Development and Evaluation of Pedotransfer Functions to Estimate Soil Moisture Content at Field Capacity and Permanent Wilting Point for South African Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Database
2.2. Development of New PTFs
2.3. Evaluation and Comparison of PTFs
2.4. Statistical Analysis
3. Results and Discussion
3.1. Description of Soil Datasets
3.1.1. Distribution of USDA Soil Textural Classes
3.1.2. Descriptive Statistics of Soil Datasets
3.2. Correlation Analysis
3.3. New PTFs for Estimating Soil Moisture Content at FC and PWP
3.4. Evaluation of PTFs for Estimating FC and PWP
3.4.1. Performance of the PTFs for Estimating Soil Moisture Content at FC and PWP
3.4.2. Overall Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- da Silva, A.C.; Armindo, R.A.; dos Santos Brito, A.; Schaap, M.G. SPLINTEX: A physically-based pedotransfer function for modeling soil hydraulic functions. Soil Tillage Res. 2017, 174, 261–272. [Google Scholar] [CrossRef]
- Steduto, P.; Raes, D.; Hsiao, T.C.; Fereres, E.; Heng, L.K.; Howell, T.A.; Evett, S.R.; Rojas-Lara, B.A.; Farahani, H.J.; Izzi, G. Concepts and applications of AquaCrop: The FAO crop water productivity model. In Crop Modeling and Decision Support; Springer: New York, NY, USA, 2009; pp. 175–191. [Google Scholar]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.G.; Meinke, H.; Hochman, Z. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef] [Green Version]
- Stöckle, C.O.; Donatelli, M.; Nelson, R. CropSyst, a cropping systems simulation model. Eur. J. Agron. 2003, 18, 289–307. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Saxton, K.E.; Willey, P.H. The SPAW model for agricultural field and pond hydrologic simulation. Watershed Model. 2005, 400–435. [Google Scholar]
- Douglas-Mankin, K.R.; Srinivasan, R.; Arnold, J.G. Soil and water assessment tool (SWAT) Model: Current developments and applications. Trans. ASABE 2010, 53, 1423–1431. [Google Scholar] [CrossRef]
- Rab, M.A.; Chandra, S.; Fisher, P.D.; Robinson, N.J.; Kitching, M.; Aumann, C.D.; Imhof, M. Modelling and prediction of soil water contents at field capacity and permanent wilting point of dryland cropping soils. Soil Res. 2011, 49, 389–407. [Google Scholar] [CrossRef]
- Buccigrossi, F.; Caliandro, A.; Rubino, P.; Mastro, M.A. Testing some pedo-transfer functions (PTFs) in Apulia Region. Evaluation on the basis of soil particle size distribution and organic matter content for estimating field capacity and wilting point. Ital. J. Agron. 2010, 5, 367–381. [Google Scholar] [CrossRef]
- Aliku, O.O.; Oshunsanya, S.O. Assessment of the SOILWAT model for predicting soil hydro-physical characteristics in three sagro-ecological zones in Nigeria. Int. Soil Water Conserv. Res. 2018, 6, 131–142. [Google Scholar] [CrossRef]
- Walczak, R.; Witkowska-Walczak, B.; Sławiński, C. Comparison of correlation models for the estimation of the water retention characteristics of soil. Int. Agrophys. 2001, 16, 79–82. [Google Scholar]
- Castellini, M.; Iovino, M. Pedotransfer functions for estimating soil water retention curve of sicilian soils. Arch. Agron. Soil Sci. 2019, 65, 1401–1416. [Google Scholar] [CrossRef]
- Botula, Y.D.; Cornelis, W.M.; Baert, G.; Van Ranst, E. Evaluation of pedotransfer functions for predicting water retention of soils in lower congo (D.R. Congo). Agric. Water Manag. 2012, 111, 1–10. [Google Scholar] [CrossRef]
- Wösten, J.H.M.; Verzandvoort, S.J.E.; Leenaars, J.G.B.; Hoogland, T.; Wesseling, J.G. Soil hydraulic information for River Basin studies in semi-arid regions. Geoderma 2013, 195–196, 79–86. [Google Scholar] [CrossRef]
