Late Holocene Hydro-Climate Variability in the Eastern Mediterranean: A Spatial Multi-Proxy Approach
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Clusters
3.2. Principal Components
4. Discussion
5. Conclusions
- Two main long-term modes of variability were identified in the studied sites, indicating that no single trajectory of climate variability is evident for the whole eastern Mediterranean.
- A wet to dry millennial trend with a major phase shift at 1400 BP and 1100 BP was identified mainly for the northern and northwestern part of the study area, including the Balkans (except the Peloponnese) and Turkey. A contrasting dry to wet millennial-scale with a major phase shift coinciding with the LIA at 750 BP can be extracted for southern Greece and the Levant. This might fit in the overall north–south/east–west seesaw representation of Mediterranean spatial variability.
- Complex interregional variability is evident and widespread at the centennial level throughout the Mediterranean area. Intercluster variability is apparent in all clusters, indicating microclimates or site-specific responses.
- The use of hierarchical clustering analysis and principal component analysis has helped identify long-term unifying trends in dissipating climatic archives.
- The number of sites, incorporating different proxies and different environments, has led to difficulties in short-term correlations, even at a 200-year interval level.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.L.; Engelbrecht, F.; et al. Impacts of 1.5 °C Global Warming on Natural and Human Systems. IPCC Special Report on 1.5 Degree Warming Discussing Impact on the Natural and Human Systems Including Health. 2018, pp. 175–311. Available online: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/02/SR15_Chapter3_Low_Res.pdf (accessed on 16 November 2021).
- Ji, F.; Wu, Z.; Huang, J.; Chassignet, E.P. Evolution of Land Surface Air Temperature Trend. Nat. Clim. Chang. 2014, 4, 462–466. [Google Scholar] [CrossRef]
- Giorgi, F. Climate Change Hot-Spots. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate Change and Interconnected Risks to Sustainable Development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Giannakopoulos, C.; Le Sager, P.; Bindi, M.; Moriondo, M.; Kostopoulou, E.; Goodess, C.M. Climatic Changes and Associated Impacts in the Mediterranean Resulting from a 2 °C Global Warming. Glob. Planet. Chang. 2009, 68, 209–224. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; López-Moreno, I.I.; Vicente-Serrano, S.M.; Lasanta-Martínez, T.; Beguería, S. Mediterranean Water Resources in a Global Change Scenario. Earth-Sci. Rev. 2011, 105, 121–139. [Google Scholar] [CrossRef] [Green Version]
- Lionello, P.; Scarascia, L. The Relation between Climate Change in the Mediterranean Region and Global Warming. Reg. Environ. Chang. 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Osborn, T.J.; Briffa, K.R. Erratum: The Spatial Extent of 20th-Century Warmth in the Context of the Past 1200 Years (Science (10 Feb) (841)). Science 2006, 312, 697. [Google Scholar] [CrossRef] [Green Version]
- Bradley, R.S. Chapter 1—Paleoclimatic Reconstruction, 3rd ed.; Bradley, R.S.B.T.-P., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 1–11. ISBN 978-0-12-386913-5. [Google Scholar]
