Elevation-Dependent Trends in Precipitation Observed over and around the Tibetan Plateau from 1971 to 2017
Abstract
:1. Introduction
2. Data and Methodology
3. Results
3.1. Spatiotemporal Changes in Precipitation
3.2. Changes in Extreme Precipitation
3.3. Relationship between Precipitation Trends and Elevation
3.4. Relationship between Extreme Precipitation Trend and Elevation
4. Discussion
5. Conclusions
- (1)
- The annual total precipitation (RR ≥ 1 mm) increased at a rate of 6.7 mm/decade. The spatial distributions of long-term PRCPTOT trends exhibited regional differences. The total amount of extreme precipitation (R95p) and the contribution of extreme precipitation increased, the climate extreme was enhanced.
- (2)
- The annual and seasonal precipitation trends and the extreme precipitation trend were found to be mostly elevation-dependent, but the trend fluctuated at different elevations. A nonlinear relationship between wetting rates and elevation was observed.
- (3)
- Each extreme precipitation index showed a different trend change with elevation. The results indicate that extreme precipitation dependence on elevation in mountainous areas is complex and requires further investigation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Calculation Method of Extreme Precipitation Indices
- 1.
- RX1day
- 2.
- SDII
- 3.
- R10
- 4.
- CDD
- 5.
- CWD *
- 6.
- R95pTOT
- 7.
- PRCPTOT
References
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Klein, T.A.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; et al. Observations: Atmospheric Surface and Climate Change//Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007; pp. 235–336. [Google Scholar]
- Beniston, M.; Diaz, H.; Bradley, R. Climatic change at high elevation sites: An overview. Clim. Chang. 1997, 36, 233–251. [Google Scholar] [CrossRef]
- Messerli, B.; Ives, J.D. Mountains of the World: A Global Priority; Parthenon Publishing Group: New York, NY, USA; Carnforth, UK, 1997; p. 495. [Google Scholar]
- Diaz, H.F.; Bradley, R.S. Temperature variations during the last century at high elevation sites. Clim. Chang. 1997, 36, 253–279. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, Z.; Yan, L.; Yin, Z.Y. Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Glob. Planet. Chang. 2009, 68, 164–174. [Google Scholar] [CrossRef]
- Rangwala, I.; Miller, J.; Xu, M. Warming in the Tibetan Plateau: Possible influences of the changes in surface water vapor. Geophys. Res. Lett. 2009, 36, L06703. [Google Scholar] [CrossRef][Green Version]
- Qin, J.; Yang, K.; Liang, S.; Guo, X. The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim. Chang. 2009, 97, 321–327. [Google Scholar] [CrossRef]
- Pederson, G.T.; Graumlich, L.J.; Fagre, D.B.; Kipfer, T.; Muhlfeld, C.C. A century of climate and ecosystem change in Western Montana: What do temperature trends portend? Clim. Chang. 2010, 98, 133–154. [Google Scholar] [CrossRef]
- Pepin, N.C.; Lundquist, J.D. Temperature trends at high elevations: Patterns across the globe. Geophys. Res. Lett. 2008, 35, 1–L14701. [Google Scholar] [CrossRef][Green Version]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar]
- Oyler, J.W.; Dobrowski, S.Z.; Ballantyne, A.P.; Klene, A.E.; Running, S.W. Artificial amplification of warming trends across the mountains of the western united states. Geophys. Res. Lett. 2015, 42, 153–161. [Google Scholar] [CrossRef][Green Version]
- Tudoroiu, M.; Eccel, E.; Gioli, B.; Gianelle, D.; Schume, H.; Genesio, L.; Miglietta, F. Negative elevation-dependent warming trend in the eastern alps. Environ. Res. Lett. 2016, 11, 044021. [Google Scholar] [CrossRef]
- Russell, A.M.; Gnanadesikan, A.; Zaitchik, B. Are the Central Andes Mountains a Warming Hot Spot? J. Clim. 2017, 30, 3589–3608. [Google Scholar] [CrossRef]