- Hardie, M.A.; Lisson, S.; Doyle, R.B.; Cotching, W.E. Evaluation of rapid approaches for determining the soil water retention function and saturated hydraulic conductivity in a hydrologically complex soil. Soil Tillage Res. 2013, 130, 99–108. [Google Scholar] [CrossRef]
- Santra, P.; Kumar, M.; Kumawat, R.N.; Painuli, D.K.; Hati, K.M.; Heuvelink, G.B.M.; Batjes, N.H. Pedotransfer functions to estimate soil water content at field capacity and permanent wilting point in hot arid Western India. J. Earth Syst. Sci. 2018, 127, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Qiao, J.; Zhu, Y.; Jia, X.; Huang, L.; Shao, M. Pedotransfer functions for estimating the field capacity and permanent wilting point in the critical zone of the Loess Plateau, China. J. Soils Sediments 2019, 19, 140–147. [Google Scholar] [CrossRef]
- Kätterer, T.; Andrén, O.; Jansson, P.E. Pedotransfer functions for estimating plant available water and bulk density in swedish agricultural soils. Acta Agric. Scand. Sect. B Soil Plant. Sci. 2006, 56, 263–276. [Google Scholar] [CrossRef]
- Mohanty, M.; Sinha, N.K.; Painuli, D.K.; Bandyopadhyay, K.K.; Hati, K.M.; Sammi Reddy, K.; Chaudhary, R.S. Modelling soil water contents at field capacity and permanent wilting point using artificial neural network for Indian Soils. Natl. Acad. Sci. Lett. 2015, 38, 373–377. [Google Scholar] [CrossRef]
- Tomasella, J.; Hodnett, M.G. Estimating soil water retention characteristics from limited data in Brazilian Amazonia. Soil Sci. 1998, 163, 190–202. [Google Scholar] [CrossRef]
- Bortolini, D.; Albuquerque, J.A. Estimation of the retention and availability of water in soils of the state of Santa Catarina. Revista Brasileira de Ciência do Solo 2018, 42, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Buitenwerf, R.; Kulmatiski, A.; Higgins, S.I. Soil water retention curves for the major soil types of the Kruger National Park. Koedoe 2014, 56, 1–9. [Google Scholar] [CrossRef]
- Mbah, C.N. Determining the field capacity, wilting point and available water capacity of some southeast nigerian soils using soil saturation from capillary rise. Niger. J. Biotechnol. 2012, 24, 41–47. [Google Scholar]
- Khodaverdiloo, H.; Homaee, M.; van Genuchten, M.T.; Dashtaki, S.G. Deriving and validating pedotransfer functions for some calcareous soils. J. Hydrol. 2011, 399, 93–99. [Google Scholar] [CrossRef]
- Dijkerman, J.C. An ustult-aquult-tropept catena in Sierra Leone, West Africa, II. Land qualities and land evaluation. Geoderma 1988, 42, 29–49. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- van Huyssteen, C.W. A Review of advances in hydropedology for application in South Africa. S. Afr. J. Plant. Soil 2008, 25, 245–254. [Google Scholar] [CrossRef]
- Hutson, J.L. Water retentivity of some South African soils in relation to particle size criteria and bulk density. S. Afr. J. Plant. Soil 1986, 3, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Dharumarajan, S.; Hegde, R.; Lalitha, M.; Kalaiselvi, B.; Singh, S.K. Pedotransfer functions for predicting soil hydraulic properties in semi-arid regions of Karnataka Plateau, India. Curr. Sci. 2019, 116, 1237–1246. [Google Scholar] [CrossRef]
- Arruda, F.B.; Zullo Junior, J.; de Oliveira, J.B. Soil parameters for calculating available water based on soil texture. Revista Brasileira de Ciência do Solo 1987, 11, 11–15. [Google Scholar]
- Lal, R. Physical properties and moisture retention characteristics of some nigerian soils. Geoderma 1978, 21, 209–223. [Google Scholar] [CrossRef]
