Permanent Thermal and Chemical Stratification in a Restored Urban Meromictic Lake
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choiński, A. An Outline of Poland’s Physical Limnology; UAM Press: Poznań, Czech Republic, 1995; p. 298. [Google Scholar]
- Boehrer, B.; Schultze, M. Stratification of lakes. Rev. Geophys. 2008, 46. [Google Scholar] [CrossRef]
- Boehrer, B.; von Rohden, C.; Schultze, M. Physical Features of Meromictic Lakes: Stratification and Circulation. In Ecology of Meromictic Lakes; Springer: Cham, Switzerland, 2017; pp. 15–34. [Google Scholar]
- Gulati, R.D.; Zadereev, E.; Degermendzhi, A.G. (Eds.) Ecology of Meromictic Lakes; Ecological Studies; Springer: Cham, Switzerland, 2017; Volume 228, 405p. [Google Scholar]
- Hutchinson, G.E. Treatise on Limnology: Geography, Physics and Chemistry; Wiley: New York, NY, USA, 1957; Volume 1. [Google Scholar]
- Hakala, A. Meromixis as a part of lake evolution—Observations and a revised classification of true meromictic lakes in Finland. Boreal Environ. Res. 2004, 9, 37–53. [Google Scholar]
- Hrdinka, T.; Šobr, M. Manifestation and causes of meromixis in a lake resulting from mineral extraction in Czechia. Geographie 2010, 1156, 96–112. [Google Scholar] [CrossRef]
- Hrdinka, T.; Šobr, M.; Fott, J.; Nedbalova, L. The unique enviromnent in the most acidifield permanently meromictic lake in the Czech Republic. Limnologica 2013, 43, 417–426. [Google Scholar] [CrossRef]
- Tandyrak, R. Evolution of Mictic and Trophic State of Lake Starodworskie on the Background of Climate and Urbanization; University of Warmia and Mazury Press: Olsztyn, Poland, 2017; Volume 205, 118p. [Google Scholar]
- Kubiak, J.; Machula, S.; Choiński, A. Particular example of meromixis in the anthropogenic reservoir. Carpathian J. Earth Environ. Sci. 2018, 13, 5–13. [Google Scholar] [CrossRef]
- Januszkiewicz, T. Hydrochemical Research of Lake Klasztorne as a Sewage Receiver; Institute of Water Management Press: Rome, Italy, 1969; Volume 5, pp. 43–81. [Google Scholar]
- Galas, J. Limnological study on a Lake Formed in a Limestone Quarry (Kraków, Poland) I. Water Chemistry. Pol. J. Environ. Stud. 2003, 12, 297–300. [Google Scholar]
- Kraska, M.; Klimaszyk, P.; Piotrowicz, R. Meromictic Lake Czarne in the Drawieński National Park. Oceanol. Hydrobiol. Stud. 2006, 35, 55–67. [Google Scholar]
- Tandyrak, R.; Teodorowicz, M.; Grochowska, J. Observations of selected chemical components of meromictic Lake Zapadłe waters in 1990–1993, 2000–2001 and 2005–2006. Arch. Environ. Prot. 2010, 36, 75–82. [Google Scholar]
- Patalas, K. Water mixing as a factor determining the intensity of matter circulation in morphologically different lakes in the vicinity of Węgorzewo. Ann. Agric. Sci. 1960, 77, 233. [Google Scholar]
- Aeschbach-Hertig, W.; Homer, M.; Schmid, M.; Kipfer, R.; Imboden, M. The physical structure and dynamics of a deep, meromictic crater lake (Lac Pavin, France). Hydrobiologia 2002, 487, 111–136. [Google Scholar] [CrossRef]
