Spatial Patterns of Macromolecular Composition of Phytoplankton in the Arctic Ocean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area and Sampling
2.2. Nutrients and Chlorophyll-a Analysis
2.3. Macromolecular Concentration Analysis
2.4. Caloric Content Calculation
3. Results
3.1. Temperature and Salinity Properties
3.2. Dissolved Inorganic Nutrients
3.3. Total Chlorophyll-a Concentration
3.4. Vertical Distribution of Macromolecular Concentration and Composition on the Chukchi Shelf
3.5. Vertical Distribution of Macromolecular Concentration and Composition in the Canada Basin
3.6. Temperature, Salinity, Nutrients, and Macromolecular Concentration along the Shelf/Basin Gradient
3.7. Spatial Distribution of the Macromolecular Composition
4. Discussion
4.1. Major Controlling Factors for the Spatial Variation in Macromolecular Composition
4.2. The Implication of Macromolecular Composition as Energy Content Aspect
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Comiso, J.C.; Parkinson, C.; Gersten, R.; Stock, L. Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett. 2008, 35, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Stroeve, J.; Notz, D. Insights on past and future sea-ice evolution from combining observations and models. Glob. Planet. Change 2015, 135, 154–196. [Google Scholar] [CrossRef] [Green Version]
- Stroeve, J.; Holland, M.M.; Meier, W.; Scambos, T.; Serreze, M. Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Stroeve, J.C.; Serreze, M.C.; Holland, M.M.; Kay, J.E.; Malanik, J.; Barrett, A.P. The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Clim. Change 2011, 110, 1005–1027. [Google Scholar] [CrossRef] [Green Version]
- Stroeve, J.C.; Markus, T.; Boisvert, L.; Miller, J.; Barrett, A. Changes in Arctic melt season and implications for sea ice loss. Geophys. Res. Lett. 2014, 41, 1216–1225. [Google Scholar] [CrossRef]
- Perovich, D.K.; Richter-Menge, J.A. Loss of sea ice in the Arctic. Annu. Rev. Mar. Sci. 2009, 1, 417–441. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, J.-É.; Simpson, K.; Martin, J.; Miller, L.; Gratton, Y.; Barber, D.; Price, N. Vertical stability and the annual dynamics of nutrients and chlorophyll fluorescence in the coastal, southeast Beaufort Sea. J. Geophys. Res. Space Phys. 2008, 113, 113. [Google Scholar] [CrossRef]
- Codispoti, L.; Flagg, C.; Swift, J.H. Hydrographic conditions during the 2004 SBI process experiments. Deep Sea Res. 2009, 56, 1144–1163. [Google Scholar] [CrossRef]
- Lee, S.H.; Stockwell, D.; Whitledge, T.E. Uptake rates of dissolved inorganic carbon and nitrogen by under-ice phytoplankton in the Canada Basin in summer 2005. Polar Biol. 2010, 33, 1027–1036. [Google Scholar] [CrossRef]