- Pidgeon, J.D. The measurement and prediction of available water capacity of ferrallitic soils in Uganda. J. Soil Sci. 1972, 23, 431–441. [Google Scholar] [CrossRef]
- Chakraborty, D.; Mazumdar, S.P.; Garg, R.N.; Banerjee, S.; Santra, P.; Singh, R.; Tomar, R.K. Pedotransfer functions for predicting points on the moisture retention curve of indian soils. Indian J. Agric. Sci. 2011, 81, 1030. [Google Scholar]
- Rawles, W.J.; Brakensiek, D.L. Estimating soil water retention from soil properties. J. Irrig. Drain. Div. 1982, 108, 166–171. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J.; Romberger, J.S.; Papendick, R.I. Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Am. J. 1986, 50, 1031–1036. [Google Scholar] [CrossRef]
- Pachepsky, Y.; Rawls, W.J. Development of Pedotransfer Functions in Soil Hydrology; Elsevier: Amsterdam, The Netherlands, 2004; ISBN 0080530362. [Google Scholar]
- Adhikary, P.P.; Chakraborty, D.; Kalra, N.; Sachdev, C.B.; Patra, A.K.; Kumar, S.; Tomar, R.K.; Chandna, P.; Raghav, D.; Agrawal, K. Pedotransfer functions for predicting the hydraulic properties of indian soils. Soil Res. 2008, 46, 476–484. [Google Scholar] [CrossRef]
- Gupta, S.; Larson, W.E. Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resour. Res. 1979, 15, 1633–1635. [Google Scholar] [CrossRef]
- Hodnett, M.G.; Tomasella, J. Marked differences between van genuchten soil water-retention parameters for temperate and tropical soils: A new water-retention pedo-transfer functions developed for tropical soils. Geoderma 2002, 108, 155–180. [Google Scholar] [CrossRef]
- Wagner, B.; Tarnawski, V.R.; Hennings, V.; Müller, U.; Wessolek, G.; Plagge, R. Evaluation of pedo-transfer functions for unsaturated soil hydraulic conductivity using an independent data set. Geoderma 2001, 102, 275–297. [Google Scholar] [CrossRef]
- Mdemu, M.V. Evaluation and development of pedotransfer functions for estimating soil water holding capacity in the tropics: The case of Sokoine University of Agriculture Farm in Morogoro, Tanzania. J. Geogr. Geol. 2015, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hegde, R.; Singh, S.K. Evaluation of soil moisture retention characteristics using pedo-transfer functions for soils of dry semi-arid region. Indian J. Soil Conserv. 2019, 47, 163–171. [Google Scholar]
- Wösten, J.H.M.; Pachepsky, Y.A.; Rawls, W.J. Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 2001, 251, 123–150. [Google Scholar] [CrossRef]
- Sung, C.T.B.; Iba, J. Accuracy of the saxton-rawls method for estimating the soil water characteristics for mineral soils of Malaysia. Pertanika J. Trop. Agric. Sci. 2010, 33, 297–302. [Google Scholar]
- Mohawesh, O.E. Assessment of pedotransfer functions (PTFs) in predicting soil hydraulic properties under arid and semi arid environments. Jordan J. Agric. Sci. 2013, 9. [Google Scholar]
- Valdivia-Cea, W.; Holzapfel, E.; Rivera, D.; Paredes, J. Assessment of methods to determine soil characteristics for management and design of irrigation systems. J. Soil Sci. Plant. Nutr. 2017, 17, 735–750. [Google Scholar] [CrossRef] [Green Version]
- Kaingo, J.; Tumbo, S.D.; Kihupi, N.I.; Mbilinyi, B.P. Prediction of soil moisture-holding capacity with support vector machines in dry subhumid tropics. Appl. Environ. Soil Sci. 2018, 2018, 9263296. [Google Scholar] [CrossRef] [Green Version]
- Mills, A.J.; de Wet, R. Quantifying a sponge: The additional water in restored thicket. S. Afr. J. Sci. 2019, 115, 5–6. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.L.; Vincent, K. Climate Risk and Vulnerability: A Handbook for Southern Africa, 2nd ed.; CSIR: Pretoria, South Africa, 2017. [Google Scholar]