- Melack, J.M.; Jellison, R. Limnological conditions in Mono Lake: Contrasting monomixis and meromixis in the 1990s. Hydrobiologia 1998, 384, 21–39. [Google Scholar] [CrossRef]
- Degermendzhy, A.G.; Zadereev, E.S.; Rogozin, D.Y.; Prokopkin, I.G.; Barkhatov, Y.V.; Tolomeev, A.P.; Gulati, R.D. Vertical stratification of physical, chemical and biological components in two saline lakes Shira and Shunet (South Siberia, Russia). Aquat. Ecol. 2010, 44, 619–632. [Google Scholar] [CrossRef]
- Torres-Talamante, O.; Alcocer, J.; Beddows, P.A.; Escobar-Briones, E.G.; Lugo, A. The key role of chemolimnion in meromictic cenotes of the Yucatan Peninsula, Mexico. Hydrobiologia 2011, 677, 107–127. [Google Scholar] [CrossRef]
- Dietz, S.; Lessmann, D.; Boehrer, B. Contribution of Solutes to Density Stratification in a Meromictic Lake (Waldsee/Germany). Mine Water Environ. 2012, 31, 129–137. [Google Scholar] [CrossRef]
- Tylmann, W.; Szpakowska, K.; Ohlendorf, C.; Woszczyk, M.; Zolitschka, B. Conditions for deposition of annually laminated sediments in small meromictic lakes: A case study of Lake Suminko (northern Poland). J. Paleolimnol. 2012, 47, 55–70. [Google Scholar] [CrossRef]
- Górniak, D.; Tandyrak, R.; Parszuto, K. Relationships between physico-chemical and microbiological parameters in the monimolimnion of a forest meromictic lake. J. Limnol. 2014, 73, 511–522. [Google Scholar] [CrossRef][Green Version]
- Rodrigo, M.A.; Miracle, M.R.; Vicente, E. The meromictic Lake La Cruz (Central Spain). Patterns of stratification. Aquat. Sci. 2001, 63, 406–416. [Google Scholar] [CrossRef]
- Tartari, G.; Copetti, D.; Franzetti, A.; Balordi, M.; Salerno, F.; Thakuri, S.; Leoni, B.; Chiarello, G.; Cristiani, P. Manganese-mediated hydrochemistry and microbiology in a meromictic subalpine lake (Lake Idro, Northern Italy)—A biogeochemical approach. Sci. Total Environ. 2021, 795, 148743. [Google Scholar] [CrossRef] [PubMed]
- Read, J.S.; Hamilton, D.P.; Jones, I.D.; Muraoka, K.; Winslow, L.A.; Kroiss, R.; Wu, C.H.; Gaiser, E. Derivation of lake mixing and stratification indices from high—Resolution lake buoy data. Environ. Model. Softw. 2011, 26, 1325–1336. [Google Scholar] [CrossRef]
- Schultze, M.; Boehrer, B.; Wendt-Potthoff, K.; Katsev, S.; Brown, E.T. Chemical Setting and Biogeochemical Reactions in Meromictic Lakes. In Ecology of Meromictic Lakes; Springer: Cham, Switzerland, 2017; pp. 35–59. [Google Scholar]
- Chan, Y.F.; Chiang, P.W.; Tandon, K.; Rogozin, D.; Degermendzhi, A.; Zykov, V.; Tang, S.L. Spatiotemporal Changes in the Bacterial Community of the Meromictic Lake Uchum, Siberia. Microb. Ecol. 2021, 81, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Paschalski, J. Bradymixsis of Lake Starodworskie; High School of Agriculture Press: Olsztyn, Poland, 1963; 60p. [Google Scholar]
- Lossow, K.; Gawrońska, H. Changes in thermal and oxygen settings in an artificially aerated lake. Arch. Environ. Prot. 1976, 2, 151–166. [Google Scholar]
- Lossow, K.; Gawrońska, H.; Jaszczułt, R. Attempts to use wind energy for artificial destratification for Lake Starodworskie. Pol. J. Environ. Stud. 1998, 7, 221–227. [Google Scholar]
