Urban Pluvial Flood Management Part 2: Global Perceptions and Priorities in Urban Stormwater Adaptation Management and Policy Alternatives
Abstract
:1. Introduction
2. Methodology
2.1. Defining the Multi-Criteria Decision Analysis (MCDA)
2.2. City and Stakeholder Selection
2.3. Defining the Criteria
2.4. Defining the Policy Alternatives
2.5. Data Collection
3. Results and Discussion
3.1. Criteria Weights
3.2. Alternative Rankings
3.3. Sensitivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenzweig, B.; Ruddell, B.L.; McPhillips, L.; Hobbins, R.; McPhearson, T.; Cheng, Z.; Chang, H.; Kim, Y. Developing knowledge systems for urban resilience to cloudburst rain events. Environ. Sci. Policy 2019, 99, 150–159. [Google Scholar] [CrossRef]
- Donat, M.H.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More Extreme Precipitation in the World’s Dry and Wet Regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, G.; et al. Long-term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Dilsak, N.; Prakash, A. The politics of climate change adaptation. Annu. Rev. Environ. Resour. 2018, 43, 317–341. [Google Scholar] [CrossRef] [Green Version]
- Axelsson, C.; Soriani, S.; Culligan, P.; Marcotullio, P. Urban policy adaptation toward managing increasing pluvial flooding events under climate change. J. Environ. Plan. Manag. 2020. [Google Scholar] [CrossRef]
- Joss, S.; Cowley, R.; Tomozeiu, D. Towards the ‘ubiquitous eco-city’: An analysis of the internationalization of eco-city policy and practice. Urban Res. Pract. 2013, 6, 54–74. [Google Scholar] [CrossRef]
- Antrobus, D. Smart green cities: From modernization to resilience? Urban Res. Pract. 2011, 4, 207–214. [Google Scholar] [CrossRef]
- McPhillips, L.E.; Matsler, M.; Rosenzweig, B.R.; Kim, Y. What is the role of green stormwater infrastructure in managing extreme precipitation events? Sustain. Resilient Infrastruct. 2020. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision; United Nations: New York, UK, USA, 2019. [Google Scholar]
- C40 ‘Cities’ (WWW). 2021. Available online: https://www.c40.org/cities (accessed on 1 January 2021).
- CDP ‘Cities’, (WWW). 2021. Available online: https://www.cdp.net/en/cities (accessed on 1 January 2021).
- Fahy, B.; Brenneman, E.; Chang, H.; Shandas, V. Spatial analysis of urban flooding and extreme heat hazard potential in Portland, OR. Int. J. Disaster Risk Reduct. 2019, 39, 101117. [Google Scholar] [CrossRef]
- Colten, C.E. Vulnerability and Place: Flat Land and Uneven Risk in New Orleans. Am. Anthr. 2006, 108, 731–734. [Google Scholar] [CrossRef]
- Liu, L.; Fryd, O.; Zhang, S. Blue-Green Infrastructure for Sustainable Urban Stormwater Management—Lessons from Six Municipality-Led Pilot Projects in Beijing and Copenhagen. Water 2019, 11, 2024. [Google Scholar] [CrossRef] [Green Version]
- von Schönfeld, K.C.; Tan, W.; Wiekens, C.; Janssen-Jansen, L. Unpacking social learning in planning: Who learns what from whom? Urban Res. Pract. 2019, 13, 411–433. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resources Allocation; McGraw-Hill International: New York, NY, USA, 1980. [Google Scholar]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: New York, NY, USA, 1981. [Google Scholar]
- Axelsson, C.; Giove, S.; Soriani, S. Urban pluvial flood management Part 1: Implementing an AHP-TOPSIS Multi-Criteria Decision Analysis method for stakeholder integration in urban climate and storm water adaptation. Water 2021, 13, 2422. [Google Scholar] [CrossRef]
- Guarini, M.R.; Battisti, F.; Chiovitti, A. A Methodology for the Selection of Multi-Criteria Decision Analysis Methods in Real Estate and Land Management Processes. Sustainability 2018, 10, 507. [Google Scholar] [CrossRef] [Green Version]