- De Souza, K.; Kituyi, E.; Harvey, B.; Leone, M.; Murali, K.S.; Ford, J.D. Vulnerability to climate change in three hot spots in Africa and Asia: Key issues for policy-relevant adaptation and resilience-building research. Reg. Environ. Chang. 2015, 15, 747–753. [Google Scholar] [CrossRef] [Green Version]
- Turco, M.; Palazzi, E.; Von Hardenberg, J.; Provenzale, A. Observed climate change hotspots. Geophys. Res. Lett. 2015, 42, 3521–3528. [Google Scholar] [CrossRef]
- Schilling, J.; Hertig, E.; Tramblay, Y.; Scheffran, J. Climate change vulnerability, water resources and social implications in North Africa. Reg. Environ. Chang. 2020, 20, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Mottram, R.; JL, H.; PS, G. Water Retention by Some Natal Soils as Related to Soil Texture and Organic Matter Content; AGRIS: Klidi, Greece, 1981; Volume 10, pp. 47–50. [Google Scholar]
- Hutson, J.L. Structural stability of diagnostic horizons in South African soils. S. Afr. J. Sci. 1982, 78, 453–454. [Google Scholar]
- Schulze, R.E.; Hutson, J.L.; Cass, A. Hydrological characteristics and properties of soils in southern Africa 2: Soil water retention models. Water SA 1985, 11, 129–136. [Google Scholar]
- Gebregiorgis, M.F.; Savage, M.J. Field, laboratory and estimated soil-water content limits. Water SA 2006, 32, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Land Type Survey Staff. 1:250,000 scale Land Type Survey of South Africa; Agricultural Research Council—Institute for Soil, Climate and Water: Pretoria, South Africa, 2000. [Google Scholar]
- Soil Classification Working Group. Soil classification: A taxonomic system for South Africa. Mem. Agric. Nat. Resour. S. Afr. 1991, 15, 1–262. [Google Scholar]
- Ditzler, C.; Scheffe, K.; Monger, H.C. USDA Handbook 18; US Government Printing Office: Washington, DC, USA, 2017; pp. 75–91. [Google Scholar]
- Klute, A.; Page, A.L. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods; Part 2. Chemical and Microbiological Properties; American Society of Agronomy, Inc.: Maddison, WI, USA, 1986; pp. 383–411. ISBN 0891180729. [Google Scholar]
- van Tol, J.J.; Dzene, A.R.; Le Roux, P.A.L.; Schall, R. Pedotransfer functions to predict atterberg limits for south african soils using measured and morphological properties. Soil Use Manag. 2016, 32, 635–643. [Google Scholar] [CrossRef]
- Mather, J.R.; Yoshioka, G.A. The role of climate in the distribution of vegetation. Ann. Assoc. Am. Geogr. 1968, 58, 29–41. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, W.; Fu, J. Vegetation response to precipitation anomalies under different climatic and biogeographical conditions in China. Sci. Rep. 2020, 10, 1–16. [Google Scholar]
- Hawinkel, P.; Thiery, W.; Lhermitte, S.; Swinnen, E.; Verbist, B.; Van Orshoven, J.; Muys, B. Vegetation response to precipitation variability in East Africa controlled by biogeographical factors. J. Geophys. Res. Biogeosci. 2016, 121, 2422–2444. [Google Scholar] [CrossRef] [Green Version]
- Stewart, B.W.; Capo, R.C.; Chadwick, O.A. Effects of rainfall on weathering rate, base cation provenance, and sr isotope composition of hawaiian soils. Geochim. Cosmochim. Acta 2001, 65, 1087–1099. [Google Scholar] [CrossRef]
- Agro-Climatology Database. Agricultural Research Council (ARC). 2020. Available online: http://www.arc.agric.za/arc-iscw/Pages/Climate-Monitoring-Services.aspx (accessed on 5 March 2020).