- Gawrońska, H. Exchange of Phosphorus and Nitrogen Between Sediment and Water in an Artificially Aerated Lake; High School of Agriculture Press: Olsztyn, Poland, 1994; Volume 19, pp. 3–49. [Google Scholar]
- Tandyrak, R. Investigation of the Effectiveness of the Lake Starodworskie Restoration by Phosphorus Inactivation Method. Ph.D. Thesis, University of Warmia and Mazury, Olsztyn, Poland, 2000. [Google Scholar]
- Tandyrak, R. Effect of Lake Starodworskie treatment by phosphorus inactivation on the primary production properties. Pol. J. Nat. Sci. 2004, 17, 491–501. [Google Scholar]
- Tandyrak, R. Chemism of bottom sediments from a lake treated with various restoration techniques. Electron. J. Pol. Agric. Univ. 2005, 8, 73. [Google Scholar]
- Augustyniak, R.; Tandyrak, R.; Łopata, M.; Grochowska, J.K. Long term sediment modification method in meromictic lake (Starodworskie Lake, Olsztyn, Poland). Land 2021, 10, 411. [Google Scholar] [CrossRef]
- Tibco Software Inc. Statistica Software Package 13.0; Tibco Software Inc.: Palo Alto, CA, USA, 2018. [Google Scholar]
- Zar, J.H. Biostatistical Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1984. [Google Scholar]
- Meals, D.W.; Spooner, J.; Dressing, S.A.; Harcum, J.B. Statistical Analysis for Monotonic Trends, Tech Notes 6, November 2011. Developed for U.S. Environmental Protection Agency by Tetra Tech, Inc., Fairfax, VA, USA, 23p. 2011. Available online: https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoringtechnical-notes (accessed on 7 September 2021).
- Henry, R.; Barbosa, F.A.R. Thermal structure, heat content and stability of two lakes in The National Park of Rio Doce Vally (Minas Gerais, Brazil). Hydrobiologia 1989, 179, 189–199. [Google Scholar] [CrossRef]
- Tandyrak, R.; Gawrońska, H. The influence of Urban Development on the Water Mass Dynamic in a Lake. Pol. J. Environ. Stud. 2009, 3, 81–86. [Google Scholar]
- Ambrosetti, W.; Barbanti, L. Temperature, heat content, mixing and stability in Lake Orta: A pluriannual investigation. J. Limnol. 2001, 60, 60–68. [Google Scholar] [CrossRef]
- Ambrosetti, W.; Barbanti, L. Evolution towards meromixcis of Lake Iseo (Northern Italy) as revealed by its stability trend. J. Limnol. 2005, 64, 1–11. [Google Scholar] [CrossRef]
- Walker, K.F. The stability of meromictic lakes in central Washington. Limnol. Oceanogr. 1974, 19, 209–222. [Google Scholar] [CrossRef]
- Wüest, A.; Piepke, G.; Halfman, J.D. Combined Effects of Dissolved Solids and Temperature on the Density Stratification of Lake Malawi. In The Limnology, Climatology and Paleoclimatology of the East African Lakes; Routledge: Abingdon-on-Thames, UK, 2019; pp. 183–202. [Google Scholar]
- Lange, W. Methods of Physico Limnological Research; University of Gdańsk Press: Gdańsk, Poland, 1993; pp. 67–108. [Google Scholar]
- Grochowska, J. Circulation of Selected Macroelements in the River-Lake System on the Example of the Upper Pasłęka; The Committee of Environmental Engineering Press: Lublin, Poland, 2015; 181p. [Google Scholar]
