Monitoring Skeletal Anomalies in Big-Scale Sand Smelt, Atherina boyeri, as a Potential Complementary Tool for Early Detection of Effects of Anthropic Pressure in Coastal Lagoons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Environmental Assessment
2.3. Fish Samplings and Preparation
2.4. Analysis of Skeletal Anomalies
2.5. Data Analysis
3. Results
3.1. Environmental Assessment
3.2. Skeletal Anomalies Analysis
3.3. Correspondence Analysis
3.4. Multiple Correspondence Analysis (MCA)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kara, M.H.; Quignard, J.P. Atherinidea. In Fishes in Lagoons and Estuaries in the Mediterranean: Diversity, Bioecology and Exploitation; Ecological Science Series; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; Volume 2, pp. 1–48. [Google Scholar]
- Mistri, M.; Colombo, G. Morphometric variability in sandsmelt, Atherina boyeri Risso 1810, populations from different italian sites. Ital. J. Zool. 1988, 55, 129–132. [Google Scholar] [CrossRef]
- Bamber, R.N.; Henderson, P.A. Pre-adaptive plasticity. J. Fish Biol. 1988, 33, 17–23. [Google Scholar] [CrossRef]
- Antonucci, F.; Boglione, C.; Cerasari, V.; Caccia, E.; Costa, C. External shape analyses in Atherina boyeri (Risso, 1810) from different environments. Ital. J. Zool. 2012, 79, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Quignard, J.P.; Pras, A. Atherinidae. In Fishes of the North-Eastern Atlantic and Mediterranean (FNAM); Whitehead, P.J.P., Bauchot, M.-L., Hureau, J.-C., Nielsen, J.T.E., Eds.; UNESCO: Paris, France, 1986; pp. 1207–1210. [Google Scholar]
- Fishbase: Big Scale sand Smelt Atherina boyeri (Risso, 1810). Available online: https://www.fishbase.se/summary/1696 (accessed on 20 January 2020).
- Bartulović, V.; Glamuzina, B.; Conides, A.; Dulčić, J.; Lučić, D.; Njire, J.; Kožul, V. Age, growth, mortality and sex ratio of sand smelt, Atherina boyeri Risso, 1810 (Pisces: Atherinidae) in the estuary of the Mala Neretva River (middle-eastern Adriatic, Croatia). J. Appl. Ichthyol. 2004, 20, 427–430. [Google Scholar] [CrossRef]
- Kiener, A.; Spillmann, C.J. Contribution à l’étude systématique et écologique des Athérines des côtes françaises. Mem. Mus. Natl. d’Histoire Nat. 1969, 60, 33–74. [Google Scholar]
- Francisco, S.M.; Congiu, L.; Stefanni, S.; Castilho, R.; Brito, A.; Ivanova, P.P.; Levy, A.; Cabral, H.; Kilias, G.; Doadrio, I. Phylogenetic relationships of the North-eastern Atlantic and Mediterranean forms of Atherina (Pisces, Atherinidae). Mol. Phylogenet. Evol. 2008, 48, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Focant, B.; Rosecchi, E.; Crivelli, A.J. Attempt at biochemical characterization of sand smelt Atherina boyeri Risso, 1810 (Pisces, Atherinidae) populations from the Camargue (Rhône delta, France). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1999, 122, 261–267. [Google Scholar] [CrossRef]
- Astolfi, L.; Dupanloup, I.; Rossi, R.; Bisol, P.M.; Faure, E.; Congiu, L. Mitochondrial variability of sand smelt Atherina boyeri populations from north Mediterranean coastal lagoons. Mar. Ecol. Prog. Ser. 2005, 297, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Trabelsi, M.; Gilles, A.; Fleury, C.; Mâamouri, F.; Quignard, J.P.; Faure, É. Atherina punctata and Atherina lagunae (Pisces, Atherinidae), new species found in the Mediterranean Sea. 1.Biometric investigations of three Atherinid species. Comptes Rendus-Biol. 2002, 325, 967–975. [Google Scholar] [CrossRef]
- Trabelsi, M.; Gilles, A.; Fleury, C.; Mâamouri, F.; Quignard, J.P.; Faure, É. Atherina punctata and Atherina lagunae (Pisces, Atherinidae), new species found in the Mediterranean Sea. 2. Molecular investigations of three Atherinid species. Comptes Rendus-Biol. 2002, 325, 1119–1128. [Google Scholar] [CrossRef]