- Velasquez, M.; Hester, P.T. An analysis of multi-criteria decision making methods. Int. J. Oper. Res. 2013, 10, 56–66. [Google Scholar]
- Pakfetrat, A.; Taghvaei, M.; Zarrabi, A. A comprehensive approach in green space site planning: An application of a three-stage multi-criteria decision support system. Urban Res. Pr. 2018, 13, 45–76. [Google Scholar] [CrossRef]
- De Montis, A.; De Toro, P.; Droste-Franke, B.; Omann, I.; Stagl, S. Criteria for Quality Assessment of MCDA Methods, 3rd. In Proceedings of the Biennial Conference of the European Society for Ecological Economics, Vienna, Austria, 3–6 May 2000. [Google Scholar]
- Guitouni, A.; Martel, J.-M. Tentative guidelines to help choosing an appropriate MCDA method. Eur. J. Oper. Res. 1998, 109, 501–521. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G.; Whitaker, R. Addressing with Brevity criticisms of the analytic hierarchy process. Int. J. Anal. Hierarchy Process 2009, 1. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Luo, Y. On rank reversal in decision analysis. Math. Comput. Model. 2009, 49, 1221–1229. [Google Scholar] [CrossRef]
- Keshavarz-Ghorabee, M.; Amiri, M.; Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. A comparative analysis of the rank reversal phenomenon in the EDAS and TOPSIS methods. Econ. Comput. Cybernet. Stud. Res. 2018, 52, 121–134. [Google Scholar]
- García-Cascales, M.S.; Lamata, M.T. On rank reversal and TOPSIS method. Math. Comput. Model. 2012, 56, 123–132. [Google Scholar] [CrossRef]
- Young, K.D.; Younous, T.; Dymond, R.L.; Kibler, D.F.; Lee, D.H. Application of the Analytic Hierarchy Process for selecting and modeling stormwater best management practices. J. Contempor. Water Res. Educ. 2010, 146, 50–63. [Google Scholar] [CrossRef]
- Sahin, O.; Siems, R.; van Staden, R.; Jenkins, G. Decision Dilemma in Adapting Stormwater Systems to Climate Change: A Tale of Three Cities. In Water Conservation: Practices, Challenges and Future Implications; Imteaz, M.A., Ed.; Nova Science: Hauppauge, NY, USA, 2013. [Google Scholar]
- Siems, R.; Sahin, O. Adapting water systems to climate change: A multi actor-multiple criteria decision analysis in South-East Queensland, Australia. IWTJ 2014, 4, 135–141. [Google Scholar]
- Ebrahimian, A.; Ardeshir, A.; Rad, I.Z.; Ghodsypour, S.H. Urban stormwater construction method selection using a hybrid multi-criteria approach. Autom. Constr. 2015, 58, 118–128. [Google Scholar] [CrossRef]
- Alhumaid, M.; Ghumman, A.R.; Haider, H.; Al-Salamah, I.S.; Ghazaw, Y.M. Sustainability evaluation framework of ur-ban stormwater drainage options for arid environments using hydraulic modeling and multicriteria decision-making. Water 2018, 10, 581. [Google Scholar] [CrossRef] [Green Version]
- Kordana, S.; Słyś, D. Decision Criteria for the Development of Stormwater Management Systems in Poland. Resources 2020, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Gan, H.; Xiao, M.; Huang, B.; Zhu, D.Z.; Zhang, Z.; Wang, H.; Lin, Y.; Hou, Y.; Peng, S.; et al. Performance of permeable pavement systems on stormwater permeability and pollutant removal. Environ. Sci. Pollut. Res. 2021, 28, 28571–28584. [Google Scholar] [CrossRef]
- Jayasooriya, V.M.; Muthukumaran, S.; Ng, A.W.M.; Perera, B.J.C. Multi Criteria Decision Making in selecting storm-water management green infrastructure for industrial areas part 2: A case study with TOPSIS. Water Resour. Manag. 2018, 32, 4297–4312. [Google Scholar] [CrossRef]