- Li, W.K.W.; McLaughlin, F.A.; Lovejoy, C.; Carmack, E.C. Smallest algae thrive as the Arctic Ocean freshens. Science 2009, 326, 539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Kim, B.K.; Yun, M.S.; Joo, H.; Yang, E.J.; Kim, Y.N.; Shin, H.C.; Lee, S. Spatial distribution of phytoplankton productivity in the Amundsen Sea, Antarctica. Polar Biol. 2012, 35, 1721–1733. [Google Scholar] [CrossRef]
- Grebmeier, J.M.; Maslowski, W. (Eds.) The Pacific Arctic Region: Ecosystem Status and Trends in a Rapidly Changing Environment; Springer: Dordrecht, Germany, 2014. [Google Scholar]
- Kahru, M.; Brotas, V.; Manzano-Sarabia, M.; Mitchell, B.G. Are phytoplankton blooms occurring earlier in the Arctic? Glob. Chang. Biol. 2010, 17, 1733–1739. [Google Scholar] [CrossRef]
- Ardyna, M.; Babin, M.; Devred, E.; Forest, A.; Gosselin, M.; Raimbault, P.; Tremblay, J.-É. Shelf-basin gradients shape ecological phytoplankton niches and community composition in the coastal Arctic Ocean (Beaufort Sea). Limnol. Oceanogr. 2017, 62, 2113–2132. [Google Scholar] [CrossRef]
- Arrigo, K.R.; van Dijken, G. Secular trends in Arctic Ocean net primary production. J. Geophys. Res. Space Phys. 2011, 116, 1–15. [Google Scholar] [CrossRef]
- Arrigo, K.R.; van Dijken, G. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 2015, 136, 60–70. [Google Scholar] [CrossRef]
- Kahru, M.; Lee, Z.; Mitchell, B.G.; Nevison, C.D. Effects of sea ice cover on satellite-detected primary production in the Arctic Ocean. Biol. Lett. 2016, 12, 20160223. [Google Scholar] [CrossRef]
- Joo, H.; Lee, J.; Kang, C.-K.; An, S.; Kang, S.-H.; Lim, J.-H.; Joo, H.M.; Lee, S.H. Macromolecular production of phytoplankton in the northern Bering Sea, 2007. Polar Biol. 2013, 37, 391–401. [Google Scholar] [CrossRef]
- Yun, M.S.; Joo, H.T.; Park, J.W.; Kang, J.J.; Kang, S.-H.; Lee, S.H. Lipid-rich and protein-poor carbon allocation patterns of phytoplankton in the northern Chukchi Sea, 2011. Cont. Shelf Res. 2018, 158, 26–32. [Google Scholar] [CrossRef]
- Yun, M.S.; Joo, H.M.; Kang, J.J.; Park, J.W.; Lee, J.H.; Kang, S.-H.; Sun, J.; Lee, S.H. Potential implications of changing photosynthetic end-products of phytoplankton caused by sea ice conditions in the Northern Chukchi sea. Front. Microbiol. 2019, 10, 2274. [Google Scholar] [CrossRef]
- Laws, E.A. Photosynthetic quotients, new production and net community production in the open ocean. Deep Sea Res. Part A Oceanogr. Res. Pap. 1991, 38, 143–167. [Google Scholar] [CrossRef]
- Parrish, C.; McKenzie, C.; Macdonald, B.; Hatfield, E. Seasonal studies of seston lipids in relation to microplankton species composition and scallop growth in South Broad Cove, Newfoundland. Mar. Ecol. Prog. Ser. 1995, 129, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.; Gosselin, M.; Kattner, G.; Legendre, L.; Pesant, S. Biosynthesis of macromolecular and lipid classes by phytoplankton in the Northeast Water Polynya. Mar. Ecol. Prog. Ser. 1997, 147, 231–242. [Google Scholar] [CrossRef]