- Avise, J.C.; Wollenberg, K. Phylogenetics and the origin of species. Proc. Natl. Acad. Sci. USA 1997, 94, 7748–7755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilliers, C.; Amara, R.; Bergeron, J.P. Comparison of growth and condition indices of juvenile flatfish in different coastal nursery grounds. Environ. Biol. Fishes 2004, 71, 189–198. [Google Scholar] [CrossRef]
- Trabelsi, M.; Bourigat, N.; Aurelle, D.; Quignard, J.-P.; Barthelemy, R.; Faure, E. Some Marine Tunisian Atherina boyeri Populations (Teleostei) have Morphological and Molecular Characteristics of Lagoon Fishes. Open Mar. Biol. J. 2009, 3, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Serrano Gordo, L.; Nogueira Cabral, H. The fish assemblage structure of a hydrologically altered coastal lagoon: The Óbidos lagoon (Portugal). Hydrobiologia 2001, 459, 125–133. [Google Scholar] [CrossRef]
- Franco, A.; Franzoi, P.; Malavasi, S.; Riccato, F.; Torricelli, P.; Mainardi, D. Use of shallow water habitats by fish assemblages in a Mediterranean coastal lagoon. Estuar. Coast. Shelf Sci. 2006, 66, 67–83. [Google Scholar] [CrossRef]
- Kapetsky, J.M.; Lasserre, G. Management of Coastal Lagoon Fisheries. Stud. Rev. 1984, 61, 439–776. [Google Scholar]
- Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I.M.; Barcala, E.; Hegazi, M.I.; Quispe, J. Detecting changes resulting from human pressure in a naturally quick-changing and heterogeneous environment: Spatial and temporal scales of variability in coastal lagoons. Estuar. Coast. Shelf Sci. 2007, 75, 175–188. [Google Scholar] [CrossRef]
- Pérez-Ruzafa, A.; Pérez-Ruzafa, I.M.; Newton, A.; Marcos, C. Coastal Lagoons: Environmental Variability, Ecosystem Complexity, and Goods and Services Uniformity. In Coasts and Estuaries; Elsevier: Amsterdam, The Netherlands, 2019; pp. 253–276. [Google Scholar]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Newton, A.; Brito, A.C.; Icely, J.D.; Derolez, V.; Clara, I.; Angus, S.; Schernewski, G.; Inácio, M.; Lillebø, A.I.; Sousa, A.I. Assessing, quantifying and valuing the ecosystem services of coastal lagoons. J. Nat. Conserv. 2018, 44, 50–65. [Google Scholar] [CrossRef]
- Velasco, A.M.; Pérez-Ruzafa, A.; Martínez-Paz, J.M.; Marcos, C. Ecosystem services and main environmental risks in a coastal lagoon (Mar Menor, Murcia, SE Spain): The public perception. J. Nat. Conserv. 2018, 43, 180–189. [Google Scholar] [CrossRef]
- Elliott, M.; Burdon, D.; Hemingway, K.L.; Apitz, S.E. Estuarine, coastal and marine ecosystem restoration: Confusing management and science-A revision of concepts. Estuar. Coast. Shelf Sci. 2007, 74, 349–366. [Google Scholar] [CrossRef]
- Elliott, M.; Day, J.W.; Ramachandran, R.; Wolanski, E. A synthesis: What is the future for coasts, estuaries, deltas and other transitional habitats in 2050 and beyond? In Coasts and Estuaries; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–28. [Google Scholar]
- Newton, A.; Icely, J.; Cristina, S.; Brito, A.; Cardoso, A.C.; Colijn, F.; Riva, S.D.; Gertz, F.; Hansen, J.W.; Holmer, M. An overview of ecological status, vulnerability and future perspectives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuar. Coast. Shelf Sci. 2014, 140, 95–122. [Google Scholar] [CrossRef]
- Chovanec, A.; Hofer, R.; Schiemer, F. Chapter 18 Fish as bioindicators. In Trace Metals and Other Contaminants in the Environment; Elsevier: Amsterdam, The Netherlands, 2003; pp. 639–676. [Google Scholar]
- Kane, A.S.; Salierno, J.D.; Brewer, S.K. Fish models in behavioral toxicology: Automated techniques, updates and perspectives. Methods Aquat. Toxicol. 2005, 2, 1–38. [Google Scholar]
- Pont, D.; Hugueny, B.; Beier, U.; Goffaux, D.; Melcher, A.; Noble, R.; Rogers, C.; Roset, N.; Schmuz, S. Assessing river biotic condition at a continental scale: A European approach using functional metrics and fish assemblages. J. Appl. Ecol. 2006, 43, 70–80. [Google Scholar] [CrossRef]