- Hager, J.K.; Mian, H.R.; Hu, G.; Hewage, K.; Sadiq, R. Integrated planning framework for urban stormwater management: One water approach. Sustain. Resilient Infrastruct. 2021, 1–22. [Google Scholar] [CrossRef]
- Luan, B.; Yin, R.; Xu, P.; Wang, X.; Yang, X.; Zhang, L.; Tang, X. Evaluationg green stormwater infrastructure strategies efficiencies in a rapidly urbanizing catchment using SWMM-based TOPSIS. J. Clean. Prod. 2019, 223, 680–691. [Google Scholar] [CrossRef]
- Zeng, J.; Lin, G.; Huang, G. Evaluation of the cost-effectiveness of Green Infrastructure in climate change scenarios using TOPSIS. Urban For. Urban Green. 2021, 64, 127287. [Google Scholar] [CrossRef]
- Gogate, N.G.; Kalbar, P.; Raval, P.M. Assessment of stormwater management options in urban contexts using Multiple Attribute Decision-Making. J. Clean. Prod. 2017, 142, 2046–2059. [Google Scholar] [CrossRef]
- Moghadas, M.; Asadzadeh, A.; Vafeidis, A.; Fekete, A.; Kötter, T. A multi-criteria approach for assessing urban flood resilience in Tehran, Iran. Int. J. Disaster Risk Reduct. 2019, 35, 101069. [Google Scholar] [CrossRef]
- Ekmekcioğlu, Ö.; Koc, K.; Özger, M. Stakeholder perceptions in flood risk assessment: A hybrid fuzzy AHP-TOPSIS approach for Istanbul, Turkey. Int. J. Disaster Risk Reduct. 2021, 60, 102327. [Google Scholar] [CrossRef]
- Koc, K.; Ekmekcioglu, O.; Ozger, M. An integrated framework for the comprehensive evaluation of low impact development strategies. J. Environ. Manag. 2021, 294, 113023. [Google Scholar] [CrossRef] [PubMed]
- Baron, N.; Petersen, L.K. Understanding controversies in urban climate change adaptation. A case study of the ole of homeowners in the process of climate change adaptation in Copenhagen. Nord. J. Sci. Technol. Stud. 2015, 3, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Torabi, E.; Dedekorkut-Howes, A.; Howes, M. A framework for using the concept of urban resilience in responding to climate-related disasters. Urban Res. Pr. 2021, 1–23. [Google Scholar] [CrossRef]
- Holden, M.; Larsen, M.T. Institutionalizing a policy by any other name: In the City of Vancouver’s Greenest City Action Plan, does climate change policy or sustainability policy smell as sweet? Urban Res. Pract. 2015, 8, 354–370. [Google Scholar] [CrossRef]
- Sovacool, B.; Linnér, B.-O.; Goodsite, M.E. The political economy of climate adaptation. Nat. Clim. Chang. 2015, 5, 616–618. [Google Scholar] [CrossRef]
- Tubridy, D. Co-financing green resilient infrastructures in Copenhagen: Integrated or superficial design? Landsc. Res. 2020, 46, 261–272. [Google Scholar] [CrossRef]
- Georgeson, L.; Maslin, M. Estimating the scale of the US green economy within the global context. Palgrave Commun. 2019, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, L.; Reames, T.G. Cooling Detroit: A socio-spatial analysis of equity in green roofs as an urban heat island mitigation strategy. Urban For. Urban Green. 2019, 44, 126331. [Google Scholar] [CrossRef]
- Heckert, M.; Rosan, C.D. Developing a green infrastructure equity index to promote equity planning. Urban For. Urban Green. 2016, 19, 263–270. [Google Scholar] [CrossRef]
- Shi, L.; Chu, E.; Anguelovski, I.; Aylett, A.; Debats, J.; Goh, K.; Schenk, T.; Seto, K.C.; Dodman, D.; Roberts, D.; et al. Roadmap towards justice in urban climate adaptation research. Nat. Clim. Chang. 2016, 6, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Lands. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Goodman, L.A. Snowball Sampling. Ann. Math. Stat. 1961, 32, 148–170. [Google Scholar] [CrossRef]
- Zoho ‘Survey’ [Survey Software]. 2021. Available online: https://www.zoho.com/ (accessed on 2 February 2021).