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; Odonnell, J.; Rowe, C.M. Statistics for the evaluation and comparison of models. J. Geophys. Res. Ocean. 1985, 90, 8995–9005. [Google Scholar] [CrossRef] [Green Version]
- Schulze, R.E. Hydrology and Agrohydrology: A Text to Accompany the ACRU 3.00 Agrohydrological Modelling System; Water Research Commission: Pretoria, South Africa, 1995; ISBN 1868451364. [Google Scholar]
- Leeper, G.W.; Uren, N.C. Soil Science: An Introduction; Melbourne University Press: Melbourne, Australia, 1993; ISBN 0522844642. [Google Scholar]
- Charman, P.E.V.; Murphy, B.W. Soils: Their Properties and Management; Oxford University Press: Oxford, UK, 2007; pp. 83–96. ISBN 0195517628. [Google Scholar]
- Blaschek, M.; Roudier, P.; Poggio, M.; Hedley, C.B. Prediction of soil available water-holding capacity from visible near-infrared reflectance spectra. Sci. Rep. 2019, 9, 1–10. [Google Scholar]
- Mandal, K.G.; Kundu, D.K.; Singh, R.; Kumar, A.; Rout, R.; Padhi, J.; Majhi, P.; Sahoo, D.K. Cropping practices, soil properties, pedotransfer functions and organic carbon storage at kuanria canal command area in India. SpringerPlus 2013, 2, 631–645. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, J.; Ali, S. Development and Comparative Analysis of Pedotransfer Functions for Predicting Soil Water Characteristic Content for Tunisian Soil. In Proceedings of the Tunisia-Japan Symposium on Science, Society and Technology (TJASSST), Sousse, Tunisia, 29 November–2 December 2006; pp. 170–178. Available online: http://www.weap21.org/downloads/PedotransfertFunction_TJASSST_06.pdf (accessed on 10 June 2020).
- Vereecken, H.; Kollet, S.; Simmer, C. Patterns in soil–vegetation–atmosphere systems: Monitoring, modeling, and data assimilation. Vadose Zone. J. 2010, 9, 821–827. [Google Scholar] [CrossRef]
Source | Abbreviation | Output | Geographical Domain |
---|---|---|---|
Arruda et al. [30] | AR | Brazil | |
Chakraborty et al. [33] | CH | India | |
Dijkerman [25] | DI | Sierra Leone | |
Lal [31] | LA | Nigeria | |
Pidgeon [32] | PI | where: | Uganda |
Textural Class | Frequency (%) | |
---|---|---|
Development Dataset (n = 3171) | Validation Dataset (n = 3136) | |
Clay | 22.93 | 21.01 |
Clay loam | 7.03 | 7.78 |
Loam | 4.82 | 5.10 |
Loam sand | 9.93 | 10.17 |
Sand | 8.14 | 7.81 |
Sandy clay | 4.95 | 4.78 |
Sandy clay loam | 18.92 | 20.09 |
Sandy loam | 20.47 | 20.63 |
Silty clay | 0.85 | 0.86 |
Silty clay loam | 1.10 | 0.92 |
Silty loam | 0.85 | 0.83 |
Dataset | Parameter | n | Min | Max | Mean | Std. Dev |
---|---|---|---|---|---|---|
All data | Sand (%) | 6307 | 2.00 | 97.00 | 55.06 | 23.69 |
Silt (%) | 6307 | 1.00 | 68.00 | 16.40 | 11.78 | |
Clay (%) | 6307 | 1.00 | 83.00 | 27.25 | 17.27 | |
SOC (%) | 6307 | 0.01 | 11.70 | 0.73 | 0.80 | |
FC (kg kg−1) | 6307 | 0.01 | 0.50 | 0.18 | 0.10 | |
PWP (kg kg−1) | 6307 | 0.00 | 0.31 | 0.11 | 0.07 | |
Development data | Sand (%) | 3171 | 2.00 | 97.00 | 54.72 | 24.06 |
Silt (%) | 3171 | 1.00 | 64.00 | 16.34 | 11.84 | |
Clay (%) | 3171 | 1.00 | 83.00 | 27.65 | 17.61 | |
SOC (%) | 3171 | 0.01 | 9.36 | 0.75 | 0.82 | |