- Gulati, R.D.; Zadereev, E.S. Conclusion: Ecology of Meromictic Lakes. In Ecology of Meromictic Lakes; Springer: Cham, Switzerland, 2017; pp. 379–398. [Google Scholar]
- Cloern, J.E.; Cole, B.E.; Oremland, R.S. Autotrophic processes in meromictic Big Soda Lake, Nevada. Limnol. Oceanogr. 1983, 28, 1049–1061. [Google Scholar] [CrossRef]
- Rogozin, D.Y.; Tarnovsky, M.O.; Belolipetskii, M.; Zykov, V.V.; Zadereev, E.S.; Tolomeev, A.P.; Kolmakova, A.A. Disturbance of meromixis in saline Lake Shira (Siberia, Russia): Possible reasons and ecosystem response. Limnol. Ecol. Manag. Inland Waters 2017, 66, 12–23. [Google Scholar] [CrossRef]
- Czeczuga, B. Wądołek—A holomictic lake. Acta Hydrobiol. 1966, 8, 1–4. [Google Scholar]
- Jézéquel, D.; Michard, G.; Viollier, E.; Agrinier, P.; Albéric, P.; Lopes, F.; Bergonzini, L. Carbon Cycle in a Meromictic Crater Lake: Lake Pavin, France. In Lake Pavin; Sime-Ngando, T., Boivin, P., Chapron, E., Jezequel, D., Meybeck, M., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Tandyrak, R.; Lizuraj, M. Multiannual observations of iron and sulphur content in the waters of recultivated Lake Starodworskie, with comparision to physical and chemical parameters. Limnol. Rev. 2008, 8, 129–136. [Google Scholar]
- Bartoszek, L. Phosphorus Release from Bottom Sediment; Rzeszow University of Technology Press: Rzeszow, Poland, 2007; 240p. [Google Scholar]
- Jefferson, B.; Hurst, A.; Stuetz, R.; Parsons, S.A. A comparison of chemical methods for the control of odours in wastewater. Process Saf. Environ. Prot. 2002, 80, 93–99. [Google Scholar] [CrossRef]
- Rheinheimer, G. Microbiology of Water; PWR and L Warsaw Press: Warsaw, Poland, 1987. [Google Scholar]
- Schlegel, G.H. Total Microbiology; PWN Warsaw Press: Warsaw, Poland, 2001. [Google Scholar]
- Deng, Q.; Wu, X.; Wang, Y.; Liu, M. Activity characteristics of sulphate reducing bacteria and formation mechanism of hydrogen sulphide. Appl. Ecol. Environ. Res. 2018, 16, 6369–6383. [Google Scholar] [CrossRef]
- Nedvell, D.B.; Floodgate, G.D. Temperature induced changes in the formation of sulphide in marine sediment. Mar. Biol. 1972, 14, 18–24. [Google Scholar] [CrossRef]
- Salmaso, N. Effects of habitat partitioning on the distribution of bacterioplankton in deep lakes. Front. Microbiol. 2019, 10, 2257. [Google Scholar] [CrossRef] [PubMed]
- Achá, D.; Guédron, S.; Amouroux, D.; Point, D.; Lazzaro, X.; Fernandez, P.; Sarret, G. Algal Bloom Exacerbates Hydrogen Sulphide and Methylmercury Contamination in the Emblematic High-Altitude Lake Titicaca. Geosciences 2018, 8, 438. [Google Scholar] [CrossRef]
- Dunalska, J.; Górniak, D.; Teodorowicz, M.; Gąsecka, K. Seasonal Distribution of Dissolved and Particulate Organic Carbon in the Water Column of a Meromictic Lake. Pol. J. Environ. Stud. 2004, 13, 375–379. [Google Scholar]
- Dawson, J.J.C.; Malcolm, I.A.; Middlemas, S.J.; Tetzlaff, D.; Soulsby, C. Is the composition of dissolved organic carbon changing in upland acidic streams? Environ. Sci. Technol. 2009, 43, 7748–7753. [Google Scholar] [CrossRef]
