The Pantanal under Siege—On the Origin, Dynamics and Forecast of the Megadrought Severely Affecting the Largest Wetland in the World
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Calculation of the Standardized Pluviometric Drought Index—SPDI
2.4. Calculation of Sea Surface Temperature Anomalies (SSTA) and Marine Heatwave Condition
2.5. Calculation of Correlation of Precipitation with the Oceanic SSTs
3. Results
3.1. Megadrought’s Evolution
3.1.1. Temporal Dynamics
3.1.2. Spatial Dynamics
3.2. Sea Surface Temperature (SST) Dynamics
3.2.1. Sea Surface Temperature Anomaly (SSTA) at the Different Oceanic Regions
3.2.2. Marine Heatwave (MHW) Dynamics at the Northeast Pacific
3.3. Cross Correlating Monthly Precipitations with SST Dynamics
3.4. Megadrought’s Forecast
4. Discussion
4.1. Megadrought’s Evolution
4.2. SSTA Dynamics and Resulting MHWs
4.3. Cross Correlations between Monthly Precipitations and SST Dynamics
4.4. Megadrought’s Forecast
5. Conclusions
- The evolution of the megadrought currently affecting the Pantanal has been differentiable in both, space and time. First evidence of a drought developing was observed in the central section of the Pantanal, right from the beginning of 2019. By mid-2019, an easterly spread of the drought occurred, and as for June 2021, over 80% of the Pantanal area and about 60% of the Highlands is affected by the megadrought. As for temporal dynamics, the drought condition was reached four months’ sooner in the lowlands of the Pantanal than in the surrounding higher lands.
- The study ratifies that Climate Change is one of the most important threats to the Pantanal. The evolution and dynamics of current megadrought is correlated to a significant warming trend of the Northeast Pacific sea surface waters (SST) which resulted, since June 2019, in one of the most intense and persistent marine heatwave (MHW) from recent times, identified by other authors as Blob 2. The present study also provides evidence that Blob 1, a preceding MHW also from the Northeast Pacific strongly correlates to the second most important drought (2013–2016) occurred in the Pantanal area in the last 40 years. Encompassed in the Northeast Pacific, the SST warming of PAC-NE region explains, right from the beginning of the megadrought, 73.5% of the precipitation anomalies in the case of the Pantanal, and 84.5% for surrounding Highlands. As for South American neighboring oceanic regions (e.g., TNA, TSA and the ENSO regions), their SST dynamics was rather discrete, and did not explain Pantanal’s megadrought in the terms as did the presence of a MHW in the Northeast Pacific. Now, the SST warming trend at the Northeast Pacific is part of a generalized warming trend of the Northern Hemisphere oceanic waters. There is a historical correlation between the presence of warm SST at PAC-NW in the Northwest Pacific and ATL-N in the North Atlantic and the occurrence of dry pulses in the Pantanal area.
- Pervasive MHWs from warming oceanic waters of the Northern Hemisphere—The “new climatic reality” that the Pantanal and other vast regions of South America have to overcome. Results from this study as well as from others provide arguments as to consider the problematic of warmer SST as a new climatic reality. Anthropogenic climate change has significantly increased the likelihood of recent MHWs, especially for the more extreme category events. Blob 2 is an ongoing process with no signs to end any soon. Blob 1’s warmth penetrated hundreds of meters below the surface, but Blob 2’s has not reach such depth yet. To answer how long will Blob 2 last, ergo the megadrought, is a matter of knowing how deep will its warmth penetrate below the surface. In addition, and because the existence of a significant