0 | 0 | TW2-058 | 4.18 × 10−5 | 6.89 × 10−5 |
TW1-032 | 0 | 0 | TW1-055 | 0 | 0 | TW2-066 | 0 | 0 |
TW1-036 | 0 | 0 | TW1-058 | 0 | 0 | TW2-067 | 4.60 × 10−4 | 7.58 × 10−4 |
TW1-037 | 0 | 0 | TW1-059 | 0 | 0 | TW2-069 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nsabimana, A.; Li, P.; He, S.; He, X.; Alam, S.M.K.; Fida, M. Health Risk of the Shallow Groundwater and Its Suitability for Drinking Purpose in Tongchuan, China. Water 2021, 13, 3256. https://doi.org/10.3390/w13223256
Nsabimana A, Li P, He S, He X, Alam SMK, Fida M. Health Risk of the Shallow Groundwater and Its Suitability for Drinking Purpose in Tongchuan, China. Water. 2021; 13(22):3256. https://doi.org/10.3390/w13223256
Chicago/Turabian StyleNsabimana, Abel, Peiyue Li, Song He, Xiaodong He, S. M. Khorshed Alam, and Misbah Fida. 2021. "Health Risk of the Shallow Groundwater and Its Suitability for Drinking Purpose in Tongchuan, China" Water 13, no. 22: 3256. https://doi.org/10.3390/w13223256