- Sharples, J.J.; Hutchinson, M.F.; Jellett, D.R. On the horizontal scale of elevation dependence of australian monthly precipitation. J. Appl. Meteorol. 2005, 44, 1850–1865. [Google Scholar] [CrossRef]
- Tennant, C.J.; Crosby, B.T.; Godsey, S.E. Elevation-dependent responses of streamflow to climate warming. Hydrol. Process. 2015, 29, 991–1001. [Google Scholar] [CrossRef]
- Johnston, V.E.; Borsato, A.; Frisia, S.; Spötl, C.; Dublyansky, Y.; Töchterle, P.; Hellstrom, J.C.; Bajo, P.; Edwards, R.L.; Cheng, H. Evidence of the rmosphilisation and elevation-dependent warming during the Last Interglacial in the Italian Alps. Sci. Rep. 2018, 8, 2680–2690. [Google Scholar] [CrossRef][Green Version]
- Brunsdon, C.; Mcclatchey, J.; Unwin, D.J. Spatial variations in the average rainfall-altitude relationship in Great Britain: An approachusing geographically weighted regression. Int. J. Climatol. 2001, 21, 455–466. [Google Scholar] [CrossRef][Green Version]
- Kim, J. A nested modeling study of elevation-dependent climate change signals in California induced by increased atmospheric CO2. Geophys. Res. Lett. 2001, 28, 2951–2954. [Google Scholar] [CrossRef]
- Kim, J.; Kim, T.K.; Arritt, R.W. Impacts of increased atmospheric CO2 on the hydroclimate of the Western United States. J. Clim. 2002, 15, 1926–1942. [Google Scholar] [CrossRef]
- Gouvas, M.; Sakellariou, N.; Xystrakis, F. The relationship between altitude of meteorological stations and average monthly and annual precipitation. Stud. Geophys. Geod. 2009, 53, 557–570. [Google Scholar] [CrossRef]
- Kotlarski, S.; Bosshard, T.; Lüthi, D.; Pall, P.; Schär, C. Elevation gradients of European climate change in the regional climate model COSMO-CLM. Clim. Chang. 2012, 112, 189–215. [Google Scholar] [CrossRef][Green Version]
- Rowe, A.K.; Rutledge, S.A.; Lang, T.J.; Ciesielski, P.E.; Saleeby, S.M. Elevation-dependent trends in precipitation observed during NAME. Mon. Weather Rev. 2008, 136, 4962–4979. [Google Scholar] [CrossRef]
- Im, E.S.; Ahn, J.B. On the elevation dependency of present-day climate and future change over Korea from a high resolution regional climate simulation. J. Meteorol. Soc. Jpn. 2011, 89, 89–100. [Google Scholar] [CrossRef][Green Version]
- Arakawa, O.; Kitoh, A. Elevation dependency of summertime precipitation and its change by global warming over the Tibetan Plateau and the surroundings simulated by 1 60-km-mesh Atmospheric General Circulation Model. J. Meteorol. Soc. Jpn. 2012, 90A, 151–165. [Google Scholar] [CrossRef][Green Version]
- Beusekom, A.E.; González, G.; Rivera, M.M. Short-term precipitation and temperature trends along an elevation gradient in Northeastern Puerto Rico. Earth Interact. 2015, 19, 1–33. [Google Scholar] [CrossRef][Green Version]
- Kang, S.; Xu, Y.; You, Q.; Flügel, W.A.; Pepin, N.; Yao, T. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett. 2010, 5, 015101. [Google Scholar] [CrossRef]
- Yang, K.; Ye, B.; Zhou, D.; Wu, B.; Foken, T.; Qin, J.; Zhou, Z. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim. Chang. 2011, 109, 517–534. [Google Scholar] [CrossRef]
- Qing, Y.; Zhu-Guo, M.A.; Liang, C. A preliminary analysis of the relationship between precipitation variation trends and altitude in China. Atmos. Ocean. Sci. Lett. 2011, 4, 41–46. [Google Scholar] [CrossRef]
- You, Q.; Fraedrich, K.; Min, J.; Kang, S.; Zhu, X.; Pepin, N.; Zhang, L. Observed surface wind speed in the Tibetan Plateau since 1980 and its physical causes. Int. J. Climatol. 2014, 34, 1873–1882. [Google Scholar] [CrossRef]
- You, Q.; Min, J.; Lin, H.; Pepin, N.; Sillanpää, M.; Kang, S. Observed climatology and trend in relative humidity in the central and eastern Tibetan Plateau. J. Geophys. Res. Atmos. 2015, 120, 3610–3621. [Google Scholar] [CrossRef][Green Version]
