Translocation of Soil Arsenic towards Accumulation in Rice: Magnitude of Water Management to Minimize Health Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Soil Properties
2.2. Treatments and Experimental Design
2.3. Pot Preparation and Fertilizer Application
2.4. Transplanting of Seedlings and Water Management
2.5. Determination of As Concentration
2.6. Determination of As Uptake
2.7. Health Risk Estimation from As Exposure
2.8. Quality Control of the Data
2.9. Data Analysis
3. Results
3.1. Effect of soil As, Water Management and Their Interaction on Growth Parameters of BRRI dhan28
3.2. Effect of Soil As, Water Management and Their Interaction on Grain and Straw Yield of BRRI dhan28
3.3. Effect of Soil As, Water Management and Their Interaction on As Accumulation in Rice Grain and Straw
3.4. Effect of Soil As, Water Management and Their Interaction on Grain, Straw and Total As Uptake by BRRI dhan28
3.5. Exposure and Cancer Risk Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakraborti, D.; Singh, S.K.; Rahman, M.M.; Dutta, R.N.; Mukherjee, S.C.; Pati, S.; Kar, P.B. Groundwater arsenic contamination in the Ganga River Basin: A future health danger. Int. J. Environ. Res. Public Health 2018, 15, 180. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Saha, R.; Dey, N.C.; Rahman, S.; Galagedara, L.; Bhattacharya, P. Exploring suitable sites for installing safe drinking water wells in coastal Bangladesh. Groundw. Sustain. Dev. 2018, 7, 91–100. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Ahmed, Z.; Krupnik, T.J. Groundwater Management in Bangladesh: An Analysis of Problems and Opportunities; Cereal Systems Initiative for South Asia Mechanization and Irrigation (CSISA-MI) Project, Research Report No. 2; CIMMYT: Dhaka, Bangladesh, 2014. [Google Scholar]
- Chakraborti, D.; Rahman, M.M.; Das, B.; Murrill, M.; Dey, S.; Mukherjee, S.C.; Dhar, R.K.; Biswas, B.K.; Chowdhury, U.K.; Roy, S.; et al. Status of groundwater arsenic contamination in Bangladesh: A 14-year study report. Water Res. 2010, 44, 5789–5802. [Google Scholar] [CrossRef]
- Iqbal, A.B.; Rahman, M.M.; Mondal, D.R.; Khandaker, N.R.; Khan, H.M.; Ahsan, G.U.; Jakaria, M.; Hossain, M.M. Assessment of Bangladesh groundwater for drinking and irrigation using weighted overlay analysis. Groundw. Sustain. Dev. 2020, 10, 100312. [Google Scholar] [CrossRef]
- Hossain, M.; Islam, M.R.; Jahiruddin, M.; Abedin, A.; Islam, S.; Meharg, A.A. Effects of Arsenic-Contaminated Irrigation Water on Growth, Yield, and Nutrient Concentration in Rice. Commun. Soil Sci. Plant Anal. 2008, 39, 302–313. [Google Scholar] [CrossRef]
- BBS. Year Book of Agricultural Statistics of Bangladesh; Bangladesh Bureau of Statistics: Dhaka, Bangladesh, 2004.