- Available online: https://www.congress.gov/bill/116th-congress/house-resolution/109/text (accessed on 31 August 2021).
- Derkzen, M.L.; van Teeffelen, A.J.A.; Verburg, P.H. Green infrastructure for urban climate adaptation: How do residents’ views on climate impacts and green infrastructure shape adaptation preferences. Landsc. Urban Plan. 2017, 157, 106–130. [Google Scholar] [CrossRef]
- Alves, A.; Gersonius, B.; Kapelan, Z.; Vojinovic, Z.; Sanchez, A. Assessing the co-benefits of green-blue-grey infrastruc-ture for sustainable urban flood risk management. J. Environ. Manag. 2019, 239, 244–254. [Google Scholar] [CrossRef]
- Alves, A.; Vojinovic, Z.; Kapelan, Z.; Sanchez, A.; Gersonius, B. Exploring trade-offs among the multiple benefits of green-blue-grey infrastructure for urban flood mitigation. Sci. Total. Environ. 2020, 703, 134980. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Chen, J.; Engel, B.A.; Liu, Y.; Wang, S.; Sun, H. Assessing the Effectiveness and Cost Efficiency of Green Infrastructure Practices on Surface Runoff Reduction at an Urban Watershed in China. Water 2020, 13, 24. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, W.; Chen, X.; Jun, C.; Hao, J.; Tang, X.; Zhai, J. Assessment on the Effectiveness of Urban Stormwater Management. Water 2020, 13, 4. [Google Scholar] [CrossRef]
- Engberg, L.A. Climate Adaptation and Citizens’ Participation in Denmark: Experiences from Copenhagen; Springer: Cham, Switzerland, 2017; pp. 139–161. [Google Scholar] [CrossRef]
- Pagliacci, F.; Defrancesco, E.; Bettella, F.; D’Agostino, V. Mitigation of Urban Pluvial Flooding: What Drives Residents’ Willingness to Implement Green or Grey Stormwater Infrastructures on Their Property? Water 2020, 12, 3069. [Google Scholar] [CrossRef]
Study | Year Published | Description and Context |
---|---|---|
AHP | ||
Young et al. [28] | 2010 | The use of AHP in identifying stormwater management strategies in an American local municipality |
Sahin et al. [29] | 2013 | The use of AHP in identifying stormwater management strategies across councils in an Australian state |
Siems and Sahin [30] | 2014 | The use of AHP in identifying stormwater management strategies across councils in an Australian state. |
Ebrahimian et al. [31] | 2015 | The use of fuzzy AHP and compromise programing in stormwater collection systems in an Iranian urban context |
Alhumaid et al. [32] | 2018 | The use of AHP and PROMETHEE II in stormwater drainage system management in a Saudi Arabian urban context |
Kordana and Slys [33] | 2020 | The use of AHP to evaluate stormwater management strategies in at a building in a Polish context |
Yu et al. [34] | 2021 | The use of AHP in identifying optimal permeable pavement types for stormwater management. |
TOPSIS | ||
Jayasooriya et al. [35] | 2018 | The use of TOPSIS to identify green infrastructure for stormwater management in industrial sites an Australian urban area |
Hager [36] | 2019 | The use of fuzzy TOPSIS to examine optimal stormwater management strategies in a Canadian context. |
Luan et al. [37] | 2019 | The use of TOPSIS to evaluate green infrastructure for stormwater in a Chinese sponge city |
Zeng et al. [38] | 2021 | The use of TOPSIS to identify green infrastructure solutions for stormwater management in a Chinese smart city |
AHP-TOPSIS | ||
Gogate et al. [39] | 2017 | The use of AHP-TOPSIS to identify stormwater management alternative performances in an Indian urban area |