correlation between the SST dynamics of the other two Northern Hemisphere oceanic regions (i.e., PAC-NW and ATL-N) and the historical dynamics in the precipitations of the Pantanal, there is also the possibility of future megadroughts resulting from current warming trend and potential MHWs generating in these two oceanic areas. Regarding a forecast for the megadrought, results from present study show that it is expected to continue at both the Pantanal and the surrounding Highlands at least until December 2023. Even if precipitation amounts normalize from this point on, it would take over 30 continuous months as for any drought condition to disappear in the Pantanal area. The sooner the current extreme drought condition can become about normal is if, at both the Pantanal and the surrounding Highlands, each month of next rainy season (i.e., October 2021/March 2022) reaches a relative positive anomaly of 43% or above from historical mean (series 1981–2020). But a positive anomaly of such magnitude has never been reached in the Upper Paraguay river basin at least in the last 40 years. Due to the continuity of the megadrought, the intensification of fires with unprecedented duration and intensity, extending now to areas historically flooded or perhumid are expected. Concomitantly, we predict a most definite negative impact on non-fire-resistant vegetation cover, as well as ecosystem functioning and biodiversity, perhaps even worse than those from 2020.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alho, C.J.R.; Lacher, T.E., Jr.; Gonçalves, H.C. Environmental Degradation in the Pantanal Ecosystem. BioScience 1988, 38, 164–171. [Google Scholar] [CrossRef]
- Mittermeier, R.A.; de Gusmao Camara, I.; Tereza, M.; Padua, J.; Blanck, J. Conservation in the Pantanal of Brazil. Oryx 1990, 24, 103–112. [Google Scholar] [CrossRef]
- Por, F.D. The Pantanal of Mato Grosso (Brazil)—World’s Largest Wetlands; Kluwer Academic: Dordrecht, The Netherlands, 1995; pp. 1–3. [Google Scholar]
- Alho, C.J.R.; Silva, J.S.V. Effects of severe floods and droughts on wildlife of the Pantanal wetland (Brazil)—A review. Animals 2012, 2, 591–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girard, P. The Pantaneiros, perceptions and conflicts about the environment in the Pantanal in Tropical wetland management. In Tropical Wetland Management: The South-American Pantanal and International Experience; Ioris, A.A.R., Ed.; Ashgate Publishing: London, UK, 2012. [Google Scholar]
- Junk, W.J. Flood pulsing and the linkages between terrestrial, aquatic, and wetland systems. Verh. Internat. Verein. Theor. Angew. Limnol Verhandlungen 2005, 29, 11–38. [Google Scholar] [CrossRef]
- Alho, C.J.R.; Sabino, J. Seasonal Pantanal flood pulse: Implications for biodiversity conservation—A Review. Oecol. Aust. 2012, 16, 958–978. [Google Scholar] [CrossRef] [Green Version]
- Bergier, I.; Assine, M.L.; McGlue, M.M.; Alhod, C.J.R.; Silva, A.; Guerreiro, R.L.; Carvalho, J.C. Amazon rainforest modulation of water security in the Pantanal wetland. Sci. Total Environ. 2017, 619–620, 1116–1125. [Google Scholar] [CrossRef]
- Erwin, K.L. Wetlands and global climate change: The role of wetland restoration in a changing world. Wetl. Ecol. Manag. 2009, 17, 71–84. [Google Scholar] [CrossRef]
- Junk, W.J. Current state of knowledge regarding South America wetlands and their future under global climate change. Aquat. Sci. 2013, 75, 113–131. [Google Scholar] [CrossRef] [Green Version]
- Bergier, I. Effects of highland land-use over lowlands of the Brazilian Pantanal. Sci. Total Environ. 2013, 463–464, 1060–1066. [Google Scholar] [CrossRef]