- Williams, P.N.; Villada, A.; Deacon, C.; Raab, A.; Figuerola, J.; Green, A.J.; Feldmann, J.; Meharg, A.A. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ. Sci. Technol. 2007, 41, 6854–6859. [Google Scholar] [CrossRef]
- Xu, X.Y.; McGrath, S.P.; Meharg, A.A.; Zhao, F.J. Growing rice aerobically markedly decreases arsenic accumulation. Environ. Sci. Technol. 2008, 42, 5574–5579. [Google Scholar] [CrossRef]
- Talukder, A.; Meisner, C.A.; Sarkar, M.A.R.; Islam, M.S.; Sayre, K.D.; Duxbury, J.M.; Lauren, J.G. Effect of water management, arsenic and phosphorus levels on rice in a high arsenic soil-water system: II. Arsenic uptake. Ecotoxicol. Environ. Saf. 2012, 80, 145–151. [Google Scholar] [CrossRef]
- Mondal, D.; Rahman, M.M.; Suman, S.; Sharma, P.; Siddique, A.B.; Rahman, M.A.; Bari, A.S.M.F.; Kumar, R.; Bose, N.; Singh, S.K.; et al. Arsenic exposure from food exceeds that from drinking water in endemic area of Bihar, India. Sci. Total Environ. 2021, 754, 142082. [Google Scholar] [CrossRef]
- Lin, S.C.; Chang, T.; Huang, W.; Lur, H.; Shyu, G. Accumulation of arsenic in rice plant: A study of an arsenic-contaminated site in Taiwan. Paddy Water Environ. 2015, 13, 11–18. [Google Scholar] [CrossRef]
- Abedin, M.J.; Cresser, M.S.; Meharg, A.A.; Feldmann, J.; Cotter-Howells, J. Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ. Sci. Tech. 2002, 36, 962–968. [Google Scholar] [CrossRef]
- Technologies and Costs for Removal of Arsenic from Drinking Water; Ground Water and Drinking Water Office, United States Environmental Protection Agency: Washington, DC, USA, 2000. Available online: www.epa.gov/ogwdw/arsenic/pdfs/treatments_and_costs.pdf (accessed on 19 June 2012).
- Berg, M.; Luzi, S.; Trang, P.T.K.; Viet, P.H.; Giger, W.; Stuben, D. Arsenic removal from groundwater by household sand filters: Comparative field study, model calculations, and health benefits. Environ. Sci. Technol. 2006, 40, 5567–5573. [Google Scholar] [CrossRef]
- Figoli, A.; Fuoco, I.; Apollaro, C.; Chabane, M.; Mancuso, R.; Gabriele, B.; Rosa, R.D.; Vespasiano, G.; Barca, D.; Criscuoli, A. Arsenic-contaminated groundwaters remediation by nanofiltration. Sep. Purif. Technol. 2020, 238, 116461. [Google Scholar] [CrossRef]
- Roberts, L.C.; Hug, S.J.; Dittmar, J.; Voegelin, A.; Saha, G.C.; Ali, M.A.; Borhan, A.; Badruzzaman, M.; Kretzschmar, R. Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh:1. Irrigation water. Environ. Sci. Technol. 2007, 41, 5960–5966. [Google Scholar] [CrossRef]
- Roberts, L.C.; Hug, S.J.; Voegelin, A.; Dittmar, J.; Kretzschmar, R. Arsenic dynamics in porewater of an intermittently irrigated paddy field in Bangladesh. Environ. Sci. Technol. 2011, 45, 971–976. [Google Scholar] [CrossRef]
- Belder, P.; Spiertz, J.H.J.; Bouman, B.A.M.G.; Lu, G.; Tuong, T.P. Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crop Res. 2005, 93, 169–185. [Google Scholar] [CrossRef]
- Linquist, B.A.; Anders, M.M.; Adviento-Borbe, M.A.A.; Chaney, R.L.; Nalley, L.L.; da Rosa, E.F.F.; van Kessel, C. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Glob. Chang. Biol. 2015, 21, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Rahman, M.M.; Islam, M.R.; Naidu, R. Geographical variation and age-related dietary exposure to arsenic in rice from Bangladesh. Sci. Total Environ. 2017, 601–602, 122–131. [Google Scholar] [CrossRef]
- Honma, T.; Ohba, H.; Kaneko-Kadokura, A.; Makino, T.; Nakamura, K.; Katou, H. Optimal Soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environ. Sci. Technol. 2016, 50, 4178–4185. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.; Barla, A.; Yadav, H.; Bose, S. Arsenic contamination 454 in shallow groundwater and agricultural soil of Chakdaha block, West Bengal, India. Front. Environ Sci. 2014, 2, 50. [Google Scholar] [CrossRef][Green Version]