FC (kg kg−1) | 3171 | 0.01 | 0.50 | 0.18 | 0.10 | |
PWP (kg kg−1) | 3171 | 0.00 | 0.31 | 0.11 | 0.07 | |
Validation data | Sand (%) | 3136 | 2.00 | 97.00 | 55.39 | 23.30 |
Silt (%) | 3136 | 1.00 | 68.00 | 16.45 | 11.72 | |
Clay (%) | 3136 | 1.00 | 80.00 | 26.85 | 16.91 | |
SOC (%) | 3136 | 0.01 | 11.70 | 0.72 | 0.78 | |
FC (kg kg−1) | 3136 | 0.01 | 0.50 | 0.17 | 0.10 | |
PWP (kg kg−1) | 3136 | 0.00 | 0.30 | 0.11 | 0.07 |
Parameters | Sand | Silt | Clay | SOC | FC | PWP |
---|---|---|---|---|---|---|
Sand | 1.00 | |||||
Silt | −0.70 ** | 1.00 | ||||
Clay | −0.87 ** | 0.27 ** | 1.00 | |||
SOC | −0.40 ** | 0.37 ** | 0.27 ** | 1.00 | ||
FC | −0.83 ** | 0.43 ** | 0.82 ** | 0.35 ** | 1.00 | |
PWP | −0.83 ** | 0.35 ** | 0.87 ** | 0.34 ** | 0.94 ** | 1.00 |
Parameter | Variable | SE | p | r2 | Output Equations |
---|---|---|---|---|---|
FC (kg kg−1) | Constant | 0.002 | <0.001 | 0.73 | |
Clay | 0.000 | 0.000 | |||
SOC | 0.001 | <0.001 | |||
Silt | 0.000 | <0.001 | |||
PWP (kg kg−1) | Constant | 0.001 | 0.894 | 0.79 | |
Clay | 0.000 | 0.000 | |||
Silt | 0.000 | <0.001 | |||
SOC | 0.001 | <0.001 |
Parameters | PTFs | m | c (kg kg−1) | r2 | RMSE (kg kg−1) | MBE (kg kg−1) | d |
---|---|---|---|---|---|---|---|
FC | TS | 0.853 | 0.039 | 0.77 | 0.047 | 0.002 | 0.93 |
DI | 0.700 | 0.054 | 0.72 | 0.052 | 0.003 | 0.91 | |
AR | 0.575 | 0.125 | 0.73 | 0.052 | 0.003 | 0.81 | |
PI | 0.632 | 0.063 | 0.72 | 0.053 | 0.003 | 0.90 | |
LA | 0.576 | 0.072 | 0.71 | 0.053 | 0.003 | 0.88 | |
CH | 0.729 | 0.076 | 0.65 | 0.058 | 0.003 | 0.87 | |
PWP | TS | 0.759 | 0.021 | 0.82 | 0.029 | 0.001 | 0.96 |
PI | 1.025 | 0.010 | 0.81 | 0.030 | 0.001 | 0.94 | |
LA | 0.667 | 0.015 | 0.80 | 0.030 | 0.001 | 0.90 | |
DI | 0.867 | 0.019 | 0.80 | 0.030 | 0.001 | 0.56 | |
CH | 0.547 | 0.050 | 0.76 | 0.033 | 0.001 | 0.96 | |
AR | 0.775 | 0.133 | 0.72 | 0.036 | 0.001 | 0.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myeni, L.; Mdlambuzi, T.; Paterson, D.G.; De Nysschen, G.; Moeletsi, M.E. Development and Evaluation of Pedotransfer Functions to Estimate Soil Moisture Content at Field Capacity and Permanent Wilting Point for South African Soils. Water 2021, 13, 2639. https://doi.org/10.3390/w13192639
Myeni L, Mdlambuzi T, Paterson DG, De Nysschen G, Moeletsi ME. Development and Evaluation of Pedotransfer Functions to Estimate Soil Moisture Content at Field Capacity and Permanent Wilting Point for South African Soils. Water. 2021; 13(19):2639. https://doi.org/10.3390/w13192639
Chicago/Turabian StyleMyeni, Lindumusa, Thandile Mdlambuzi, David Garry Paterson, Gert De Nysschen, and Mokhele Edmond Moeletsi. 2021. "Development and Evaluation of Pedotransfer Functions to Estimate Soil Moisture Content at Field Capacity and Permanent Wilting Point for South African Soils" Water 13, no. 19: 2639. https://doi.org/10.3390/w13192639
APA StyleMyeni, L., Mdlambuzi, T., Paterson, D. G., De Nysschen, G., & Moeletsi, M. E. (2021). Development and Evaluation of Pedotransfer Functions to Estimate Soil Moisture Content at Field Capacity and Permanent Wilting Point for South African Soils. Water, 13(19), 2639. https://doi.org/10.3390/w13192639