- Kuklina, I.; Kouba, A.; Kozák, P. Real-time monitoring of water quality using fish and crayfish as bio-indicators: A review. Environ. Monit. Assess. 2013, 185, 5043–5053. [Google Scholar] [CrossRef]
- Shedd, T.R.; van der Schalie, W.H.; Widder, M.W.; Burton, D.T.; Burrows, E.P. Long-Term Operation of an Automated Fish Biomonitoring System for Continuous Effluent Acute Toxicity Surveillance. Bull. Environ. Contam. Toxicol. 2001, 66, 392–399. [Google Scholar] [CrossRef]
- Scardi, M.; Tancioni, L.; Cataudella, S. Monitoring methods based on fish. In Biological Monitoring of Rivers; Wiley: Hoboken, NJ, USA, 2006; pp. 135–153. [Google Scholar]
- Elas, J.; Lopez-Lopez, E. Freshwater Fish as Sentinel Organisms: From the Molecular to the Population Level, a Review. In New Advances and Contributions to Fish Biology; In Tech: London, UK, 2012. [Google Scholar]
- Facca, C.; Cavraro, F.; Franzoi, P.; Malavasi, S. Lagoon resident fish species of conservation interest according to the habitat directive (92/43/CEE): A review on their potential use as ecological indicator species. Water 2020, 12, 2059. [Google Scholar] [CrossRef]
- European Council Directive. European Commission Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. Eur. Communities L. 2000, 327, 1–72. [Google Scholar]
- Pérez-Domínguez, R.; Maci, S.; Courrat, A.; Lepage, M.; Borja, A.; Uriarte, A.; Neto, J.M.; Cabral, H.; St. Raykov, V.; Franco, A. Current developments on fish-based indices to assess ecological-quality status of estuaries and lagoons. Ecol. Indic. 2012, 23, 34–45. [Google Scholar] [CrossRef]
- Pasquaud, S.; Courrat, A.; Fonseca, V.F.; Gamito, R.; Gonçalves, C.I.; Lobry, J.; Lepage, M.; Costa, M.J.; Cabral, H. Strength and time lag of relationships between human pressures and fish-based metrics used to assess ecological quality of estuarine systems. Estuar. Coast. Shelf Sci. 2013, 134, 119–127. [Google Scholar] [CrossRef]
- Souza, G.B.G.; Vianna, M. Fish-based indices for assessing ecological quality and biotic integrity in transitional waters: A systematic review. Ecol. Indic. 2020, 109, 105665. [Google Scholar] [CrossRef]
- Uriarte, A.; Borja, A. Assessing fish quality status in transitional waters, within the European Water Framework Directive: Setting boundary classes and responding to anthropogenic pressures. Estuar. Coast. Shelf Sci. 2009, 82, 214–224. [Google Scholar] [CrossRef]
- Teichert, N.; Borja, A.; Chust, G.; Uriarte, A.; Lepage, M. Restoring fish ecological quality in estuaries: Implication of interactive and cumulative effects among anthropogenic stressors. Sci. Total Environ. 2016, 542, 383–393. [Google Scholar] [CrossRef]
- Cavraro, F.; Bettoso, N.; Zucchetta, M.; D’Aietti, A.; Faresi, L.; Franzoi, P. Body condition in fish as a tool to detect the effects of anthropogenic pressures in transitional waters. Aquat. Ecol. 2019, 53, 21–35. [Google Scholar] [CrossRef]
- Zucchetta, M.; Scapin, L.; Cavraro, F.; Pranovi, F.; Franco, A.; Franzoi, P. Can the Effects of Anthropogenic Pressures and Environmental Variability on Nekton Fauna Be Detected in Fishery Data? Insights from the Monitoring of the Artisanal Fishery within the Venice Lagoon. Estuaries Coasts 2016, 39, 1164–1182. [Google Scholar] [CrossRef]
- Cavraro, F.; Zucchetta, M.; Malavasi, S.; Franzoi, P. Small creeks in a big lagoon: The importance of marginal habitats for fish populations. Ecol. Eng. 2017, 99, 228–237. [Google Scholar] [CrossRef]
- Tancioni, L.; Scardi, M.; Cataudella, S. I pesci nella valutazione dello stato ecologico dei sistemi acquatici. Ann. Ist. Super. Sanita 2005, 41, 399–402. [Google Scholar]
- Dahlberg, M.D. Frequencies of Abnormalities in Georgia Estuarine Fishes. Trans. Am. Fish. Soc. 1970, 99, 95–97. [Google Scholar] [CrossRef]