- Masscheleyn, P.H.; Delaune, R.D.; William, H.; Patrick, J. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol. 1991, 25, 1414–1419. [Google Scholar] [CrossRef]
- Liu, J.G.; Wang, D.K.; Xu, J.K.; Zhu, Q.S.; Wong, M.H. Variations among rice cultivars on root oxidation and Cd uptake. J Environ. Sci. 2006, 18, 120–124. [Google Scholar]
- Hossain, M.; Williams, P.N.; Mestrot, A.; Norton, G.J.; Deacon, C.M.; Meharg, A.A. Spatial Heterogeneity and Kinetic Regulation of Arsenic Dynamics in Mangrove Sediments: The Sundarbans, Bangladesh. Environ. Sci. Technol. 2012, 46, 8645–8652. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). Rice Information; FAO: Rome, Italy, 2002; Volume 3. [Google Scholar]
- Zavala, Y.J.; Duxbury, J.M. Arsenic in Rice: I. Estimating Normal Levels of Total Arsenic in Rice Grain. Environ. Sci. Technol. 2008, 42, 3856–3860. [Google Scholar] [CrossRef]
- Signes-Pastor, A.J.; Carey, M.; Meharg, A.A. Inorganic arsenic in rice-based products for infants and young children. Food Chem. 2016, 191, 128–134. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Islam, S.; Rahman, M.M.; Rahman, M.A.; Naidu, R. Inorganic arsenic in rice and rice-based diets: Health risk assessment. Food Control 2017, 82, 196–202. [Google Scholar] [CrossRef]
- Rahman, M.A.; Rahman, M.M.; Reichman, S.M.; Lim, R.P.; Naidu, R. Arsenic Speciation in Australian-Grown and Imported Rice on Sale in Australia: Implications for Human Health Risk. J. Agric. Food Chem. 2014, 62, 6016–6024. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.A.; Signes-Pastor, A.J.; Argos, M.; Slaughter, F.; Pendergrast, C.; Punshon, T.; Gossai, A.; Ahsan, H.; Karagas, M.R. Assessment of human dietary exposure to arsenic through rice. Sci. Total Environ. 2017, 586, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Mondal, D.; Polya, D.A. Positive Association of Cardiovascular Disease (CVD) with chronic exposure to drinking water arsenic (As) at concentrations below the WHO provisional guideline value: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2020, 17, 2536. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Xu, L.; Polya, D.A. Exploratory study of the association in the United Kingdom between hypertension and inorganic arsenic (iAs) intake from rice and rice products. Environ. Geochem. Health. 2021, 43, 2505–2538. [Google Scholar] [CrossRef]
- Stone, R. FOOD SAFETY: Arsenic and Paddy Rice: A Neglected Cancer Risk? Science 2008, 321, 184–185. [Google Scholar] [CrossRef]
- UNDP and FAO. Land Resources Appraisal of Bangladesh for Agricultural Development. Report 2; Agro-Ecological Regions of Bangladesh, United Nations Development Programme, Food and Agriculture Organization: Rome, Italy, 1988; pp. 212–221. [Google Scholar]
- Bouyoucos, G.J. The hydrometer as a new method for the mechanical analysis of soils. Soil Sci. 1927, 23, 343–353. [Google Scholar] [CrossRef]
- Peech, M. Hydrogen-ion activity. In Methods of Soil Analysis, Part 2; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 914–926. [Google Scholar]
- Black, C.A. Method of Soil Analysis, Part 2; Chemical and Microbiological Properties, American Society of Agronomy, Inc.: Wisconsin, MI, USA, 1965. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-Total. In Methods of Soil Analysis, Part 2; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; ASA and SSSA: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Olsen, S.R.; Sommer, L.E. Phosphorus. In Methods of Soil Analysis, Part 2; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; ASA and SSSA: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Knudsen, D.; Peterson, G.A.; Pratt, P.F. Lithium, sodium and potassium. In Methods of Soil Analysis, Part 2; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; ASA and SSSA: Madison, WI, USA, 1982; pp. 225–245. [Google Scholar]