- Finné, M.; Holmgren, K.; Sundqvist, H.S.; Weiberg, E.; Lindblom, M. Climate in the Eastern Mediterranean, and Adjacent Regions, during the Past 6000 Years—A Review. J. Archaeol. Sci. 2011, 38, 3153–3173. [Google Scholar] [CrossRef]
- Finné, M.; Woodbridge, J.; Labuhn, I.; Roberts, C.N. Holocene Hydro-Climatic Variability in the Mediterranean: A Synthetic Multi-Proxy Reconstruction. Holocene 2019, 29, 847–863. [Google Scholar] [CrossRef]
- Roberts, N.; Moreno, A.; Valero-Garcés, B.L.; Corella, J.P.; Jones, M.; Allcock, S.; Woodbridge, J.; Morellón, M.; Luterbacher, J.; Xoplaki, E.; et al. Palaeolimnological Evidence for an East–West Climate See-Saw in the Mediterranean since AD 900. Glob. Planet. Chang. 2012, 84–85, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Dormoy, I.; Peyron, O.; Nebout, N.C.; Goring, S.; Kotthoff, U.; Magny, M.; Pross, J. Terrestrial Climate Variability and Seasonality Changes in the Mediterranean Region between 15,000 and 4000 Years BP Deduced from Marine Pollen Records. Clim. Past 2009, 5, 615–632. [Google Scholar] [CrossRef] [Green Version]
- Magny, M.; Peyron, O.; Sadori, L.; Ortu, E.; Zanchetta, G.; Vannière, B.; Tinner, W. Contrasting Patterns of Precipitation Seasonality during the Holocene in the South- and North-Central Mediterranean. J. Quat. Sci. 2012, 27, 290–296. [Google Scholar] [CrossRef]
- Jalut, G.; Dedoubat, J.J.; Fontugne, M.; Otto, T. Holocene Circum-Mediterranean Vegetation Changes: Climate Forcing and Human Impact. Quat. Int. 2009, 200, 4–18. [Google Scholar] [CrossRef]
- Desprat, S.; Combourieu-Nebout, N.; Essallami, L.; Sicre, M.A.; Dormoy, I.; Peyron, O.; Siani, G.; Bout Roumazeilles, V.; Turon, J.L. Deglacial and Holocene Vegetation and Climatic Changes in the Southern Central Mediterranean from a Direct Land-Sea Correlation. Clim. Past 2013, 9, 767–787. [Google Scholar] [CrossRef] [Green Version]
- Shuman, B.N.; Routson, C.; McKay, N.; Fritz, S.; Kaufman, D.; Kirby, M.E.; Nolan, C.; Pederson, G.T.; St-Jacques, J.M. Placing the Common Era in a Holocene Context: Millennial to Centennial Patterns and Trends in the Hydroclimate of North America over the Past 2000 Years. Clim. Past 2018, 14, 665–686. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, D.S.; Axford, Y.L.; Henderson, A.C.G.; McKay, N.P.; Oswald, W.W.; Saenger, C.; Anderson, R.S.; Bailey, H.L.; Clegg, B.; Gajewski, K.; et al. Holocene Climate Changes in Eastern Beringia (NW North America)—A Systematic Review of Multi-Proxy Evidence. Quat. Sci. Rev. 2016, 147, 312–339. [Google Scholar] [CrossRef] [Green Version]
- Fyfe, R.M.; Woodbridge, J.; Roberts, C.N. Trajectories of Change in Mediterranean Holocene Vegetation through Classification of Pollen Data. Veg. Hist. Archaeobotany 2018, 27, 351–364. [Google Scholar] [CrossRef]
- Woodbridge, J.; Roberts, N.; Fyfe, R. Pan-Mediterranean Holocene Vegetation and Land-Cover Dynamics from Synthesized Pollen Data. J. Biogeogr. 2018, 45, 2159–2174. [Google Scholar] [CrossRef] [Green Version]
- Katrantsiotis, C.; Kylander, M.E.; Smittenberg, R.; Yamoah, K.K.A.; Hättestrand, M.; Avramidis, P.; Strandberg, N.A.; Norström, E. Eastern Mediterranean Hydroclimate Reconstruction over the Last 3600 Years Based on Sedimentary N-Alkanes, Their Carbon and Hydrogen Isotope Composition and XRF Data from the Gialova Lagoon, SW Greece. Quat. Sci. Rev. 2018, 194, 77–93. [Google Scholar] [CrossRef]