- Winberg, G.G. Symbols, Units and Conversion Factors in Study of Fresh Waters Productivity; International Biological Programme Control Office: London, UK, 1971; p. 23. [Google Scholar]
- Smith, R.E.H.; Clement, P.; Head, E. Biosynthesis and photosynthate allocation patterns of arctic ice algae. Limnol. Oceanogr. 1989, 34, 591–605. [Google Scholar] [CrossRef]
- Mock, T.; Gradinger, R. Changes in photosynthetic carbon allocation in algal assemblages of Arctic sea ice with decreasing nutrient concentrations and irradiance. Mar. Ecol. Prog. Ser. 2000, 202, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yun, M.S.; Lee, D.B.; Kim, B.K.; Kang, J.J.; Lee, J.H.; Yang, E.J.; Park, W.G.; Chung, K.H.; Lee, S.H. Comparison of phytoplankton macromolecular compositions and zooplankton proximate compositions in the northern Chukchi Sea. Deep Sea Res. 2015, 120, 82–90. [Google Scholar] [CrossRef]
- Kim, B.K.; Lee, J.H.; Joo, H.; Song, H.J.; Yang, E.J.; Lee, S.H. Macromolecular compositions of phytoplankton in the Amundsen Sea, Antarctica. Deep Sea Res. 2016, 123, 42–49. [Google Scholar] [CrossRef]
- Kim, B.K.; Lee, S.; Ha, S.-Y.; Jung, J.; Kim, T.W.; Yang, E.J.; Jo, N.; Lim, Y.J.; Park, J. Vertical distributions of macromolecular composition of particulate organic matter in the water column of the Amundsen Sea Polynya during the summer in 2014. J. Geophys. Res. Oceans 2018, 123, 1393–1405. [Google Scholar] [CrossRef]
- Ahn, S.H.; Whitledge, T.E.; Stockwell, D.A.; Lee, J.H.; Lee, H.W.; Lee, S.H. The biochemical composition of phytoplankton in the Laptev and East Siberian seas during the summer of 2013. Polar Biol. 2018, 42, 133–148. [Google Scholar] [CrossRef]
- Ahn, S.H.; Kim, K.; Jo, N.; Kang, J.J.; Lee, J.H.; Whitledge, T.E.; Stockwell, D.A.; Lee, H.W.; Lee, S.H. Fluvial influence on the biochemical composition of particulate organic matter in the Laptev and Western East Siberian seas during 2015. Mar. Environ. Res. 2020, 155, 104873. [Google Scholar] [CrossRef]
- Kim, K.; Park, J.; Jo, N.; Park, S.; Yoo, H.; Kim, J.; Lee, S.H. Monthly variation in the macromolecular composition of phytoplankton communities at Jang Bogo Station, Terra Nova Bay, Ross Sea. Front. Microbiol. 2021, 12, 618999. [Google Scholar] [CrossRef]
- Welschmeyer, A.N. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 1994, 39, 1985–1992. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsh, J.B.; Weinstein, D.B. Simple charring method for determination of lipids. J. Lipid Res. 1966, 7, 574–576. [Google Scholar] [CrossRef]
- Bhavya, P.S.; Kim, B.K.; Jo, N.; Kim, K.; Kang, J.J.; Lee, J.H.; Lee, D.; Lee, J.H.; Joo, H.; Ahn, S.H.; et al. A review on the macromolecular compositions of phytoplankton and the implications for aquatic biogeochemistry. Ocean Sci. J. 2018, 54, 1–14. [Google Scholar] [CrossRef]