- Ioris, A.A.R.; Irigaray, C.T.; Girard, P. Institutional responses to climate change: Opportunities and barriers for adaptation in the Pantanal and the Upper Paraguay River Basin. Clim. Chang. 2014, 127, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Thielen, D.; Schuchmann, K.-L.; Ramoni-Perazzi, P.; Marquez, M.; Rojas, W.; Quintero, J.I.; Marques, M.I. Quo vadis Pantanal? Expected precipitation extremes and drought dynamics from changing sea surface temperature. PLoS ONE 2020, 15, e0227437. [Google Scholar] [CrossRef]
- Alexander, M.A.; Scott, J.D.; Friedland, K.D.; Mills, K.E.; Nye, J.A.; Pershing, A.J.; Thomas, A.C. Projected sea surface temperatures over the 21st century: Changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans. Elem.-Sci. Anthrop. 2018, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Schlegel, R.W.; Oliver, E.C.J.; Hobday, A.J.; Smit, A.J. Detecting Marine Heatwaves with Sub-Optimal Data. Front. Mar. Sci. 2019, 6, 737. [Google Scholar] [CrossRef] [Green Version]
- Oliver, E.C.J.; Donat, M.G.; Burrows, M.T.; Moore, P.J.; Smale, D.A.; Alexander, L.V.; Benthuysen, J.A.; Feng, M.; Gupta, A.S.; Hobday, A.J.; et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 2018, 9, 1324. [Google Scholar] [CrossRef]
- Hobday, A.J.; Oliver, E.C.J.; Gupta, A.S.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Holbrook, N.J.; Moore, P.J.; Thomsen, M.S.; Wernberg, T.; et al. Categorizing and naming marine heatwaves. Oceanography 2018, 31, 162–173. [Google Scholar] [CrossRef] [Green Version]
- Oliver, E.C.J.; Burrows, M.T.; Donat, M.G.; Gupta, A.S.; Alexander, L.V.; Perkins-Kirkpatrick, S.E.; Benthuysen, J.A.; Hobday, A.J.; Holbrook, N.J.; Moore, P.J.; et al. Projected Marine Heatwaves in the 21st Century and the Potential for Ecological Impact. Front. Mar. Sci. 2019, 6, 734. [Google Scholar] [CrossRef] [Green Version]
- Marinha do Brasil. Centro de Hidrografía e Navegação do Oeste—Ladário 2016–2021. Available online: https://www.marinha.mil.br/chn-6/sites/www.marinha.mil.br.chn-6/files/3-LADÁRIO%2009.pdf (accessed on 18 July 2021).
- Marengo, J.A.; Cunha, A.P.; Cuartas, L.A.; Leal, K.R.D.; Broedel, E.; Seluchi, M.E.; Michelin, C.M.; Baião, C.F.D.P.; Ângulo, E.C.; Almeida, E.K.; et al. Extreme Drought in the Brazilian Pantanal in 2019–2020: Characterization, Causes, and Impacts. Front. Water 2021, 3, 639204. [Google Scholar] [CrossRef]
- Libonati, R.; Pereira, J.M.C.; Camara, C.C.D.; Peres, L.F.; Oom, D.; Rodrigues, J.A.; Santos, F.L.M.; Trigo, R.M.; Gouveia, C.M.P.; Machado-Silva, F.; et al. Twenty-first century droughts have not increasingly exacerbated fire season severity in the Brazilian Amazon. Sci. Rep. 2021, 11, 4400. [Google Scholar] [CrossRef]
- Hassan, W.U.; Nayak, M.A. Global teleconnections in droughts caused by oceanic and atmospheric circulation patterns. Environ. Res. Lett. 2021, 16, 014007. [Google Scholar] [CrossRef]
- Libonati, R.; DaCamara, C.C.; Peres, L.F.; Carvalho, L.A.S.D.; Garcia, L.C. Rescue Brazil’s burning Pantanal wetlands. Nature 2020, 588, 217–219. [Google Scholar] [CrossRef]
- Garcia, L.C.; Szabo, J.K.; Roque, F.D.O.; Pereira, A.D.M.M.; Cunha, C.N.D.; Damasceno-Júnior, G.A.; Morato, R.G.; Tomas, W.M.; Libonati, R.; Ribeiro, D.B. Record-breaking wildfires in the world’s largest continuous tropical wetland: Integrative fire management is urgently needed for both biodiversity and humans. J. Environ. Manag. 2021, 293, 112870. [Google Scholar] [CrossRef]
- Filho, W.L.; Azeiteiro, U.M.; Salvia, A.L.; Fritzen, B.; Libonati, R. Fire in Paradise: Why the Pantanal is burning. Environ. Sci. Policy 2021, 123, 31–34. [Google Scholar] [CrossRef]
- Thielen, D.; Ramoni-Perazzi, P.; Marquez, M.; Quintero, J.I.; Rojas, W.; Puche, M.L.; Soto-Werschitz, I.A.; Thielen, K.; Nunes, A.; Libonati, R. Marine heatwaves in the dynamics of the Pantanal’s historical drought and unprecedented fires. In Proceedings of the EGU General Assembly 2021, Wien, Austria, 26–30 April 2021; p. EGU21-9268. [Google Scholar] [CrossRef]