- Katrantsiotis, C. Holocene Environmental Changes and Climate Variability in the Eastern Mediterranean: Multiproxy Sediment Records from the Peloponnese Peninsula, SW Greece; Department of Physical Geography, Stockholm University: Stockholm, Sweden, 2019; p. 49. [Google Scholar]
- Emmanouilidis, A.; Unkel, I.; Triantaphyllou, M.; Avramidis, P. Late-Holocene Coastal Depositional Environments and Climate Changes in the Gulf of Corinth, Greece. Holocene 2020, 30, 77–89. [Google Scholar] [CrossRef]
- Seguin, J.; Avramidis, P.; Dörfler, W.; Emmanouilidis, A.; Unkel, I. A 2600-Year High-Resolution Climate Record from Lake Trichonida (SW Greece). EG Quat. Sci. J. 2020, 69, 139–160. [Google Scholar] [CrossRef]
- Morellón, M.; Anselmetti, F.S.; Ariztegui, D.; Brushulli, B.; Sinopoli, G.; Wagner, B.; Sadori, L.; Gilli, A.; Pambuku, A. Human-Climate Interactions in the Central Mediterranean Region during the Last Millennia: The Laminated Record of Lake Butrint (Albania). Quat. Sci. Rev. 2016, 136, 134–152. [Google Scholar] [CrossRef] [Green Version]
- Lacey, J.H.; Francke, A.; Leng, M.J.; Vane, C.H.; Wagner, B. A High-Resolution Late Glacial to Holocene Record of Environmental Change in the Mediterranean from Lake Ohrid (Macedonia/Albania). Int. J. Earth Sci. 2015, 104, 1623–1638. [Google Scholar] [CrossRef] [Green Version]
- Francke, A.; Wagner, B.; Leng, M.J.; Rethemeyer, J. A Late Glacial to Holocene Record of Environmental Change from Lake Dojran (Macedonia, Greece). Clim. Past 2013, 9, 481–498. [Google Scholar] [CrossRef] [Green Version]
- Ocakoğlu, F.; Dönmez, E.O.; Akbulut, A.; Tunoğlu, C.; Kır, O.; Açıkalın, S.; Erayık, C.; Yılmaz, İ.Ö.; Leroy, S.A.G. A 2800-Year Multi-Proxy Sedimentary Record of Climate Change from Lake Çubuk (Göynük, Bolu, NW Anatolia). Holocene 2016, 26, 205–221. [Google Scholar] [CrossRef] [Green Version]
- Fleitmann, D.; Cheng, H.; Badertscher, S.; Edwards, R.L.; Mudelsee, M.; Göktürk, O.M.; Fankhauser, A.; Pickering, R.; Raible, C.C.; Matter, A.; et al. Timing and Climatic Impact of Greenland Interstadials Recorded in Stalagmites from Northern Turkey. Geophys. Res. Lett. 2009, 36, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Eastwood, W.J.; Leng, M.J.; Roberts, N.; Davis, B. Holocene Climate Change in the Eastern Mediterranean Region: A Comparison of Stable Isotope and Pollen Data from Lake Gölhisar, Southwest Turkey. J. Quat. Sci. 2007, 22, 327–341. [Google Scholar] [CrossRef]
- Roberts, N.; Jones, M.D.; Benkaddour, A.; Eastwood, W.J.; Filippi, M.L.; Frogley, M.R.; Lamb, H.F.; Leng, M.J.; Reed, J.M.; Stein, M.; et al. Stable Isotope Records of Late Quaternary Climate and Hydrology from Mediterranean Lakes: The ISOMED Synthesis. Quat. Sci. Rev. 2008, 27, 2426–2441. [Google Scholar] [CrossRef]
- Cheng, H.; Sinha, A.; Verheyden, S.; Nader, F.H.; Li, X.L.; Zhang, P.Z.; Yin, J.J.; Yi, L.; Peng, Y.B.; Rao, Z.G.; et al. The Climate Variability in Northern Levant over the Past 20,000 Years. Geophys. Res. Lett. 2015, 42, 8641–8650. [Google Scholar] [CrossRef] [Green Version]
- Quintana Krupinski, N.B.; Marlon, J.R.; Nishri, A.; Street, J.H.; Paytan, A. Climatic and Human Controls on the Late Holocene Fire History of Northern Israel. Quat. Res. 2013, 80, 396–405. [Google Scholar] [CrossRef]
- Bar-Matthews, M.; Ayalon, A.; Gilmour, M.; Matthews, A.; Hawkesworth, C.J. Sea—Land Oxygen Isotopic Relationships from Planktonic Foraminifera and Speleothems in the Eastern Mediterranean Region and Their Implication for Paleorainfall during Interglacial Intervals. Geochim. Et Cosmochim. Acta 2003, 67, 3181–3199. [Google Scholar] [CrossRef]