- Daoulas, C.; Economou, A.N.; Bantavas, I. Osteological abnormalities in laboratory reared sea-bass (Dicentrarchus labrax) fingerlings. Aquaculture 1991, 97, 169–180. [Google Scholar] [CrossRef]
- Da Cunha, P.L.; Antunes, M.M. Occurrence of vertebral deformities in Gobiidae (Pisces) from the Tagus estuary. Aquat. Ecol. 1999, 33, 281–285. [Google Scholar] [CrossRef]
- Karr, J.R. Assessment of Biotic Integrity Using Fish Communities. Fish. Mag. 1981, 6, 21–27. [Google Scholar] [CrossRef]
- Karr, J.R.; Fausch, K.D.; Angermeier, P.L.; Yant, P.R.; Schlosser, I.J. Assessing biological integrity in running waters: A method and its rationale. Ill. Nat. Hist. Surv. Spec. Publ. 1986, 5, 1–28. [Google Scholar]
- Hall, B.K.; Witten, P. Plasticity and variation of skeletal cells and tissues and the evolutionary development of Actinopterygian fishes. In Evolution and Development of Fishes; Cambridge University Press: Cambridge, UK, 2018; pp. 126–143. [Google Scholar]
- Bengtsson, B.-E.; Bengtsson, A.; Tjornlund, U. Effects of pulp mill effluents on vertebrae of fourhorn sculpin, Myoxocephalus quadricornis, bleak, Alburnus alburnus, and perch, Perca fluviatilis. Arch. Environ. Contam. Toxicol. 1988, 17, 789–797. [Google Scholar] [CrossRef]
- Kirchhoff, S.; Sévigny, J.-M.; Couillard, C.M. Genetic and meristic variations in the mummichog Fundulus heteroclitus, living in polluted and reference estuaries. Mar. Environ. Res. 1999, 47, 261–283. [Google Scholar] [CrossRef]
- Slooff, W. Skeletal anomalies in fish from polluted surface waters. Aquat. Toxicol. 1982, 2, 157–173. [Google Scholar] [CrossRef]
- Villeneuve, D.L.; Curtis, L.R.; Jenkins, J.J.; Warner, K.E.; Tilton, F.; Kent, M.L.; Watral, V.G.; Cunningham, M.E.; Markle, D.F.; Sethajintanin, D.; et al. Environmental Stresses and Skeletal Deformities in Fish from the Willamette River, Oregon. Environ. Sci. Technol. 2005, 39, 3495–3506. [Google Scholar] [CrossRef]
- Boglione, C.; Costa, C.; Giganti, M.; Cecchetti, M.; Di Dato, P.; Scardi, M.; Cataudella, S. Biological monitoring of wild thicklip grey mullet (Chelon labrosus), golden grey mullet (Liza aurata), thinlip mullet (Liza ramada) and flathead mullet (Mugil cephalus) (Pisces: Mugilidae) from different Adriatic sites: Meristic counts and skeletal anomalies. Ecol. Indic. 2006, 6, 712–732. [Google Scholar] [CrossRef] [Green Version]
- Ayed, N.; Faure, E.; Quignard, J.-P.; Maamouri, F.; Trabelsi, M. Incidence of kyphosis deformities in natural population of Atherina lagunae (Trabelsi et al., 2002) from the Tunis North Lake, Tunisia. Mar. Biol. 2008, 153, 319–325. [Google Scholar] [CrossRef]
- Tutman, P.; Glamuzina, B.; Skaramuca, B.; Kožul, V.; Glavić, N.; Lučić, D. Incidence of spinal deformities in natural populations of sandsmelt, Atherina boyeri (Risso, 1810) in the Neretva river estuary, middle Adriatic. Fish. Res. 2000, 45, 61–64. [Google Scholar] [CrossRef]
- Jawad, L.; Akyol, O.; Saǧlam, C. Consecutive repetition of lordosis-kyphosis in silverside Atherina boyeri Risso, 1810 collected from a wild population in Homa Lagoon, Izmir, Turkey. Arch. Pol. Fish. 2017, 25, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Leonardos, I.; Sinis, A.; Petridis, D. Influence of environmental factors on the population dynamics of Aphanius fasciatus (Nardo 1827) (Pisces: Cyprinodontidae) in the Lagoons Messolongi and Etolikon (W. Greece) No Title. Isr. J. Ecol. Evol. 1996, 42, 231–249. [Google Scholar] [CrossRef]
- Caliani, I.; Rodríguez, L.P.; Casini, S.; Granata, A.; Zagami, G.; Pansera, M.; Querci, G.; Minutoli, R. Biochemical and genotoxic biomarkers in Atherina boyeri to evaluate the status of aquatic ecosystems. Reg. Stud. Mar. Sci. 2019, 28, 100566. [Google Scholar] [CrossRef] [Green Version]
- Natura 2000 Network Viewer. Available online: https://natura2000.eea.europa.eu/ (accessed on 10 January 2020).