- Fox, R.L.; Olson, R.A.; Rhoades, H.F. Evaluating the sulfur status of soils by plants and soil tests. Soil Sci. Soc. Am. Proceed. 1964, 28, 243–246. [Google Scholar]
- Islam, S.; Rahman, M.M.; Naidu, R. Impact of water and fertilizer management on arsenic bioaccumulation and speciation in rice plants grown under greenhouse conditions. Chemosphere 2019, 214, 606–613. [Google Scholar] [CrossRef] [PubMed]
- FRG. Fertilizer Recommendation Guide; Bangladesh Agricultural Research Council: Dhaka, Bangladesh, 2018. [Google Scholar]
- Harine, I.J.; Islam, M.R.; Hossain, M.; Afroz, H.; Jahan, R.; Siddique, A.B.; Uddin, S.; Hossain, M.A.; Alamri, S.; Siddiqui, M.H.; et al. Arsenic accumulation in rice grain as influenced by water management: Human health risk assessment. Agronomy 2021, 11, 1741. [Google Scholar] [CrossRef]
- Rahman, M.M.; Asaduzzaman, M.; Naidu, R. Arsenic exposure from rice and water sources in the Noakhali district of Bangladesh. Water Qual. Expo. Health 2011, 3, 1–10. [Google Scholar] [CrossRef]
- Straif, K.; Benbrahim-Tallaa, L.; Baan, R.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; Bouvard, V.; Guha, N.; Freeman, C.; Galichet, L.; et al. A review of human carcinogens--part C: Metals, arsenic, dusts, and fibres. Lancet Oncol. 2009, 10, 453–454. [Google Scholar] [CrossRef]
- Abtahi, M.; Fakhri, Y.; Conti, G.O.; Keramati, H.; Zandsalimi, Y.; Bahmani, Z.; Hosseini, P.R.; Sarkhosh, M.; Moradi, B.; Amanidaz, N. Heavy metals (As, Cr, Pb, Cd and Ni) concentrations in rice (Oryza sativa) from Iran and associated risk assessment: A systematic review. Toxin Rev. 2017, 36, 331–341. [Google Scholar] [CrossRef]
- Kusin, F.M.; Azani, N.N.M.; Hasan, S.N.M.S.; Sulong, N.A. Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. Catena 2018, 165, 454–464. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Hadei, M.; Sharafi, K. Human health risk assessment by Monte Carlo simulation method for heavy metals of commonly consumed cereals in Iran- Uncertainty and sensitivity analysis. J. Food Compos. Anal. 2021, 96, 103697. [Google Scholar] [CrossRef]
- Li, R.Y.; Stroud, J.L.; Ma, J.F.; McGrath, S.P.; Zhao, F.J. Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ. Sci. Technol. 2009, 43, 3778–3783. [Google Scholar] [CrossRef]
- Zhuang, P.; Zhang, C.; Li, Y.; Zou, B.; Mo, H.; Wu, K. Assessment of influences of cooking on cadmium and arsenic bio-accessibility in rice, using an in vitro physiologically-based extraction test. Food Chem. 2016, 213, 206–214. [Google Scholar] [CrossRef]
- Antoniadis, V.; Golia, E.E.; Liu, Y.T.; Wang, S.L.; Shaheen, S.M.; Rinklebe, J. Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece. Environ. Int. 2019, 124, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Halder, D.; Saha, J.K.; Biswas, A. Accumulation of essential and non-essential trace elements in rice grain: Possible health impacts on rice consumers in West Bengal, India. Sci. Total Environ. 2020, 706, 135944. [Google Scholar] [CrossRef]
- Norton, G.J.; Travis, T.J.; Douglas, A.; Price, A.H.; Hossain, M.; Islam, M.R. Utilizing genetic variation and water management for cultivating low grain arsenic rice. Arsenic Research and Global Sustainability. In Proceedings of the Sixth International Congress on Arsenic in the Environment, Stockholm, Sweden, 19–23 June 2016. [Google Scholar]
- Azad, M.A.K.; Mondal, A.H.M.F.K.; Hossain, M.I.; Moniruzzaman, M. Effect of Arsenic Amended Irrigation Water on Growth and Yield of BR-11 Rice (Oryza sativa L.) Grown in Open Field Gangetic Soil Condition in Rajshahi. J. Environ. Sci. Nat. Res. 2012, 5, 55–59. [Google Scholar] [CrossRef]