- Bar-Matthews, M.; Ayalon, A.; Kaufman, A. Late Quaternary Paleoclimate in the Eastern Mediterranean Region from Stable Isotope Analysis of Speleothems at Soreq Cave, Israel. Quat. Res. 1997, 47, 155–168. [Google Scholar] [CrossRef]
- Bar-Matthews, M.; Ayalon, A.; Kaufman, A.; Wasserburg, G.J. The Eastern Mediterranean Paleoclimate as a Reflection of Regional Events: Soreq Cave, Israel. Earth Planet. Sci. Lett. 1999, 166, 85–95. [Google Scholar] [CrossRef]
- Ülgen, U.B.; Franz, S.O.; Biltekin, D.; Çagatay, M.N.; Roeser, P.A.; Doner, L.; Thein, J. Climatic and Environmental Evolution of Lake Iznik (NW Turkey) over the Last ∼4700 Years. Quat. Int. 2012, 274, 88–101. [Google Scholar] [CrossRef]
- Kutiel, H.; Benaroch, Y. North Sea-Caspian Pattern (NCP)—An Upper Level Atmospheric Teleconnection Affecting the Eastern Mediterranean: Identification and Definition. Theor. Appl. Climatol. 2002, 71, 17–28. [Google Scholar] [CrossRef]
- Nastos, P.T.; Philandras, C.M.; Founda, D.; Zerefos, C.S. Air Temperature Trends Related to Changes in Atmospheric Circulation in the Wider Area of Greece. Int. J. Remote Sens. 2011, 32, 737–750. [Google Scholar] [CrossRef]
ID | Altimeter (m.a.s.l.) | Site Name | Lon | Lat | Proxy | Mean Sampling Interval (Years) | Dating Technique | Reference |
---|---|---|---|---|---|---|---|---|
1 | 0 | Gialova lagoon | 21.671 | 36.963 | δD31 | 74 | 14C | [21] |
2 | 0 | Lake Lerna | 22.729 | 37.580 | δD23 | 60 | 14C | [22] |
3 | 2 | Aliki salt pond | 23.047 | 38.198 | PC (Ter. Elements) | 3 | 14C | [23] |
4 | 11 | Lake Trichonida | 21.552 | 38.571 | Rb/Sr | 1 | 14C | [24] |
5 | 0 | Lake Butrint | 20.031 | 39.786 | Ti/Ca | Subannual/annual | 14C/Laminae counting | [25] |
6 | 690 | Lake Ohrid | 20.712 | 41.041 | δ18O | 37 | 14C/tephra | [26] |
7 | 140 | Lake Doiran | 22.751 | 41.221 | K | 4 | 14C | [27] |
8 | 1060 | Lake Cubuk | 30.834 | 40.482 | δ18O | 38 | 14C | [28] |
9 | 260 | Sofular cave | 31.963 | 41.446 | δ13C | 13 | U-Th | [29] |
10 | 950 | Lake Gölhisar | 29.598 | 37.115 | δ18O | 95 | 14C, tephra | [30,31] |
11 | 340 | Jeita cave | 35.640 | 33.943 | δ18O | 11 | U-Th | [32] |
12 | −216 | Lake Kinneret | 35.580 | 32.811 | δ18O | 55 | 14C | [33] |
13 | 680 | Soreq cave | 35.022 | 31.756 | δ18O | 16 | U-Th | [34,35,36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bassukas, D.; Emmanouilidis, A.; Avramidis, P. Late Holocene Hydro-Climate Variability in the Eastern Mediterranean: A Spatial Multi-Proxy Approach. Water 2021, 13, 3252. https://doi.org/10.3390/w13223252
Bassukas D, Emmanouilidis A, Avramidis P. Late Holocene Hydro-Climate Variability in the Eastern Mediterranean: A Spatial Multi-Proxy Approach. Water. 2021; 13(22):3252. https://doi.org/10.3390/w13223252
Chicago/Turabian StyleBassukas, Dimitrios, Alexandros Emmanouilidis, and Pavlos Avramidis. 2021. "Late Holocene Hydro-Climate Variability in the Eastern Mediterranean: A Spatial Multi-Proxy Approach" Water 13, no. 22: 3252. https://doi.org/10.3390/w13223252
APA StyleBassukas, D., Emmanouilidis, A., & Avramidis, P. (2021). Late Holocene Hydro-Climate Variability in the Eastern Mediterranean: A Spatial Multi-Proxy Approach. Water, 13(22), 3252. https://doi.org/10.3390/w13223252