- Lein, J.K. An expert system approach to environmental impact assessment. Int. J. Environ. Stud. 1989, 33, 13–27. [Google Scholar] [CrossRef]
- Capoccioni, F.; Leone, C.; Belpaire, C.; Malarvannan, G.; Poma, G.; De Matteis, G.; Tancioni, L.; Contò, M.; Failla, S.; Covaci, A. Quality assessment of escaping silver eel (Anguilla anguilla L.) to support management and conservation strategies in Mediterranean coastal lagoons. Environ. Monit. Assess. 2020, 192, 570. [Google Scholar] [CrossRef] [PubMed]
- Taylor, W.R.; Van Dyke, G.C. Revised procedures for staining and clearing small fishes and other vertebrates for bone and cartilage study. Cybium 1985, 9, 107–119. [Google Scholar]
- Prestinicola, L.; Boglione, C.; Makridis, P.; Spanò, A.; Rimatori, V.; Palamara, E.; Scardi, M.; Cataudella, S. Environmental Conditioning of Skeletal Anomalies Typology and Frequency in Gilthead Seabream (Sparus aurata L., 1758) Juveniles. PLoS ONE 2013, 8, e55736. [Google Scholar] [CrossRef] [Green Version]
- Harder, W. Anatomy of fishes. Part I: Text, E.; Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller): Stuttgart, Germany, 1975; Volume 1, p. 612. [Google Scholar]
- Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Benzécri, J. L’analyse des données. L’analyse Corresp. 1973, 2, 619. [Google Scholar]
- Benzécri, J.P.; Benzécri, F. L’analyse des Correspondances: Exposé Elémentaire; Dunod: Paris, France, 1984. [Google Scholar]
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 4–9. [Google Scholar]
- Marfin, J.P. Les problèmes liés au polymorphisme de l’espèce Atherina boyeri Risso, 1810. Cybium 1984, 6, 16–29. [Google Scholar]
- Creech, S. An electrophoretic investigation of populations of Atherina boyeri Risso, 1810 and A. presbyter Cuvier, 1829 (Teleostei: Atherinidae): Genetic evidence in support of the two species. J. Fish Biol. 1991, 39, 807–816. [Google Scholar] [CrossRef]
ORB | CAB | FOG | CAP | SAB | LES | COM | GOR | GRA | |
---|---|---|---|---|---|---|---|---|---|
Latitude | 42°26′ | 39°57 | 41°24′ | 41°21′ | 41°16′ | 41°53′ | 44°34′ | 41°16′ | 45°44′ |
Longitude | 11°11′ | 8°29′ | 12°54′ | 12°58′ | 13°02′ | 15°26′ | 12°13′ | 13°02′ | 13°15′ |
Perimeter (km) | 41 | 40 | 11.2 | 8.4 | 20,1 | 48 | 52.90 | 36.3 | 74 |
Surface (ha) | 2700 | 2200 | 404 | 226 | 400 | 5140 | 11,540 | 3700 | 16,364 |
Max Depth (m) | 1.70 | 2.1 | 2 | 2.9 | 10 | 1.60 | 2 | 2 | 12 |
Mean Depth (m) | 1 | 1.6 | 0.89 | 1.3 | 4.5 | 0.90 | 0.60 | 0.60 | 1.12 |
Volume (m3) | 27,000,000 | 33,600,000 | 3,616,000 | 2,923,783 | 14,000,000 | 4,626,000 | 10,000,000 | 39,500,000 | 144,000,000 |
Inlet (n°) | 3 | 1 | 2 | 2 | 2 | 2 | 3 | 1 | 6 |
Tributary (n°) | 1 | 2 | 0 | 0 | 3 | 3 | 3 | 5 | 11 |
Tidal Range (cm) | 35 | 28 | 23 | 21 | 20 | 30 | 20 | 90 | 90 |
Annual Average Temperature (C°) | 16 | 18.2 | 21.2 | 19.4 | 19.7 | 18 | 20 | 17 | 15.6 |
Annual Average Salinity (PSU) | 35.5 | 20 | 40.5 | 39 | 29 | 21.5 | 29 | 22 | 29 |