- Kortelainen, P. Content of total organic carbon in Finnish lakes and its relationship to catchment characteristics. Can. J. Fish. Aquat. Sci. 1993, 50, 1477–1483. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Elevation a.s.l. [m] | 110.85 |
Area [ha] | 5.57 |
Maximum depth [m] H max | 24.5 |
Average depth [m] H aver. | 9.4 |
Halbfass relative depth index Hr | 0.1038 |
Indicator of depth Wg | 0.382 |
Volume [m3] V | 522,014 |
Maximum length [m] L max | 341 |
Maximum width [m] W max | 226 |
Hydrochemical Parameter | Water Depth | S Value | τ Value |
---|---|---|---|
N-NH4 | 1 m | NS | NS |
5 m | −603.42 | −0.25721 | |
10 m | NS | NS | |
15 m | −878.46 | −0.37445 | |
20 m | −1120.75 | −0.47773 | |
22 m | −1062.10 | −0.45273 | |
P-PO4 | 1 m | NS | NS |
5 m | NS | NS | |
10 m | 803.93 | 0.352911 | |
15 m | 1045.53 | 0.458967 | |
20 m | 1010.86 | 0.443749 | |
22 m | 1097.91 | 0.481961 | |
Fe | 1 m | NS | NS |
5 m | NS | NS | |
10 m | NS | NS | |
15 m | 615.43 | 0.278349 | |
20 m | 463.96 | 0.209842 | |
22 m | 720.74 | 0.325978 | |
Mn | 1 m | NS | NS |
5 m | 612.48 | 0.285537 | |
10 m | 400.76 | 0.186835 | |
15 m | NS | NS | |
20 m | 436.32 | 0.203114 | |
22 m | 490.12 | 0.228496 | |
Ca | 1 m | NS | NS |
5 m | −729.91 | −0.35092 | |
10 m | NS | NS | |
15 m | −879.43 | −0.4228 | |
20 m | NS | NS | |
22 m | NS | NS | |
H2S | 1 m | NS | NS |
5 m | NS | NS | |
10 m | NS | NS | |
15 m | −779.97 | −0.42621 | |
20 m | −915.62 | −0.50034 | |
22 m | −824.18 | −0.45037 | |
SO4 | 1 m | −451.75 | −0.52468 |
5 m | −589.31 | −0.68445 | |
10 m | −467.86 | −0.54339 | |
15 m | −395.81 | −0.45971 | |
20 m | −388.05 | −0.4507 | |
22 m | −412.701 | −0.47933 |
Component | Content (kg) | % of Total Amount in the Whole Lake |
---|---|---|
BOD5 | 1350–2107 | 33–42 |
COD-Mn | 581–830.9 | 9–12.5 |
TOC | 421.9–509.1 | 7–9 |
POC | 64.5–119.3 | 5–9 |
DOC | 222.9–423.6 | 6–10 |
Bacterial suspension | 3.9–37.5 | 2–24 |
PO4 | 22.4–68.1 | 22–63 |
TP | 40.7–98.2 | 15–50 |
N-NH4 | 260.4–671.7 | 18–50 |
TN | 424.1–791.2 | 19–34 |
EC | Ca | Mg | Fe | N-NH4 | PO4 | |
---|---|---|---|---|---|---|
Depth | 0.925 * | 0.746 ** | −0.089 | 0.299 | 0.768 ** | 0.682 ** |
EC | 1.000 | 0.805 ** | −0.082 | 0.291 | 0.836 ** | 0.768 ** |
Ca | 1.000 | −0.336 * | 0.349 * | 0.653 ** | 0.614 ** | |
Mg | 1.000 | 0.077 | 0.099 | −0.023 | ||
Fe | 1.000 | 0.358 * | 0.266 | |||
Mn | −0.184 | −0.155 | ||||
N-NH4 | 1.000 | 0.646 * | ||||
PO4 | 1.000 |
Hydrochemical Parameter | Water Depth | F Value | p Value | Significant Differences between Years |
---|---|---|---|---|
N-NH4 | 1 m | NS | NS | - |
5 m | 2.62 | 0.0074 | between 2005 and 2007 | |
10 m | NS | NS | - | |
15 m | NS | NS | - | |
20 m | 2.06 | 0.035 | between 2006 and 2014 | |
22 m | NS | NS | - | |
P-PO4 | 1 m | NS | NS | - |
5 m | NS | NS | - | |
10 m | 3.24 | 0.0014 | between 2005 and 2016 | |
15 m | 6.58 | 0.000 | between 2005 and 2006, 2009–16 | |
20 m | NS | NS | - | |
22 m | 7.39 | 0.000 | between 2004 and 2011–12,2015–16 between 2005 and 2011, 2013 between 2006 and 2011, 2013 between 2007 and 2010–13, 2015–16 between 2008 and 2010–13, 2015–16 | |