- You, Q.; Jiang, Z.; Bao, Y.; Pepin, N.; Fraedrich, K. Trends in upper tropospheric water vapour over the Tibetan Plateau from remote sensing. Int. J. Climatol. 2016, 36, 4862–4872. [Google Scholar] [CrossRef][Green Version]
- Liu, X.; Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- Niu, T.; Chen, L.; Zhou, Z. The characteristics of climate change over the Tibetan Plateau in the last 40 years and the detection of climatic jumps. Adv. Atmos. Sci. 2004, 21, 193–203. [Google Scholar] [CrossRef]
- Chen, D.; Xu, B.; Yao, T.; Guo, Z.; Cui, P.; Chen, F.; Zhang, R.; Zhang, X.; Zhang, Y.; Fan, J.; et al. Assessment of past, present and future environmental changes on the Tibetan Plateau. Chin. Sci. Bull. 2015, 60, 3025–3035. [Google Scholar]
- Palazzi, E.; Filippi, L.; von Hardenberg, J. Insights into elevation-dependent warming in the tibetan plateau-himalayas from cmip5 model simulations. Clim. Dyn. 2017, 48, 3991–4008. [Google Scholar] [CrossRef][Green Version]
- You, Q.; Kang, S.; Pepin, N.; Yan, Y. Relationship between trends in temperature extremes and elevation in the eastern and central tibetan plateau, 1961–2005. Geophys. Res. Lett. 2008, 35, 317–333. [Google Scholar] [CrossRef][Green Version]
- Guo, X.; Wang, L.; Tian, L.; Li, X. Elevation-dependent reductions in wind speed over and around the tibetan plateau. Int. J. Climatol. 2016, 37, 1117–1126. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Shen, W.; Li, Y.; Lin, J.; Lu, X.; Xu, X.; Jiang, J. Elevation-dependent vegetation greening of the Yarlung Zangbo River basin in the Southern Tibetan Plateau, 1999–2013. Remote Sens. 2015, 7, 16672–16687. [Google Scholar] [CrossRef][Green Version]
- Li, X.; Wang, L.; Guo, X.; Chen, D. Does summer precipitation trend over and around the tibetan plateau depend on elevation? Int. J. Climatol. 2017, 37, 1278–1284. [Google Scholar] [CrossRef]
- Cuo, L.; Zhang, Y. Spatial patterns of wet season precipitation vertical gradients on the tibetan plateau and the surroundings. Sci. Rep. 2017, 7, 5057. [Google Scholar] [CrossRef]
- Zhang, X.B.; Feng, Y. R ClimDex (1.0). User Manual. Climate Research Branch Environment Canada Downsview, Ontario Canada. 2004. Available online: http://etccdi.pacificclimate.org/software.shtml (accessed on 6 October 2020).
- Nicholls, N.; Murray, W. Workshop on indices and indicators for climate extremes: Asheville, NC, USA, 3–6 June 1997 Breakout Group B: Precipitation. Clim. Chang. 1999, 42, 23–49. [Google Scholar] [CrossRef]
- Easterling, D.R.; Alexander, L.V.; Mokssit, A.; Detemmerman, V. CCI/CLIVAR workshop to develop priority climate indices. Bull. Am. Meteorol. Soc. 2003, 8, 1403–1407. [Google Scholar]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changesin extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.W.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Spreen, W.C. A determination of the effect of topography upon precipitation. Trans. Am. Geophys. Union 1947, 28, 285–290. [Google Scholar] [CrossRef]
- Barry, R.G. Mountain Weather and Climate, 3rd ed.; Cambridge University Press: Cambridge, UK, 2008; 313p. [Google Scholar]
- Smith, R.B. The influence of mountains on the atmosphere. Adv. Geophys. 1979, 21, 87–230. [Google Scholar]
- Kim, J. Precipitation and snow budget over the southwestern united states during the 1994–1995 winter season in a mesoscale model simulation. Water Resour. Res. 1997, 33, 2831–2839. [Google Scholar] [CrossRef]
- Lenssen, N.J.; Schmidt, G.A.; Hansen, J.E.; Menne, M.J.; Persin, A.; Ruedy, R.; Zyss, D. Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos. 2019, 124, 6307–6326. [Google Scholar] [CrossRef]
- Wang, W.; Xiang, Y.; Gao, Y.; Lu, A.; Yao, T. Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas. Hydrol. Process. 2015, 29, 859–874. [Google Scholar] [CrossRef]