Water exchange rate (days) | >250 | 122 | 60 | 90 | 300 | <250 | 115 | 5 | >100 |
WFD classification | Non-tidal | Non-tidal | Non-tidal | Non-tidal | Non-tidal | Non-tidal | Non-tidal | Tidal | Tidal |
Euryhaline | Polyhaline | Iperhalyne | Euryhaline | Polyhaline | Polyhaline | Polyhaline | Polyhaline | Polyhaline | |
Large * | Large | Large | Small ** | Large | Large | Large | Large | Large |
Region | A | Cephalic vertebrae (carrying epipleural ribs) |
B | Abdominal vertebrae (carrying epipleural and pleural ribs and with open hemal arch, without hemal spine) | |
C | Hemal vertebrae (with hemal arches closed by hemal spines) | |
D | Caudal vertebrae (with hemal and neural arches closed by modified, elongated spines) | |
E | Pectoral fin | |
F | Anal fin | |
G | Caudal fin | |
H | First dorsal fin | |
I | Second dorsal fin | |
L | Pelvic fin | |
M | Interdorsal elements between first and second dorsal fin | |
Typology of anomaly | S | Scoliosis |
1 | Lordosis | |
2 | Kyphosis | |
3 | Partial vertebrae fusion | |
3 * | Complete vertebrae fusion | |
4 | Malformed vertebral body | |
4z | Malformed zygapophysis | |
5 | Malformed neural arch and/or spine | |
5 * | Supernumerary neural arch and/or spine | |
5 # | Absent neural arch and/or spine | |
6 | Malformed hemal arch and/or spine and/or rib | |
6T | Tulip-like shaped hemal arch | |
6 * | Supernumerary hemal arch and/or spine and/or rib | |
6 # | Absent hemal arch and/or spine and/or rib | |
7 | Malformed or absent pleural ribs | |
7 * | Supernumerary pleural rib | |
8 | Malformed pterygiophore (deformed, absent, fused, supernumerary) | |
8 * | Malformed interdorsal element | |
9 | Malformed hypural (deformed, absent, fused, supernumerary) | |
9 * | Malformed parahypural (deformed, absent, fused, supernumerary) | |
10 | Malformed epural (deformed, absent, fused, supernumerary) | |
10 * | Hypermineralized epural | |
11 | Malformed ray (deformed, absent, fused, supernumerary) (R = right; L = Left) | |
14 | Malformed pre-maxillary and/or maxillary | |
15 | Malformed dental | |
16 | Other splanchno-cranium anomalies | |
17 | Deformed or reduced opercular plate (R = right, L = left) | |
17 * | Deformed, absent, fused branchiostegal ray (R = right, L = left) | |
19 | Hypural with demineralization | |
19 * | Hypermineralized hypural | |
20 | Hypermineralized pterygiophore | |
24 | Opercular plate with decalcification (R = right side, L = left side) | |
25 | Epural with decalcification | |
26 | Hypermineralized vertebral arch | |
27 | Urostyle with decalcification | |
28 | Malformed radial | |
Cor | Malformed coracoid (R = right, L = left) | |
Sca | Malformed scapula (R = right, L = left) |
ORB | CAB | FOG | CAP | SAB | LES | COM | GOR | GRA | |
---|---|---|---|---|---|---|---|---|---|
Exchange | 4 | 3 | 2 | 2 | 4 | 3 | 3 | 2 | 2 |
Banks | 1 | 2 | 4 | 2 | 1 | 0 | 4 | 2 | 3 |