- Shah, A.L.; Naher, U.A.; Hasan, Z.; Panhwar, Q.A.; Radziah, O. Influence of Arsenic on Rice Growth and its Mitigation with Different Water Management Techniques. Asian J. Crop. Sci. 2014, 6, 373–382. [Google Scholar] [CrossRef]
- Islam, F.S.; Gault, A.G.; Boothman, C.; Polya, D.A.; Charnock, J.M.; Chatterjee, D. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 2004, 430, 68–71. [Google Scholar] [CrossRef]
- Finnegan, P.M.; Chen, W. Arsenic toxicity: The effects on plant metabolism. Front. Physiol. 2012, 3, 182. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rahman, M.; Hasegawa, H.; Rahman, M.M.; Rahman, M.A. Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere 2007, 69, 942–948. [Google Scholar] [CrossRef][Green Version]
- Zhao, F.J.; McGrath, S.P.; Meharg, A.A. Arsenic as a Food Chain Contaminant: Mechanisms of Plant Uptake and Metabolism and Mitigation Strategies. Annu. Rev. Plant Biol. 2010, 61, 535–559. [Google Scholar] [CrossRef][Green Version]
- Islam, S.; Rahman, M.M.; Islam, M.R.; Naidu, R. Effect of irrigation and genotypes towards reduction in arsenic load in rice. Sci. Total Environ. 2017, 609, 311–318. [Google Scholar] [CrossRef]
- Liu, L.; Chen, T.; Wang, Z.; Zhang, H.; Yang, J.; Zhang, J. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crop Res. 2013, 154, 226–235. [Google Scholar] [CrossRef]
- Xu, W.; Dai, W.; Yan, H.; Li, S.; Shen, H.; Chen, Y.; Xu, H.; Sun, Y.; He, Z.; Ma, M. Arabidopsis NIP3;1 Plays an Important Role in Arsenic Uptake and Root-to-Shoot Translocation under Arsenite Stress Conditions. Mol. Plant 2015, 8, 722–733. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hu, P.; Huang, J.; Ouyang, Y.; Wu, L.; Song, J.; Wang, S.; Li, Z.; Han, C.; Zhou, L.; Huang, Y.; et al. Water management affects arsenic and cadmium accumulation in different rice cultivars. Environ. Geochem. Health 2013, 35, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Jahan, I.; Islam, M.R.; Hoque, T.S.; Hossain, M.; Abedin, M.A. Influence of Soil Arsenic in Rice and its Mitigation Through Water Management. J. Bangladesh Agril. Univ. 2020, 18, 545–550. [Google Scholar] [CrossRef]
- Ma, J.F.; Yamaji, N.; Mitani, N.; Xu, X.Y.; Su, Y.H.; McGrath, S.P.; Zhao, F. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc. Natl. Acad. Sci. USA 2008, 105, 9931–9935. [Google Scholar] [CrossRef][Green Version]
- Kamiya, T.; Islam, M.R.; Duan, G.; Uraguchi, S.; Fujiwara, T. Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil Sci. Plant Natr. 2013, 59, 580–590. [Google Scholar] [CrossRef]
- Ma, J.F.; Yamaji, N. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 2006, 11, 392–397. [Google Scholar] [CrossRef]
- Norton, G.J.; Adomako, E.E.; Deacon, C.M.; Carey, A.M.; Price, A.; Meharg, A.A. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species. Environ. Pollut. 2013, 177, 38–47. [Google Scholar] [CrossRef]
- Norton, G.J.; Travis, A.J.; Danku, J.M.C.; Salt, D.E.; Hossain, M.; Islam, M.R. Biomass and elemental concentrations of 22 rice cultivars grown under alternate wetting and drying conditions at three field sites in Bangladesh. Food Energy Secur. 2017, 6, 98–112. [Google Scholar] [CrossRef][Green Version]
- Norton, G.J.; Travis, A.J.; Douglas, A.; Fairley, S.; Alves, E.D.P.; Ruang-areerate, P. Genome Wide Association Mapping of Grain and Straw Biomass Traits in the Rice Bengal and Assam Aus Panel (BAAP) Grown Under Alternate Wetting and Drying and Permanently Flooded Irrigation. Front. Plant Sci. 2018, 9, 1223. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (USEPA). Integrated Risk Information System of the US Environmental Protection Agency; U.S. Environmental Protection Agency: Washington, DC, USA, 2012.