- Danovaro, R.; Dell’Anno, A.; Pusceddu, A.; Marrale, D.; Della Croce, N.; Fabiano, M.; Tselepides, A. Biochemical composition of pico-, nano- and micro-particulate organic matter and bacterioplankton biomass in the oligotrophic Cretan Sea (NE Mediterranean). Prog. Oceanogr. 2000, 46, 279–310. [Google Scholar] [CrossRef]
- Fabiano, M.; Povero, P.; Danovaro, R. Distribution and composition of particulate organic matter in the Ross Sea (Antarctica). Polar Biol. 1993, 13, 525–533. [Google Scholar] [CrossRef]
- Fabiano, M.; Povero, P.; Danovaro, R. Particulate organic matter composition in Terra Nova Bay (Ross Sea, Antarctica) during summer 1990. Antarct. Sci. 1996, 8, 7–13. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, H.-J.; Whitledge, T.E. High incorporation of carbon into proteins by the phytoplankton of the Bering Strait and Chukchi Sea. Cont. Shelf Res. 2009, 29, 1689–1696. [Google Scholar] [CrossRef]
- Lombardi, A.; Wangersky, P. Influence of phosphorus and silicon on lipia class production by the marine diatom Chaetoceros gracilis grown in turbidostat cage cultures. Mar. Ecol. Prog. Ser. 1991, 77, 39–47. [Google Scholar] [CrossRef]
- Takagi, M.; Watanabe, K.; Yamaberi, K.; Yoshida, T. Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Appl. Microbiol. Biotechnol. 2000, 54, 112–117. [Google Scholar] [CrossRef]
- Hu, Q. Environmental effects on cell composition. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Fogg, G.E.; Thake, B. Algal Cultures and Phytoplankton Ecology; University of Wisconsin Press: Madison, WI, USA, 1987. [Google Scholar]
- Moll, K.; Gardner, R.; Eustance, E.; Gerlach, R.; Peyton, B. Combining multiple nutrient stresses and bicarbonate addition to promote lipid accumulation in the diatom RGd-1. Algal Res. 2014, 5, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Sayanova, O.; Mimouni, V.; Ulmann, L.; Morant-Manceau, A.; Pasquet, V.; Schoefs, B.; Napier, J.A. Modulation of lipid biosynthesis by stress in diatoms. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, P.J.; Thompson, P.; Calderwood, G.S. Effects of nutrient and light limitation on the biochemical composition of phytoplankton. Environ. Boil. Fishes 1990, 2, 45–56. [Google Scholar] [CrossRef]
- Wear, E.K.; Carlson, C.A.; Windecker, L.A.; Brzezinski, M.A. Roles of diatom nutrient stress and species identity in determining the short- and long-term bioavailability of diatom exudates to bacterioplankton. Mar. Chem. 2015, 177, 335–348. [Google Scholar] [CrossRef]
- Shifrin, N.S.; Chisholm, S.W. Phytoplankton lipids: Interspecific differences and effects of nitrate, silicate and light-dark cycles 1. J. Phycol. 1981, 17, 374–384. [Google Scholar] [CrossRef]
- Dortch, Q.; Whitledge, T.E. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Cont. Shelf Res. 1992, 12, 1293–1309. [Google Scholar] [CrossRef]