- Berlinck, C.N.; Lima, L.H.A.; Pereira, A.M.M.; Carvalho, E.A.R., Jr.; Paula, R.C.; Thomas, W.M.; Morato, R.G. The Pantanal is on fire and only a sustainable agenda can save the largest wetland in the world. Braz. J. Biol. 2021, 82, 2022. [Google Scholar] [CrossRef]
- Assine, M.L.; Merino, E.R.; Pupim, F.N.; Warren, L.V.; Guerreiro, R.L.; McGlue, M.M. Geology and Geomorphology of the Pantanal Basin. In Dynamics of the Pantanal Wetland in South America; Bergier, I., Assine, M.L., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 23–50. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.D.S.V.; Abdon, M.D.M. Delimitacão do Pantanal brasileiro e suas sub-regiões. Pesqui. Agropecu. Bras. 1998, 33, 1703–1711. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; Dijk, A.I.J.M.V.; Weedon, G.; Brocca, L.; Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-scale evaluation of 23 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [Google Scholar] [CrossRef] [Green Version]
- Bulgin, C.E.; Merchant, C.J.; Ferreira, D. Tendencies, variability and persistence of sea surface temperature anomalies. Sci. Rep. 2020, 10, 7986. [Google Scholar] [CrossRef] [PubMed]
- Pita López, M.F. Un nouvel indice de sécheresse pour les domaines méditerranéens. Application au bassin du Guadalquivir (sudouest de l’Espagne). Publ. I Assoc. Int. Clim. 2001, 13, 225–233. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; p. 6. [Google Scholar]
- Gong, X.; Richman, M.B. On the application of cluster analysis to growing season precipitation data in North America east of the Rockies. J. Clim. 1995, 8, 897–931. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.F.; Pulido-Calvo, I.; Portela, M.M. Spatial and temporal variability of droughts in Portugal. Water Resour. Res. 2010, 46, W03503. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization—WMO. Standardized Precipitation Index—User Guide; World Meteorological Organization—WMO: Geneva, Switzerland, 2012; Volume WMO-No. 1090, p. 24. [Google Scholar]
- Physical Sciences Laboratory—PSL/NOAA. Climate Indices: Monthly Atmospheric and Ocean Time-Series. Available online: https://psl.noaa.gov/data/climateindices/list/ (accessed on 1 July 2021).
- Climate Prediction Center—CPC/NCEP/NOAA. Global Ocean Monitoring: Recent Evolution, Current Status, and Predictions. Available online: http://www.cpc.ncep.noaa.gov/products/GODAS/ (accessed on 10 June 2021).
- Forootan, E.; Khaki, M.; Schumacher, M.; Wulfmeyer, V.; Mehrnegar, N.; Dijk, A.I.J.M.V.; Brocca, L.; Farzaneh, S.; Akinluyi, F.; Ramillien, G.; et al. Understanding the global hydrological droughts of 2003–2016 and their relationships with teleconnections. Sci. Total Environ. 2019, 650, 2587–2604. [Google Scholar] [CrossRef] [Green Version]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. Adv. Access 2015, 43, W566–W570. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change—IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; p. 582. [Google Scholar]
- Frölicher, T.L.; Fischer, E.M.; Gruber, N. Marine heatwaves under global warming. Nature 2018, 560, 360–364. [Google Scholar] [CrossRef]
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.J.; Benthuysen, J.; Burrows, M.T.; Donat, M.G.; Feng, M.; et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 2015, 141, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Eakin, C.M.; Morgan, J.A.; Heron, S.F.; Smith, T.B.; Liu, G.; Alvarez-Filip, L.; Baca, B.; Bartels, E.; Bastidas, C.; Bouchon, C.; et al. Caribbean corals in crisis: Record thermal stress, bleaching, and mortality in 2005. PLoS ONE 2010, 5, e13969. [Google Scholar] [CrossRef] [Green Version]