Fe | 1 m | NS | NS | - |
5 m | NS | NS | - | |
10 m | 3.24 | 0.0015 | between 2011 and 2004,2007–08, 2010, 2012, 2014–16 | |
15 m | 4.13 | 0.0001 | between 2004 and 2011, 2013, 2016 between 2007 and 2009, 2013, 2016 | |
20 m | 2.99 | 0.0029 | between 2004 and 2009, 2011, 2013, 2016 | |
22 m | 7.27 | 0.0000 | between 2004 and 2008–16 between 2006 and 2011, 2013 between 2007 and 2009, 2011, 2013 | |
Mn | 1 m | NS | NS | - |
5 m | NS | NS | - | |
10 m | 5.17 | 0.0000 | between 2004 and 2010, 2012–13 between 2009 and 2010, 2012–13 between 2011 and 2012 between 2012 and 2014 | |
15 m | 2.99 | 0.0030 | between 2004 and 2007–09 | |
20 m | 5.50 | 0.0000 | between 2004 and 2007–16 between 2005 and 2009, 2011, 2014 | |
22 m | 5.09 | 0.0000 | between 2004 and 2007–14, 2016 between 2005 and 2009 | |
Ca | 1 m | NS | NS | - |
5 m | NS | NS | - | |
10 m | NS | NS | - | |
15 m | NS | NS | - | |
20 m | 4.77 | 0.0000 | between 2004 and 2008–09 between 2005 and 2008–09 between 2006 and 2008 between 2008 and 2014–15 | |
22 m | 5.78 | 0.0000 | between 2004 and 2007–10, 2012–13 between 2005 and 2007–2010 between 2006 and 2008–09 | |
H2S | 1 m | NS | NS | - |
5 m | NS | NS | - | |
10 m | NS | NS | - | |
15 m | 6.81 | 0.0000 | between 2004 and 2008, 2010–16 between 2005 and 2008, 2010–16 between 2006 and 2008, 2011 | |
20 m | 12.55 | 0.0000 | between 2004 and 2007–16 between 2005 and 2007–16 between 2006 and 2008–10, 2012–16 | |
22 m | 7.95 | 0.0000 | between 2004 and 2008–16 between 2005 and 2009–13 | |
SO4 | 1 m | 11.04 | 0.0000 | between 2011 and 2004–07, 2012–16 |
5 m | 12.90 | 0.0000 | between 2004 and 2007, 2010–16 between 2005 and 2010–16 between 2006 and 2010–16 between 2007 and 2016 | |
10 m | 6.62 | 0.0000 | between 2004 and 2010, 2013–16 between 2005 and 2010, 2013 between 2006 and 2013 between 2007 and 2013 | |
15 m | 5.03 | 0.0003 | between 2004 and 2010, 2013–16 between 2007 and 2013–16 | |
20 m | 8.20 | 0.0000 | between 2004 and 2010–11, 2013–16 between 2006 and 2010–11, 2013–16 between 2007 and 2010–11, 2013–16 | |
22 m | 6.66 | 0.0000 | between 2004 and 2010, 2013–16 between 2006 and 2010, 2013–16 between 2007 and 2010, 2013–16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tandyrak, R.; Grochowska, J.K.; Augustyniak, R.; Łopata, M. Permanent Thermal and Chemical Stratification in a Restored Urban Meromictic Lake. Water 2021, 13, 2979. https://doi.org/10.3390/w13212979
Tandyrak R, Grochowska JK, Augustyniak R, Łopata M. Permanent Thermal and Chemical Stratification in a Restored Urban Meromictic Lake. Water. 2021; 13(21):2979. https://doi.org/10.3390/w13212979
Chicago/Turabian StyleTandyrak, Renata, Jolanta Katarzyna Grochowska, Renata Augustyniak, and Michał Łopata. 2021. "Permanent Thermal and Chemical Stratification in a Restored Urban Meromictic Lake" Water 13, no. 21: 2979. https://doi.org/10.3390/w13212979
APA StyleTandyrak, R., Grochowska, J. K., Augustyniak, R., & Łopata, M. (2021). Permanent Thermal and Chemical Stratification in a Restored Urban Meromictic Lake. Water, 13(21), 2979. https://doi.org/10.3390/w13212979