Moghadas et al. [40] | 2019 | The use of AHP-TOPSIS to evaluate flood risk in an Iranian urban area |
Ekmekcioglu et al. [41] | 2021 | Fuzzy AHP-TOPSIS for flood risk mapping in Turkish municipalities |
Koc et al. [42] | 2021 | Fuzzy AHP-TOPSIS for stormwater management in a Turkish urban watershed. |
Main Criteria | Political | Economic | Environmental | Social |
---|---|---|---|---|
Sub-criteria | Existing Legislative Framework | Public Costs | Stormwater Capacity | Risk to Human Health and Safety |
Project Feasibility | Private Costs | Stormwater Quality | Civic Engagement | |
Jurisdiction | Funding Availability | Ecosystem Support | Reducing Inequalities | |
Implementation Time | Green Industry Growth | Energy Usage | Synergies with Other Adaptations |
n = 34 | Governance | Advocacy | Research | |
---|---|---|---|---|
North America | New York City | 6 | 4 | 2 |
Vancouver | 5 | 4 | ||
Europe | Copenhagen | 2 | ||
Amsterdam | 3 | 1 | ||
Australasia | Sydney | 2 | 2 | |
Auckland | 1 | 1 | 1 |
Aggregated by Stakeholder Type | Aggregated by Region | ||||||
---|---|---|---|---|---|---|---|
Total Participants | Governance | Advocacy | Research | North America | Europe | Australasia | |
Main Criteria | Political (0.320) | Economic (0.335) | Political (0.371) | Political (0.280) | Political (0.323) | Economic (0.355) | Political (0.310) |
Economic (0.276) | Political (0.323) | Social (0.252) | Environmental (0.276) | Economic (0.266) | Political (0.313) | Economic (0.248) | |
Environmental (0.219) | Environmental (0.204) | Economic (0.224) | Economic (0.243) | Environmental (0.217) | Environmental (0.205) | Environmental (0.234) | |
Social (0.185) | Social (0.138) | Environmental (0.153) | Social (0.201) | Social (0.194) | Social (0.128) | Social (0.208) | |
Global weights of the sub-criteria | Public Costs (0.110) | Public Costs (0.145) | Feasibility (0.159) | Feasibility (0.109) | Public Costs (0.110) | Public Costs (0.129) | Feasibility (0.147) |
Feasibility (0.107) | Jurisdiction (0.102) | Safety Risk (0.127) | Storm Capacity (0.104) | Feasibility (0.096) | Private Costs (0.105) | Safety Risk (0.120) | |
Funding (0.082) | Funding (0.088) | Existing Leg. (0.085) | Public Costs (0.096) | Jurisdiction (0.090) | Storm Capacity (0.104) | Storm Capacity (0.111) | |
Safety Risk (0.082) | Feasibility (0.086) | Public Costs (0.081) | Safety Risk (0.087) | Existing Leg. (0.088) | Feasibility (0.103) | Public Costs (0.093) | |
Existing Leg. (0.081) | Existing Leg. (0.082) | Jurisdiction (0.080) | Ecosystems (0.073) | Safety Risk (0.082) | Funding (0.091) | Funding (0.086) | |
Jurisdiction (0.081) | Storm Capacity (0.082) | Funding (0.080) | Existing Leg. (0.072) | Funding (0.076) | Time (0.081) | Existing Leg. (0.075) | |
Storm Capacity (0.079) | Private Costs (0.073) | Storm Quality (0.050) | Funding (0.070) | Storm Quality (0.067) | Jurisdiction (0.065) | Jurisdiction (0.064) | |
Storm Quality (0.058) | Safety Risk (0.056) | Inequalities (0.047) | Storm Quality (0.061) | Storm Capacity (0.062) | Existing Leg. (0.063) | Storm Quality (0.052) | |
Private Costs (0.055) | Storm Quality (0.055) | Time (0.046) | Jurisdiction (0.050) | Ecosystems (0.051) | Ecosystems (0.048) | Private Costs (0.052) | |
Ecosystems (0.051) | Time (0.052) | Civic Engage. (0.046) | Time (0.049) | Time (0.050) | Other Hazards (0.043) | Ecosystems (0.045) | |