Inlet | 3 | 2 | 3 | 2 | 2 | 3 | 3 | 0 | 1 |
FW supply | 1 | 1 | 3 | 3 | 1 | 2 | 3 | 0 | 2 |
CPI–Morpho (0/20) | 9 | 8 | 12 | 9 | 8 | 8 | 13 | 4 | 8 |
Landscape | 2 | 4 | 3 | 4 | 2 | 3 | 3 | 2 | 3 |
Aquaculture | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 5 | 2 |
Fishery | 1 | 2 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
Fixed Barrier | 2 | 3 | 0 | 0 | 3 | 0 | 2 | 0 | 0 |
CPI–Use (0/20) | 5 | 9 | 3 | 4 | 10 | 4 | 6 | 8 | 6 |
Dissolved Oxygen | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 |
Chlorophyll-a | 4 | 3 | 1 | 4 | 1 | 5 | 4 | 1 | |
Dissolved Inorganic Nitrogen | 1 | 2 | 4 | 2 | 3 | 2 | 1 | 5 | 4 |
Reactive Phosphorus | 2 | 3 | 2 | 2 | 2 | 2 | 3 | 3 | 2 |
Contaminants | 5 | 3 | 3 | 3 | 4 | 4 | 5 | 5 | 5 |
CPI–Qual (0/25) | 14 | 10 | 13 | 10 | 15 | 10 | 16 | 18 | 13 |
FPI (0/65) | 28 | 27 | 28 | 23 | 33 | 22 | 35 | 30 | 27 |
Level of impact | Medium | Medium | Medium | Low | Medium | Low | Medium | Medium | Medium |
METRIC | ORB | CAB | FOG | CAP | SAB | LES | COM | GOR | GRA |
---|---|---|---|---|---|---|---|---|---|
Observed individuals (n) | 102 | 116 | 118 | 115 | 102 | 125 | 109 | 139 | 97 |
Malformed individuals (%) | 100 | 100 | 100 | 99 | 100 | 100 | 100 | 100 | 100 |
Average anomaly load for individual | 6 | 19 | 14 | 13 | 17 | 9 | 13 | 14 | 11 |
Anomalies types (n) | 32 | 44 | 39 | 39 | 41 | 30 | 37 | 34 | 25 |
Frequency of individual with severe anomalies (%) | 6 | 8 | 8 | 4 | 6 | 2 | 13 | 6 | 1 |
Severe anomalies (%) | 2 | 1 | 1 | 1 | 1 | 0 | 2 | 1 | 0 |
Average severe anomaly load | 3 | 2 | 2 | 3 | 2 | 1 | 2 | 3 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leone, C.; De Luca, F.; Ciccotti, E.; Martini, A.; Boglione, C. Monitoring Skeletal Anomalies in Big-Scale Sand Smelt, Atherina boyeri, as a Potential Complementary Tool for Early Detection of Effects of Anthropic Pressure in Coastal Lagoons. Water 2021, 13, 159. https://doi.org/10.3390/w13020159
Leone C, De Luca F, Ciccotti E, Martini A, Boglione C. Monitoring Skeletal Anomalies in Big-Scale Sand Smelt, Atherina boyeri, as a Potential Complementary Tool for Early Detection of Effects of Anthropic Pressure in Coastal Lagoons. Water. 2021; 13(2):159. https://doi.org/10.3390/w13020159
Chicago/Turabian StyleLeone, Chiara, Francesca De Luca, Eleonora Ciccotti, Arianna Martini, and Clara Boglione. 2021. "Monitoring Skeletal Anomalies in Big-Scale Sand Smelt, Atherina boyeri, as a Potential Complementary Tool for Early Detection of Effects of Anthropic Pressure in Coastal Lagoons" Water 13, no. 2: 159. https://doi.org/10.3390/w13020159
APA StyleLeone, C., De Luca, F., Ciccotti, E., Martini, A., & Boglione, C. (2021). Monitoring Skeletal Anomalies in Big-Scale Sand Smelt, Atherina boyeri, as a Potential Complementary Tool for Early Detection of Effects of Anthropic Pressure in Coastal Lagoons. Water, 13(2), 159. https://doi.org/10.3390/w13020159