- Rahman, M.A.; Kumar, S.; Lamb, D.; Rahman, M.M. Health Risk Assessment of Arsenic, Manganese, and Iron from Drinking Water for High School Children. Water Air Soil Pollut. 2021, 232, 1–13. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (USEPA). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, OSWER 9355; Office of Emergency and Remedial Response: Washington, DC, USA, 2002.
- Fakhri, Y.; Bjørklund, G.; Bandpei, A.M.; Chirumbolo, S.; Keramati, H.; Hosseini Pouya, R.; Asadi, A.; Amanidaz, N.; Sarafraz, M.; Sheikhmohammad, A.; et al. Concentrations of arsenic and lead in rice (Oryza sativa L.) in Iran: A systematic review and carcinogenic risk assessment. Food Chem. Toxicol. 2018, 113, 267–277. [Google Scholar] [CrossRef] [PubMed]
Soil Properties | Values | Method of Determination |
---|---|---|
Soil texture | Silt loam | Hydrometer method [37] |
% Sand | 21 | |
% Silt | 62 | |
% Clay | 17 | |
Soil pH | 6.3 | Glass electrode pH meter method [38] |
Soil organic matter (%) | 1.2 | Wet oxidation method [39] |
Soil total nitrogen content (mg kg−1) | 1320 | micro-Kjeldahl method [40] |
Soil available phosphorus content (mg kg−1) | 9.31 | Olsen method [41] |
Soil exchangeable potassium content (meq %) | 0.07 | NH4OAc (1 N) extraction method [42] |
Soil available sulphur content (mg kg−1) | 13.16 | CaCl2 turbidity method [43] |
Soil total As content (mg kg−1) (Background As) | 3.73 | AAS (Graphite Furnace) method [6] |
Treatments/ Interactions | Plant Height (cm) | Panicle Length (cm) | Filled Grain per Panicle (No.) | Sterile Grain per Panicle (No.) | 1000-Grain Weight (g) | |
---|---|---|---|---|---|---|
T | T1 | 71.11 ± 1.88 | 22.47 ± 0.47 a | 68.86 ± 0.59 a | 14.11 ± 0.37 b | 19.37 ± 1.16 a |
T2 | 68.33 ± 1.60 | 20.53 ± 0.25 b | 61.81 ± 0.73 b | 26.84 ± 3.95 a | 17.08 ± 0.59 b | |
T3 | 65.91 ± 3.40 | 18.06 ± 0.63 c | 56.58 ± 1.35 c | 30.68 ± 2.77 a | 14.69 ± 0.43 c | |
p value | 0.341 | 0.001 | 0.000 | 0.002 | 0.000 | |
I | I1 | 68.66 ± 0.78 | 19.99 ± 0.96 | 60.96 ± 2.48 b | 24.91 ± 3.77 | 15.99 ± 0.58 b |
I2 | 68.24 ± 2.87 | 20.71 ± 0.77 | 63.87 ± 2.05 a | 22.85 ± 3.84 | 18.11 ± 1.20 a | |