- Redfield, A.C.; Ketchum, B.H.; Richards, F.A. The influence of organisms on the composition of seawater. In The Composition of Seawater: Comparative and Descriptive Oceanography; Hill, M.N., Ed.; The Sea: Ideas and Observations on Progress in the Study of the Seas; Interscience Publishers: New York, NY, USA, 1963; Volume 2, pp. 26–77. [Google Scholar]
- Suárez, I.; Marañón, E. Photosynthate allocation in a temperate sea over an annual cycle: The relationship between protein synthesis and phytoplankton physiological state. J. Sea Res. 2003, 50, 285–299. [Google Scholar] [CrossRef]
- Lancelot, C.; Mathot, S. Biochemical fractionation of primary production by phytoplankton in Belgian coastal waters during short- and long-term incubations with 14C-bicarbonate. Mar. Biol. 1985, 86, 227–232. [Google Scholar] [CrossRef]
- Boëchat, I.G.; Giani, A. Seasonality affects diel cycles of seston biochemical composition in a tropical reservoir. J. Plankton Res. 2008, 30, 1417–1430. [Google Scholar] [CrossRef] [Green Version]
- Morris, L.; Skea, W. Products of photosynthesis in natural populations of marine phytoplankton from the Gulf of Maine. Mar. Biol. 1978, 47, 303–312. [Google Scholar] [CrossRef]
- Foy, R.H.; Smith, R.V. The role of carbohydrate accumulation in the growth of planktonic Oscillatoria species. Br. Phycol. J. 1980, 15, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.K.; Lee, J.H.; Yun, M.S.; Joo, H.; Song, H.J.; Yang, E.J.; Chung, K.H.; Kang, S.-H.; Lee, S.H. High lipid composition of particulate organic matter in the northern Chukchi Sea, 2011. Deep Sea Res. 2015, 120, 72–81. [Google Scholar] [CrossRef]
- Yun, M.S.; Whitledge, T.E.; Stockwell, D.; Son, S.H.; Lee, J.H.; Park, J.W.; Lee, D.B.; Lee, S.H. Primary production in the Chukchi Sea with potential effects of freshwater content. Biogeosciences 2016, 13, 737–749. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.K.; Jung, J.; Lee, Y.; Cho, K.H.; Gal, J.K.; Kang, S.H.; Ha, S.Y. Characteristics of the Biochemical Composition and Bioavailability of Phytoplankton-Derived Particulate Organic Matter in the Chukchi Sea, Arctic. Water 2020, 12, 2355. [Google Scholar]
- Roy, S. Distributions of phytoplankton carbohydrate, protein and lipid in the world oceans from satellite ocean colour. ISME J. 2018, 12, 1457–1472. [Google Scholar] [CrossRef] [Green Version]
Station | Light Depth (%) | CHO (μg L−1) | PRT (μg L−1) | LIP (μg L−1) | FM (μg L−1) | CHO/FM (%) | PRT/FM (%) | LIP/FM (%) | Calorific Content (Kcal m−3) |
---|---|---|---|---|---|---|---|---|---|
1 | 100 | 409.3 | 123.3 | 326.7 | 859.3 | 47.6 | 14.3 | 38.0 | 5.5 |
2 | 100 | 80.1 | 54.3 | 135.9 | 270.3 | 29.6 | 20.1 | 50.3 | 1.9 |
3 | 100 | 139.1 | 77.6 | 123.9 | 340.6 | 40.8 | 22.8 | 36.4 | 2.2 |
5 | 100 | 62.0 | 67.5 | 43.0 | 172.6 | 35.9 | 39.1 | 24.9 | 1.0 |