- Gawarkiewicz, G.; Chen, K.; Forsyth, J.; Bahr, F.; Mercer, A.M.; Ellertson, A.; Fratantoni, P.; Seim, H.; Haines, S.; Han, L. Characteristics of an Advective Marine Heatwave in the Middle Atlantic Bight in Early 2017. Front. Mar. Sci. 2019, 6, 712. [Google Scholar] [CrossRef] [Green Version]
- Bond, N.A.; Cronin, M.F.; Freeland, H.; Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 2015, 42, 3414–3420. [Google Scholar] [CrossRef]
- Amaya, D.J.; Miller, A.J.; Xie, S.-P.; Kosaka, Y. Physical drivers of the summer 2019 North Pacific marine heatwave. Nat. Commun. 2020, 11, 1903. [Google Scholar] [CrossRef]
- Fewings, M.R.; Brown, K.S. Regional Structure in the Marine Heat Wave of Summer 2015 Off the Western United States. Front. Mar. Sci. 2019, 6, 564. [Google Scholar] [CrossRef]
- Arafeh-Dalmau, N.; Montaño-Moctezuma, G.; Martínez, J.A.; Beas-Luna, R.; Schoeman, D.S.; Torres-Moye, G. Extreme Marine Heatwaves Alter Kelp Forest Community Near Its Equatorward Distribution Limit. Front. Mar. Sci. 2019, 6, 499. [Google Scholar] [CrossRef]
- Laufkötter, C.; Zscheischler, J.; Frölicher, T.L. High-impact marine heatwaves attributable to human-induced global warming. Science 2020, 369, 1621–1625. [Google Scholar] [CrossRef]
- Holbrook, N.J.; Scannell, H.A.; Gupta, A.S.; Benthuysen, J.A.; Feng, M.; Oliver, E.C.J.; Alexander, L.V.; Burrows, M.T.; Donat, M.G.; Hobday, A.J.; et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 2019, 10, 2624. [Google Scholar] [CrossRef]
- Hartmann, D.L. Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett. 2015, 42, 1894–1902. [Google Scholar] [CrossRef]
- Joh, Y.; Di Lorenzo, E. Increasing Coupling Between NPGO and PDO Leads to Prolonged Marine Heatwaves in the Northeast Pacific. Geophys. Res. Lett. 2017, 44, 11663–11671. [Google Scholar] [CrossRef] [Green Version]
- Batista Silva, C.B.; Siqueira Silva, M.E.; Ambrizzi, T. Climatic variability of river outflow in the Pantanal region and the influence of sea surface temperature. Theor. Appl. Climatol. 2016, 129, 97–109. [Google Scholar] [CrossRef]
- Rodrigues, R.R.; Taschetto, A.S.; Gupta, A.S.; Foltz, G.R. Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nature Geosci. 2019, 12, 620–626. [Google Scholar] [CrossRef]
- Rodrigues, R.R.; Taschetto, A.S.; Gupta, A.S.; Foltz, G.R. From severe droughts in South America to marine heatwaves in the South Atlantic. EGU Gen. Assem. 2020, 5162. [Google Scholar] [CrossRef]
- Parris, T.M. Global Water Monitor & Forecast Watch List; ISciences, L.L.C.: Burlington, VT, USA, 2021. [Google Scholar]
- Damasceno, G.A., Jr.; de Roque, F.O.; Garcia, L.C.; Bandini Ribeiro, D.W.M.T.; Scremin-Dias, E.; Dias, F.A.; Libonati, R.; Rodrigues, J.A.; Lemos, F.; Santos, M.; et al. Lessons to be Learned from the Wildfire Catastrophe of 2020 in the Pantanal Wetland. Wetl. Sci. Pract. 2021, 38, 107–115. [Google Scholar]
- Jacox, M.G. Marine heatwaves in a changing climate. Nature 2019, 571, 485–487. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Zhao, Y.; Yin, X.; Bao, Y.; Qiao, F. Evaluation of FIO-ESM v1.0 Seasonal Prediction Skills Over the North Pacific. Front. Mar. Sci. 2020, 7, 504. [Google Scholar] [CrossRef]
- Von Schuckmann, K.; Traon, P.-Y.L.; Smith, N.; Pascual, A.; Djavidnia, S.; Gattuso, J.-P.; Grégoire, M.; Nolan, G.; Aaboe, S.; Fanjul, E.Á.; et al. Copernicus Marine Service Ocean State Report, Issue 4. J. Oper. Oceanogr. 2020, 13, S1–S172. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change—IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Intergovernmental Panel on Climate Change—IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; in press; Available online: https://www.ipcc.ch/srocc/ (accessed on 10 October 2021).