Time (0.051) | Ecosystems (0.041) | Private Costs (0.040) | Other Hazards (0.048) | Private Costs (0.046) | Safety Risk (0.037) | Other Hazards (0.033) | |
Other Hazards (0.039) | Other Hazards (0.034) | Storm Capacity (0.040) | Private Costs (0.047) | Other Hazards (0.040) | Storm Quality (0.034) | Civic Engage. (0.032) | |
Civic Engage. (0.034) | Green Industry (0.028) | Ecosystems (0.038) | Civic Engage. (0.040) | Inequalities (0.038) | Civic Engage. (0.031) | Energy Usage (0.026) | |
Inequalities (0.031) | Energy Usage (0.026) | Other Hazards (0.031) | Energy Usage (0.038) | Energy Usage (0.037) | Green Industry (0.029) | Time (0.024) | |
Energy Usage (0.031) | Inequalities (0.025) | Energy Usage (0.026) | Green Industry (0.031) | Civic Engage. (0.035) | Energy Usage (0.019) | Inequalities (0.023) | |
Green Industry (0.029) | Civic Engage. (0.023) | Green Industry (0.023) | Inequalities (0.027) | Green Industry (0.033) | Inequalities (0.017) | Green Industry (0.018) |
Aggregated by Stakeholder Type | Aggregated by Region | ||||||
---|---|---|---|---|---|---|---|
Alternative Rankings | Total Participants | Governance | Advocacy | Research | North America | Europe | Australasia |
1 | Public Green Infrastructure (0.566) | Public Green Infrastructure (0.568) | Public Green Infrastructure (0.565) | Public Green Infrastructure (0.575) | Public Green Infrastructure (0.556) | Public Green Infrastructure (0.542) | Public Green Infrastructure (0.597) |
2 | Government Streamlining (0.534) | Government Streamlining (0.537) | Government Streamlining (0.561) | Government Streamlining (0.526) | Government Streamlining (0.543) | Government Streamlining (0.537) | Private Green Infrastructure (0.553) |
3 | Private Green Infrastructure (0.506) | Maintaining Urban Environments (0.512) | Private Green Infrastructure (0.505) | Private Green Infrastructure (0.518) | Maintaining Urban Environments (0.506) | Private Green Infrastructure (0.499) | Maintaining Urban Environments (0.504) |
4 | Maintaining Urban Environments (0.500) | Private Green Inf. (0.492) | Maintaining Urban Environments (0.492) | Maintaining Urban Environments (0.500) | Private Green Infrastructure (0.493) | Grey Infrastructure Overhauls (0.469) | Government Streamlining (0.500) |
5 | Grey Infrastructure Overhauls (0.445) | Grey Infrastructure Overhauls (0.469) | Grey Infrastructure Overhauls (0.392) | Grey Infrastructure Overhauls (0.449) | Grey Infrastructure Overhauls (0.471) | Maintaining Urban Environments (0.461) | Grey Infrastructure Overhauls (0.366) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Axelsson, C.; Giove, S.; Soriani, S.; Culligan, P.J. Urban Pluvial Flood Management Part 2: Global Perceptions and Priorities in Urban Stormwater Adaptation Management and Policy Alternatives. Water 2021, 13, 2433. https://doi.org/10.3390/w13172433
Axelsson C, Giove S, Soriani S, Culligan PJ. Urban Pluvial Flood Management Part 2: Global Perceptions and Priorities in Urban Stormwater Adaptation Management and Policy Alternatives. Water. 2021; 13(17):2433. https://doi.org/10.3390/w13172433
Chicago/Turabian StyleAxelsson, Charles, Silvio Giove, Stefano Soriani, and Patricia J. Culligan. 2021. "Urban Pluvial Flood Management Part 2: Global Perceptions and Priorities in Urban Stormwater Adaptation Management and Policy Alternatives" Water 13, no. 17: 2433. https://doi.org/10.3390/w13172433