8 | 100 | 113.6 | 70.0 | 53.8 | 237.4 | 47.8 | 29.5 | 22.6 | 1.4 |
9 | 100 | 65.6 | 38.2 | 29.5 | 133.3 | 49.2 | 28.7 | 22.1 | 0.8 |
10 | 100 | 74.0 | 40.4 | 26.9 | 141.3 | 52.4 | 28.6 | 19.1 | 0.8 |
11 | 100 | 48.2 | 43.6 | 25.7 | 117.6 | 41.0 | 37.1 | 21.9 | 0.7 |
12 | 100 | 82.3 | 51.5 | 40.1 | 173.9 | 47.4 | 29.6 | 23.0 | 1.0 |
13 | 100 | 73.1 | 35.4 | 58.1 | 166.7 | 43.9 | 21.2 | 34.9 | 1.0 |
Average | 114.7 | 60.2 | 86.4 | 261.3 | 43.6 | 27.1 | 29.3 | 1.6 | |
SD | 106.8 | 26.5 | 93.1 | 221.2 | 6.9 | 7.6 | 10.1 | 1.4 |
Station | Light Depth (%) | CHO (μg L−1) | PRT (μg L−1) | LIP (μg L−1) | FM (μg L−1) | CHO/FM (%) | PRT/FM (%) | LIP/FM (%) | Calorific Content (Kcal m−3) |
---|---|---|---|---|---|---|---|---|---|
1 | 30 | 919.4 | 586.8 | 546.4 | 2052.6 | 44.8 | 28.6 | 26.6 | 12.2 |
2 | 30 | 88.9 | 62.5 | 54.2 | 205.7 | 43.2 | 30.4 | 26.3 | 1.2 |
3 | 30 | 199.7 | 126.2 | 215.4 | 541.3 | 36.9 | 23.3 | 39.8 | 3.6 |
5 | 30 | 78.9 | 62.2 | 76.2 | 217.3 | 36.3 | 28.6 | 35.1 | 1.4 |
8 | 30 | 96.8 | 67.2 | 45.0 | 209.1 | 46.3 | 32.1 | 21.5 | 1.2 |
9 | 30 | 53.7 | 40.4 | 22.8 | 116.8 | 45.9 | 34.6 | 19.5 | 0.7 |
10 | 30 | 59.6 | 36.5 | 28.3 | 124.4 | 47.9 | 29.3 | 22.8 | 0.7 |
11 | 30 | 43.8 | 27.2 | 19.2 | 90.1 | 48.6 | 30.1 | 21.3 | 0.5 |
12 | 30 | 70.2 | 37.2 | 74.4 | 181.8 | 38.6 | 20.4 | 40.9 | 1.2 |
13 | 30 | 62.3 | 30.4 | 83.4 | 176.1 | 35.4 | 17.3 | 47.4 | 1.2 |
Average | 167.3 | 107.6 | 116.5 | 391.5 | 42.4 | 27.5 | 30.1 | 2.4 | |
SD | 267.9 | 170.8 | 161.3 | 597.0 | 5.1 | 5.4 | 9.9 | 3.5 |
Station | Light Depth (%) | CHO (μg L−1) | PRT (μg L−1) | LIP (μg L−1) | FM (μg L−1) | CHO/FM (%) | PRT/FM (%) | LIP/FM (%) | Calorific Content (Kcal m−3) |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 113.6 | 65.4 | 118.4 | 297.4 | 38.2 | 22.0 | 39.8 | 2.0 |
2 | 1 | 73.8 | 74.3 | 158.3 | 306.5 | 24.1 | 24.3 | 51.7 | 2.2 |
3 | 1 | 92.0 | 144.0 | 157.9 | 394.0 | 23.4 | 36.6 | 40.1 | 2.7 |
5 | 1 | 65.9 | 57.9 | 36.1 | 159.9 | 41.2 | 36.2 | 22.6 | 0.9 |
8 | 1 | 77.3 | 60.8 | 36.7 | 174.7 | 44.2 | 34.8 | 21.0 | 1.0 |
9 | 1 | 85.0 | 30.4 | 18.8 | 134.2 | 63.4 | 22.6 | 14.0 | 0.7 |
10 | 1 | 259.0 | 185.8 | 256.7 | 701.6 | 36.9 | 26.5 | 36.6 | 4.5 |
11 | 1 | 59.1 | 52.9 | 52.6 | 164.6 | 35.9 | 32.1 | 31.9 | 1.0 |
12 | 1 | 152.9 | 105.1 | 57.7 | 315.7 | 48.4 | 33.3 | 18.3 | 1.8 |
13 | 1 | 34.9 | 10.0 | 12.0 | 56.9 | 61.3 | 17.6 | 21.1 | 0.3 |
Average | 101.4 | 78.7 | 90.5 | 270.6 | 41.7 | 28.6 | 29.7 | 1.7 | |
SD | 64.0 | 52.8 | 79.7 | 183.2 | 13.4 | 6.8 | 12.1 | 1.2 |
Station | Light Depth (%) | CHO (μg L−1) | PRT (μg L−1) | LIP (μg L−1) | FM (μg L−1) | CHO/FM (%) | PRT/FM (%) | LIP/FM (%) | Calorific Content (Kcal m−3) |
---|---|---|---|---|---|---|---|---|---|
14 | 100 | 51.1 | 13.6 | 14.4 | 79.1 | 64.6 | 17.2 | 18.2 | 0.4 |
15 | 100 | 177.2 | 3.6 | 69.5 | 250.2 | 70.8 | 1.4 | 27.8 | 1.4 |