- Cheng, L.; Abraham, J.; Zhu, J.; Trenberth, K.E.; Fasullo, J.; Boyer, T.; Locarnini, R.; Zhang, B.; Yu, F.; Wan, L.; et al. Record-Setting Ocean Warmth Continued in 2019. Adv. Atmos. Sci. 2020, 37, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Scannell, H.A.; Johnson, G.C.; Thompson, L.; Lyman, J.M.; Riser, S.C. Subsurface Evolution and Persistence of Marine Heatwaves in the Northeast Pacific. Geophys. Res. Lett. 2020, 47, e2020GL090548. [Google Scholar] [CrossRef]
- Li, G.C.; Cheng, L.J.; Zhu, J.; Trenberth, K.E.; Mann, M.E.; Abraham, J.P. Increasing ocean stratification over the past half century. Nat. Clim. Chang. 2020, 10, 1116–1123. [Google Scholar] [CrossRef]
- Cheng, L.; Abraham, J.; Trenberth, K.E.; Fasullo, J.; Boyer, T.; Locarnini, R.; Zhang, B.; Yu, F.; Wan, L.; Chen, X.; et al. Upper Ocean Temperatures Hit Record High in 2020. Adv. Atmos. Sci. 2021, 38, 523–530. [Google Scholar] [CrossRef]
- World Meteorological Organization—WMO. State of the Global Climate 2020a; WMO-No. 1264; World Meteorological Organization: Geneva, Switzerland, 2021; p. 56. [Google Scholar]
- Cheng, L.J.; Abraham, J.; Hausfather, Z.; Trenberth, K.E. How fast are the oceans warming? Science 2019, 363, 128–129. [Google Scholar] [CrossRef]
Size 1 (in km2) | Mean 2 Altitude (m asl) | Population Density by 2018 3 (Hab/Ha) | Land Use and Land Cover by 2014 4 (in % of the area) | Permanent River Streams 5 (in km) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anthropic Use | Natural Cover | Forest Formation | Woodland Savanna | Shrubby Savanna (Cerrado) | Grassland Savanna | Alteration/Natural Management | Steppe-Type Savanna/Chaco wetland | Vegetation with Fluvial Influence | Permanent Surface Water | |||||
UPRB | 361,338 | 263 | 2.54 | 29.38 | 70.62 | 6.21 | 8.29 | 14.22 | 16.74 | 3.03 | 6.23 | 13.69 | 2.22 | 2222 |
HIGHLANDS | 223,155 | 352 | 3.09 | 59.13 | 40.87 | 9.51 | 7.27 | 9.88 | 9.84 | 0.06 | 3.35 | 0.94 | 0.03 | 322 |
PANTANAL | 138,183 | 119 | 2.18 | 10.45 | 89.55 | 4.12 | 8.94 | 16.98 | 21.13 | 4.92 | 8.06 | 21.79 | 3.62 | 1900 |
HIGH 01-02 | 24,461 | 250 | 2.17 | 52.11 | 47.89 | 9.78 | 5.65 | 4.48 | 3.43 | 0.00 | 23.34 | 1.21 | 0.00 | 2065 |
HIGH 03 | 19,708 | 295 | 2.59 | 67.27 | 32.73 | 11.38 | 5.63 | 8.73 | 4.99 | 0.00 | 0.06 | 1.95 | 0.00 | 1451 |
HIGH 04 | 22,371 | 339 | 2.40 | 63.81 | 36.19 | 7.93 | 4.99 | 8.22 | 15.03 | 0.02 | 0.00 | 0.00 | 0.00 | 2212 |
HIGH 06-07 | 31,530 | 425 | 2.32 | 69.27 | 30.73 | 5.27 | 12.04 | 4.06 | 9.36 | 0.00 | 0.00 | 0.00 | 0.00 | 3795 |
HIGH 09 | 38,210 | 482 | 3.77 | 59.99 | 40.01 | 7.47 | 6.20 | 11.38 | 14.30 | 0.13 | 0.00 | 0.52 | 0.00 | 4364 |
HIGH 10 | 35,600 | 332 | 5.25 | 41.72 | 58.28 | 6.81 | 9.06 | 22.07 | 17.23 | 0.19 | 0.02 | 2.90 | 0.01 | 4271 |