p value | 0.877 | 0.157 | 0.001 | 0.387 | 0.004 | |
T × I | T1I1 | 67.92 ± 0.69 | 22.03 ± 0.80 | 67.86 ± 0.15 | 14.62 ± 0.09 b | 17.42 ± 0.23 |
T2I1 | 68.83 ± 0.47 | 20.82 ± 0.44 | 60.66 ± 0.66 | 32.86 ± 4.57 a | 16.21 ± 0.09 | |
T3I1 | 69.25 ± 2.75 | 17.14 ± 0.24 | 54.36 ± 0.86 | 27.25 ± 4.25 ab | 14.34 ± 0.32 | |
T1I2 | 74.30 ± 0.58 | 22.92 ± 0.54 | 69.86 ± 0.21 | 13.60 ± 0.52 b | 21.33 ± 0.63 | |
T2I2 | 67.84 ± 3.84 | 20.24 ± 0.13 | 62.95 ± 0.35 | 20.82 ± 0.62 ab | 17.95 ± 0.75 | |
T3I2 | 62.57 ± 6.27 | 18.99 ± 0.78 | 58.81 ± 0.58 | 34.12 ± 2.12 a | 15.05 ± 0.88 | |
p value | 0.209 | 0.162 | 0.114 | 0.035 | 0.071 |
Treatments/ Interactions | Grain Yield (g pot−1) | Straw Yield (g pot−1) | As Concentration in Grain (mg kg−1) | As Concentration in Straw (mg kg−1) | |
---|---|---|---|---|---|
T | T1 | 17.60 ± 0.83 a | 24.70 ± 0.94 a | 0.24 ± 0.01 c | 2.66 ± 0.68 c |
T2 | 13.20 ± 0.59 b | 18.67 ± 1.02 b | 0.39 ± 0.03 b | 7.55 ± 0.89 b | |
T3 | 9.55 ± 0.36 c | 12.95 ± 0.46 c | 0.56 ± 0.02 a | 15.10 ± 1.15 a | |
p value | <0.001 | <0.001 | <0.001 | <0.001 | |
I | I1 | 12.6 ± 1.40 b | 17.59 ± 2.03 b | 0.43 ± 0.06 a | 10.18 ± 2.62 a |
I2 | 14.3 ± 1.59 a | 19.95 ± 2.32 a | 0.36 ± 0.06 b | 7.29 ± 2.34 b | |
p value | 0.017 | 0.009 | 0.000 | 0.001 | |
T × I | T1I1 | 16.55 ± 0.25 | 23.17 ± 0.71 | 0.26 ± 0.02 | 3.74 ± 0.63 |
T2I1 | 12.30 ± 0.70 | 17.30 ± 1.30 | 0.44 ± 0.02 | 8.99 ± 0.32 | |
T3I1 | 8.95 ± 0.05 | 12.30 ± 0.55 | 0.59 ± 0.01 | 17.83 ± 0.94 | |
T1I2 | 18.65 ± 1.35 | 26.23 ± 0.30 | 0.22 ± 0.01 | 1.59 ± 0.25 | |
T2I2 | 14.10 ± 0.10 | 20.03 ± 0.88 | 0.34 ± 0.01 | 6.11 ± 0.77 | |
T3I2 | 10.15 ± 0.25 | 13.60 ± 0.40 | 0.52 ± 0.01 | 14.17 ± 0.58 | |
p value | 0.781 | 0.513 | 0.065 | 0.524 |
Treatments/Interactions | Arsenic Uptake in Grain (µg pot−1) | Arsenic Uptake in Straw (µg pot−1) | Total As Uptake (µg pot−1) | |
---|---|---|---|---|
T | T1 | 4.10 ± 0.13 b | 63.89 ± 14.0 c | 68.00 ± 14.1 c |
T2 | 5.06 ± 0.20 b | 138.73 ± 12.8 b | 143.80 ± 12.9 b | |
T3 | 5.28 ± 0.08 a | 206.09 ± 11.8 a | 211.37 ± 11.8 a | |
p value | <0.001 | <0.001 | <0.001 | |
I | I1 | 4.98 ± 0.25 a | 153.96 ± 25.6 a | 158.94 ± 25.8 a |