17 | 100 | 28.8 | 3.2 | 66.1 | 98.1 | 29.3 | 3.3 | 67.4 | 0.8 |
19 | 100 | 55.7 | 10.0 | 81.0 | 146.7 | 38.0 | 6.8 | 55.2 | 1.1 |
23 | 100 | 50.1 | 6.4 | 24.0 | 80.5 | 62.3 | 8.0 | 29.7 | 0.5 |
26 | 100 | 98.7 | 4.7 | 17.4 | 120.8 | 81.7 | 3.9 | 14.4 | 0.6 |
27 | 100 | 83.2 | 9.8 | 17.0 | 110.0 | 75.6 | 8.9 | 15.5 | 0.6 |
28 | 100 | 35.9 | 8.7 | 10.9 | 55.5 | 64.7 | 15.7 | 19.6 | 0.3 |
29 | 100 | 93.1 | 9.4 | 12.7 | 115.2 | 80.8 | 8.2 | 11.1 | 0.6 |
30 | 100 | 69.7 | 7.3 | 18.5 | 95.4 | 73.0 | 7.6 | 19.4 | 0.5 |
32 | 100 | 37.1 | 10.9 | 45.1 | 93.1 | 39.9 | 11.7 | 48.4 | 0.6 |
Average | 70.9 | 8.0 | 34.2 | 113.1 | 61.9 | 8.4 | 29.7 | 0.7 | |
SD | 42.3 | 3.2 | 26.3 | 51.5 | 18.1 | 4.9 | 18.8 | 0.3 |
Station | Light Depth (%) | CHO (μg L−1) | PRT (μg L−1) | LIP (μg L−1) | FM (μg L−1) | CHO/FM (%) | PRT/FM (%) | LIP/FM (%) | Calorific Content (Kcal m−3) |
---|---|---|---|---|---|---|---|---|---|
14 | 30 | 36.4 | 6.8 | 55.4 | 98.6 | 37.0 | 6.9 | 56.1 | 0.7 |
15 | 30 | 47.3 | 2.9 | 14.6 | 64.8 | 73.0 | 4.4 | 22.6 | 0.3 |
17 | 30 | 35.0 | 5.0 | 58.7 | 98.8 | 35.5 | 5.1 | 59.5 | 0.7 |
19 | 30 | 54.7 | 15.4 | 12.6 | 82.7 | 66.2 | 18.6 | 15.3 | 0.4 |
23 | 30 | 39.9 | 5.7 | 10.4 | 56.0 | 71.2 | 10.2 | 18.6 | 0.3 |
26 | 30 | 38.7 | 4.7 | 32.6 | 76.0 | 50.9 | 6.2 | 42.9 | 0.5 |
27 | 30 | 60.7 | 10.5 | 28.2 | 99.4 | 61.1 | 10.6 | 28.3 | 0.6 |
28 | 30 | 36.6 | 7.6 | 14.8 | 59.0 | 62.0 | 12.9 | 25.0 | 0.3 |
29 | 30 | 77.1 | 12.0 | 12.5 | 101.7 | 75.9 | 11.8 | 12.3 | 0.5 |
30 | 30 | 56.9 | 11.6 | 29.3 | 97.8 | 58.2 | 11.9 | 29.9 | 0.6 |
32 | 30 | 46.6 | 9.8 | 53.6 | 110.0 | 42.4 | 8.9 | 48.7 | 0.8 |
Average | 48.2 | 8.4 | 29.3 | 85.9 | 57.6 | 9.8 | 32.7 | 0.5 | |
SD | 13.1 | 3.8 | 18.7 | 19.1 | 14.3 | 4.1 | 16.5 | 0.2 |
Station | Light Depth (%) | CHO (μg L−1) | PRT (μg L−1) | LIP (μg L−1) | FM (μg L−1) | CHO/FM (%) | PRT/FM (%) | LIP/FM (%) | Calorific Content (Kcal m−3) |
---|---|---|---|---|---|---|---|---|---|
14 | 1 | 38.7 | 3.6 | 24.4 | 66.6 | 58.1 | 5.4 | 36.6 | 0.4 |
15 | 1 | 45.9 | 0.7 | 18.2 | 64.8 | 70.8 | 1.1 | 28.1 | 0.4 |
17 | 1 | 41.8 | 4.6 | 72.1 | 118.5 | 35.2 | 3.9 | 60.8 | 0.9 |
19 | 1 | 47.7 | 8.2 | 9.0 | 64.9 | 73.4 | 12.7 | 13.9 | 0.3 |
23 | 1 | 70.2 | 4.6 | 57.0 | 131.8 | 53.3 | 3.5 | 43.2 | 0.9 |
26 | 1 | 81.0 | 2.9 | 22.6 | 106.5 | 76.1 | 2.7 | 21.2 | 0.6 |
27 | 1 | 33.3 | 2.5 | 10.9 | 46.8 | 71.3 | 5.4 | 23.3 | 0.3 |
28 | 1 | 55.3 | 6.5 | 9.4 | 71.2 | 77.6 | 9.2 | 13.2 | 0.4 |
29 | 1 | 92.9 | 83.8 | 92.5 | 269.2 | 34.5 | 31.1 | 34.3 | 1.7 |
30 | 1 | 39.1 | 3.6 | 10.1 | 52.9 | 74.0 | 6.9 | 19.2 | 0.3 |
32 | 1 | 47.3 | 4.4 | 28.0 | 79.7 | 59.4 | 5.5 | 35.1 | 0.5 |
Average | 53.9 | 11.4 | 32.2 | 97.5 | 62.2 | 7.9 | 29.9 | 0.6 | |
SD | 19.2 | 24.1 | 28.6 | 63.1 | 15.7 | 8.3 | 14.1 | 0.4 |
Region | Season (Period) | CHO (μg L−1) | PRT (μg L−1) | LIP (μg L−1) | FM (μg L−1) | Caloric Content (kcal m−3) | References |