HIGH 11 | 51,275 | 300 | 3.15 | 59.77 | 40.23 | 17.91 | 7.32 | 10.20 | 4.53 | 0.06 | 0.00 | 0.03 | 0.16 | 5340 |
P-01 | 3839 | 92 | 3.49 | 18.89 | 81.11 | 11.50 | 0.20 | 1.29 | 0.66 | 1.72 | 24.89 | 37.86 | 2.99 | 512 |
P-02 | 13,281 | 85 | 1.38 | 3.73 | 96.27 | 5.78 | 0.08 | 2.03 | 2.03 | 1.67 | 59.96 | 19.79 | 4.92 | 2080 |
P-03 | 4383 | 115 | 2.48 | 18.36 | 81.64 | 2.29 | 10.22 | 18.76 | 35.60 | 9.15 | 0.83 | 4.79 | 0.00 | 831 |
P-04 | 5008 | 129 | 0.70 | 24.16 | 75.84 | 2.34 | 9.55 | 23.54 | 22.58 | 2.24 | 0.00 | 15.59 | 0.00 | 688 |
P-05 | 2833 | 97 | 0.83 | 0.59 | 99.41 | 0.08 | 15.96 | 0.01 | 64.64 | 2.01 | 0.44 | 2.10 | 14.17 | 769 |
P-06 | 26,921 | 129 | 0.56 | 9.21 | 90.79 | 0.92 | 17.01 | 21.91 | 25.01 | 6.66 | 0.00 | 19.24 | 0.04 | 2277 |
P-07 | 27,082 | 127 | 0.91 | 9.12 | 90.88 | 3.83 | 9.85 | 31.12 | 22.94 | 8.51 | 0.00 | 12.90 | 1.73 | 3538 |
P-08 | 8147 | 94 | 6.23 | 4.56 | 95.44 | 8.68 | 5.62 | 0.11 | 13.67 | 0.00 | 2.51 | 51.73 | 13.11 | 1581 |
P-09 | 18,167 | 145 | 1.70 | 14.42 | 85.58 | 7.35 | 8.13 | 49.62 | 4.63 | 3.06 | 0.00 | 12.81 | 0.00 | 2695 |
P-10 | 16,066 | 118 | 1.20 | 7.66 | 92.34 | 2.10 | 17.15 | 21.47 | 18.48 | 8.76 | 0.00 | 23.34 | 1.05 | 2530 |
P-11 | 12,456 | 106 | 4.52 | 4.21 | 95.79 | 0.40 | 4.61 | 16.94 | 22.17 | 10.30 | 0.00 | 39.55 | 1.82 | 1143 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thielen, D.; Ramoni-Perazzi, P.; Puche, M.L.; Márquez, M.; Quintero, J.I.; Rojas, W.; Soto-Werschitz, A.; Thielen, K.; Nunes, A.; Libonati, R. The Pantanal under Siege—On the Origin, Dynamics and Forecast of the Megadrought Severely Affecting the Largest Wetland in the World. Water 2021, 13, 3034. https://doi.org/10.3390/w13213034
Thielen D, Ramoni-Perazzi P, Puche ML, Márquez M, Quintero JI, Rojas W, Soto-Werschitz A, Thielen K, Nunes A, Libonati R. The Pantanal under Siege—On the Origin, Dynamics and Forecast of the Megadrought Severely Affecting the Largest Wetland in the World. Water. 2021; 13(21):3034. https://doi.org/10.3390/w13213034
Chicago/Turabian StyleThielen, Dirk, Paolo Ramoni-Perazzi, Mary L. Puche, Marco Márquez, José Isrrael Quintero, Wilmer Rojas, Alejandra Soto-Werschitz, Kai Thielen, Ana Nunes, and Renata Libonati. 2021. "The Pantanal under Siege—On the Origin, Dynamics and Forecast of the Megadrought Severely Affecting the Largest Wetland in the World" Water 13, no. 21: 3034. https://doi.org/10.3390/w13213034
APA StyleThielen, D., Ramoni-Perazzi, P., Puche, M. L., Márquez, M., Quintero, J. I., Rojas, W., Soto-Werschitz, A., Thielen, K., Nunes, A., & Libonati, R. (2021). The Pantanal under Siege—On the Origin, Dynamics and Forecast of the Megadrought Severely Affecting the Largest Wetland in the World. Water, 13(21), 3034. https://doi.org/10.3390/w13213034