- Ohmura, A. Enhanced temperature variability in high-altitude climate change. Theor. Appl. Climatol. 2012, 110, 499–508. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1218. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 121–138. [Google Scholar] [CrossRef][Green Version]
- Dai, A. Recent climatology, variability, and trends in global surface humidity. J. Clim. 2006, 19, 3589–3606. [Google Scholar] [CrossRef][Green Version]
- Wentz, F.J.; Ricciardulli, L.; Hilburn, K.; Mears, C. How much more rain will global warming bring? Science 2007, 317, 233–235. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Donat, M.G.; Angélil, O.; Ukkola, A.M. Intensification of precipitation extremes in the world’s humid and water-limited regions. Environ. Res. Lett. 2019, 14, 065003. [Google Scholar] [CrossRef]
- Nijssen, B.; O’Donnell, G.M.; Hamlet, A.F.; Lettenmaier, D.P. Hydrologic sensitivity of global rivers to climate change. Clim. Chang. 2001, 50, 143–175. [Google Scholar] [CrossRef]
- Yao, J.; Yang, Q.; Mao, W.; Zhao, Y.; Xu, X. Precipitation trend—Elevation relationship in arid regions of the China. Glob. Planet. Chang. 2016, 143, 1–9. [Google Scholar] [CrossRef]
- Yao, T.; Xue, Y.; Chen, D.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lau, W.K.-M.; Lettenmaier, D.; Mosbrugger, V.; et al. Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and nalysis. Bull. Am. Meteorol. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Bibi, S.; Wang, L.; Li, X.; Zhou, J.; Chen, D.; Yao, T. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: A review. Int. J. Climatol. 2018, 38, e1–e17. [Google Scholar] [CrossRef][Green Version]
- Cui, P.; Jia, Y. Mountain hazards in the Tibetan Plateau: Research status and prospects. Natl. Sci. Rev. 2015, 2, 397–399. [Google Scholar] [CrossRef][Green Version]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The state and fate of Himalayan glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Richardson, S.D.; Reynolds, J.M. An overview of glacial hazards in the Himalayas. Quat. Int. 2000, 65–66, 31–47. [Google Scholar] [CrossRef]
ID | Indicator Name | Definitions | Units |
---|---|---|---|
absolute indices | |||
RX1day | Max 1-day precipitation amount | Monthly maximum 1-day precipitation | mm |
SDII | Simple daily intensity index | Annual total precipitation divided by the number of wet days (defined as PRCP >=1.0 mm) in the year | mm/day |
PRCPTOT | Annual total wet-day precipitation | Annual total PRCP in wet days (RR >= 1 mm) | mm |
threshold indices | |||
R10 | Number of heavy precipitation days | Annual count of days when PRCP >= 10 mm | day |
duration indices | |||
CDD | Consecutive dry days | Maximum number of consecutive days with RR < 1 mm | day |
CWD | Consecutive wet days | Maximum number of consecutive days with RR >= 1 mm | day |
percentile-based threshold indices | |||
R95p | Very wet days | Annual total PRCP when RR > 95th percentile | mm |
ID | p < 0.01 | 0.01 < p < 0.05 | 0.05 < p < 0.1 | 0.1 < p |
---|---|---|---|---|
CDD | 4 | 24 | 22 | 63 |
CWD | 8 | 18 | 21 | 66 |
PRCTOT | 6 | 14 | 26 | 67 |
SDII | 5 | 17 | 25 | 65 |
R95p | 10 | 25 | 27 | 51 |
R10 | 5 | 18 | 30 | 60 |
RX1day | 6 | 23 | 35 | 39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, W.; Yao, J.; He, Q.; Chen, J. Elevation-Dependent Trends in Precipitation Observed over and around the Tibetan Plateau from 1971 to 2017. Water 2021, 13, 2848. https://doi.org/10.3390/w13202848
Hu W, Yao J, He Q, Chen J. Elevation-Dependent Trends in Precipitation Observed over and around the Tibetan Plateau from 1971 to 2017. Water. 2021; 13(20):2848. https://doi.org/10.3390/w13202848
Chicago/Turabian StyleHu, Wenfeng, Junqiang Yao, Qing He, and Jing Chen. 2021. "Elevation-Dependent Trends in Precipitation Observed over and around the Tibetan Plateau from 1971 to 2017" Water 13, no. 20: 2848. https://doi.org/10.3390/w13202848