---|---|---|---|---|---|---|---|
Northern Chukchi Sea | 30 July–19 August 2011 | 21.8–146.7 | 0.7–86.3 | 50.2–105.0 | 149.2 ± 36.5 | 1.0 ± 0.2 | Kim et al. (2015) [59] |
Northern Chukchi Sea | 1 August–10 September 2012 | 15.9–88.0 | 9.2–183.1 | 37.0–147.4 | 156.4 | 1.2 ± 0.2 | Yun et al. (2015) [27] |
Chukchi Sea | 7–24 August 2017 | 29.9–406.4 | 9.7–573.8 | 5.4–169.1 | 180.5 ± 195.3 | - | Kim et al. (2020) [61] |
Laptev and East Siberian Seas | 21 August–22 September 2013 | 29–161 | 22–132 | 15–71 | - | - | Ahn et al. (2019) [30] |
Northern Kara Sea | 18 August–30 September 2015 | 45.9–67.7 | 22.0–50. 8 | 15.4–44.0 | - | - | Ahn et al. (2020) [31] |
Laptev Sea | 44.4–72.2 | 9.8–22.0 | 20.3–37.1 | - | - | ||
Western East Siberian Sea | 55.7–115. 5 | 1.7–30. 5 | 24.7–67.6 | - | - | ||
Amundsen Sea | 11 February–14 March 2012 | 2.8–216.0 | 5.9–396.2 | 13.2–36.9 | 219.4 ± 151.1 | - | Kim et al. (2016) [28] |
Amundsen Sea | 31 December 2013–10 January 2014 | 89.3–991.1 | 69.9–360.5 | 25.4–199.3 | 671.5 ± 311.8 | 3.7 ± 1.6 | Kim et al. (2018) [29] |
Ross Sea | 25 November 1989–7 January 1990 | 18–279 | 18–650 | 2–94 | 294.4 ± 228.1 | - | Fabiano et al. (1993) [40] |
Ross Sea (Terra Nova Bay) | austral summer | 32–444 | 108–632 | 3–64 | 374.3 | 1.6 ± 1.3 | Fabiano et al. (1996) [41] |
Ross Sea (Terra Nova Bay) | February 2015 (ice-free period) April–October 2015 (ice-covered period) | 142.9 ± 55.9 | 143.6 ± 80.5 | 100.3 ± 59.1 | 386.9 ± 194.2 | 2.3 ± 1.2 | Kim et al. (2021) [32] |
89.0 ± 23.0 | 7.4 ± 7.8 | 23.7 ± 4.6 | 121.1 ± 24.6 | 0.6 ± 0.1 | |||
Chukchi Shelf | 31 July–24 August 2014 | 50.4–480.8 | 25.3–258.5 | 23.7–330.5 | 307.8 ± 284.0 | 1.9 ± 1.8 | This study |
Canada Basin | 35.2–90.1 | 2.4–35.1 | 11.7–65.6 | 98.9 ± 26.6 | 0.6 ± 0.2 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choe, K.; Yun, M.; Park, S.; Yang, E.; Jung, J.; Kang, J.; Jo, N.; Kim, J.; Kim, J.; Lee, S.H. Spatial Patterns of Macromolecular Composition of Phytoplankton in the Arctic Ocean. Water 2021, 13, 2495. https://doi.org/10.3390/w13182495
Choe K, Yun M, Park S, Yang E, Jung J, Kang J, Jo N, Kim J, Kim J, Lee SH. Spatial Patterns of Macromolecular Composition of Phytoplankton in the Arctic Ocean. Water. 2021; 13(18):2495. https://doi.org/10.3390/w13182495
Chicago/Turabian StyleChoe, Keyseok, Misun Yun, Sanghoon Park, Eunjin Yang, Jinyoung Jung, Jaejoong Kang, Naeun Jo, Jaehong Kim, Jaesoon Kim, and Sang Heon Lee. 2021. "Spatial Patterns of Macromolecular Composition of Phytoplankton in the Arctic Ocean" Water 13, no. 18: 2495. https://doi.org/10.3390/w13182495
APA StyleChoe, K., Yun, M., Park, S., Yang, E., Jung, J., Kang, J., Jo, N., Kim, J., Kim, J., & Lee, S. H. (2021). Spatial Patterns of Macromolecular Composition of Phytoplankton in the Arctic Ocean. Water, 13(18), 2495. https://doi.org/10.3390/w13182495