I2 | 4.65 ± 0.24 b | 118.51 ± 27.7 b | 123.16 ± 28.0 b | |
p value | 0.032 | 0.016 | 0.015 | |
T × I | T1I1 | 4.22 ± 0.19 | 86.28 ± 12.0 | 90.49 ± 11.8 |
T2I1 | 5.39 ± 0.06 | 155.85 ± 17.1 | 161.25 ± 17.1 | |
T3I1 | 5.33 ± 0.07 | 219.76 ± 21.3 | 225.09 ± 21.2 | |
T1I2 | 4.00 ± 0.20 | 41.50 ± 5.95 | 45.51 ± 5.75 | |
T2I2 | 4.72 ± 0.10 | 121.62 ± 9.94 | 126.34 ± 9.84 | |
T3I2 | 5.23 ± 0.18 | 192.41 ± 2.15 | 197.64 ± 1.97 | |
p value | 0.189 | 0.806 | 0.802 |
Treatments | Grain As Concentration (mg kg−1) | Inorganic Grain As Concentration (mg kg−1) | ADI × 10−3 | HQ | CR*10−3 |
---|---|---|---|---|---|
T1 | 0.24 | 0.18 | 1.08 | 3.60 | 1.62 |
T2 | 0.39 | 0.28 | 1.76 | 5.86 | 2.64 |
T3 | 0.56 | 0.41 | 2.52 | 8.41 | 3.78 |
I1 | 0.43 | 0.31 | 1.94 | 6.46 | 2.91 |
I2 | 0.36 | 0.26 | 1.62 | 5.41 | 2.43 |
T1I1 | 0.26 | 0.19 | 1.17 | 3.90 | 1.76 |
T2I1 | 0.44 | 0.32 | 1.98 | 6.61 | 2.97 |
T3I1 | 0.59 | 0.43 | 2.66 | 8.86 | 3.99 |
T1I2 | 0.22 | 0.16 | 0.99 | 3.30 | 1.49 |
T2I2 | 0.34 | 0.25 | 1.53 | 5.11 | 2.30 |
T3I2 | 0.52 | 0.38 | 2.34 | 7.81 | 3.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahan, I.; Abedin, M.A.; Islam, M.R.; Hossain, M.; Hoque, T.S.; Quadir, Q.F.; Hossain, M.I.; Gaber, A.; Althobaiti, Y.S.; Rahman, M.M. Translocation of Soil Arsenic towards Accumulation in Rice: Magnitude of Water Management to Minimize Health Risk. Water 2021, 13, 2816. https://doi.org/10.3390/w13202816
Jahan I, Abedin MA, Islam MR, Hossain M, Hoque TS, Quadir QF, Hossain MI, Gaber A, Althobaiti YS, Rahman MM. Translocation of Soil Arsenic towards Accumulation in Rice: Magnitude of Water Management to Minimize Health Risk. Water. 2021; 13(20):2816. https://doi.org/10.3390/w13202816
Chicago/Turabian StyleJahan, Israt, Mohammad Anwarul Abedin, Mohammad Rafiqul Islam, Mahmud Hossain, Tahsina Sharmin Hoque, Quazi Forhad Quadir, Mohammad Ismail Hossain, Ahmed Gaber, Yusuf S. Althobaiti, and Mohammad Mahmudur Rahman. 2021. "Translocation of Soil Arsenic towards Accumulation in Rice: Magnitude of Water Management to Minimize Health Risk" Water 13, no. 20: 2816. https://doi.org/10.3390/w13202816