# Geospatial Heterogeneity in Monetary Value of Proximity to Waterfront Ecosystem Services in the Gulf of Mexico

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Study Area

#### 2.2. Data Collection

#### 2.3. Model Specification

_{i}is a natural log of an assessed value of the ith house in 2010 dollars, ${S}_{ij}$ represents jth house’s structural attributes, ${N}_{ik}$ stands for kth neighborhood attributes, ${E}_{il}$ represents lth ecosystem service attributes, β’s are the parameter coefficients corresponding to house’s structural, neighborhood, and ecosystem service attributes, and ${\epsilon}_{i}$ is the error term.

## 3. Results

#### 3.1. Structural and Neighborhood Characteristics

#### 3.2. Ecosystem Service Attributes

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Appendix A

## References

- McPherson, G.E. Urban Forestry in North America. Renew. Resour. J.
**2006**, 24, 8–12. [Google Scholar] - Kline, J.D. Public Demand for Preserving Local Open Space. Soc. Nat. Resour.
**2006**, 19, 645–659. [Google Scholar] [CrossRef] - Torre, L.A. Waterfront Development; Van Nostrand Reinhold: New York, NY, USA, 1989; ISBN 0442218478. [Google Scholar]
- Breen, A.; Rigby, D. The New Waterfront: A Worldwide Urban Success Story; Thames and Hudson: London, UK, 1996; ISBN 0500341451. [Google Scholar]
- Bruttomesso, R. Complexity on the Urban Waterfront. In Waterfronts in Post-Industrial Cities, 1st ed.; Marshall, R., Ed.; Taylor and Francis: London, UK; New York, NY, USA, 2001; pp. 39–50. [Google Scholar]
- McConnell, V.; Walls, M. The Value of Open Space: Evidence from Studies of Nonmarket Benefits; Resources for the Future: Washington, DC, USA, 2005. [Google Scholar]
- Dwyer, J.F.; McPherson, E.G.; Schroeder, H.W.; Rowntree, R.A. Assessing the benefits and costs of the urban forest. J. Arboric.
**1992**, 18, 227. [Google Scholar] - Bengston, D.N.; Fletcher, J.O.; Nelson, K.C. Public policies for managing urban growth and protecting open space: Policy instruments and lessons learned in the United States. Landsc. Urban Plan.
**2004**, 69, 271–286. [Google Scholar] [CrossRef] - Nowak, D.J.; Hoehn, R.E., III; Crane, D.E.; Stevens, J.C.; Walton, J.T. Assessing Urban Forest Effects and Values, New York City’s Urban Forest; USDA: Washington, DC, USA, 2007.
- Brander, L.M.; Koetse, M.J. The value of urban open space: Meta-analyses of contingent valuation and hedonic pricing results. J. Environ. Manag.
**2011**, 92, 2763–2773. [Google Scholar] [CrossRef] - McDonald, R.I.; Forman, R.T.T.; Kareiva, P. Open space loss and land inequality in United States’ cities, 1990–2000. PLoS ONE
**2010**, 5, e9509. [Google Scholar] [CrossRef][Green Version] - Schuyt, K.D. Economic consequences of wetland degradation for local populations in Africa. Ecol. Econ.
**2005**, 53, 177–190. [Google Scholar] [CrossRef] - Wilson, S.G.; Fischetti, T.R. Coastline Population Trends in the United States 1960 to 2008; US Department of Commerce, Economics and Statistics Administration: Washington, DC, USA, 2010.
- US. Census Bureau. American Community Survey 5-Year Estimates; USCB: Washington, DC, USA, 2020.
- Alberti, M.; Marzluff, J.M.; Shulenberger, E.; Bradley, G.; Ryan, C.; Zumbrunnen, C. Integrating humans into ecology: Opportunities and challenges for studying urban ecosystems. AIBS Bull.
**2003**, 53, 1169–1179. [Google Scholar] [CrossRef][Green Version] - Freeman, A.M., III. Economic Valuation: What and Why; Springer: Berlin, Germany, 2003; pp. 1–25. [Google Scholar]
- Gibbons, S.; Mourato, S.; Resende, G.M. The amenity value of English nature: A hedonic price approach. Environ. Resour. Econ.
**2014**, 57, 175–196. [Google Scholar] [CrossRef][Green Version] - Scorse, J.; Reynolds, F., III; Sackett, A. Impact of surf breaks on home prices in Santa Cruz, CA. Tour. Econ.
**2015**, 21, 409–418. [Google Scholar] [CrossRef] - Anderson, S.T.; West, S.E. Open space, residential property values, and spatial context. Reg. Sci. Urban Econ.
**2006**, 36, 773–789. [Google Scholar] [CrossRef][Green Version] - Bin, O. A semiparametric hedonic model for valuing wetlands. Appl. Econ. Lett.
**2005**, 12, 597–601. [Google Scholar] [CrossRef] - Costanza, R.; Wilson, M.A.; Troy, A.; Voinov, A.; Liu, S.; D’Agostino, J. The value of New Jersey’s ecosystem services and natural capital. Inst. Sustain. Solut. Publ. Present.
**2006**. [Google Scholar] - Poudyal, N.C.; Hodges, D.G.; Tonn, B.; Cho, S.-H. Valuing diversity and spatial pattern of open space plots in urban neighborhoods. For. Policy Econ.
**2009**, 11, 194–201. [Google Scholar] [CrossRef] - Dumm, R.E.; Sirmans, G.S.; Smersh, G.T. Price variation in waterfront properties over the economic cycle. J. Real Estate Res.
**2016**, 38, 1–26. [Google Scholar] [CrossRef] - Dahal, R.P.; Grala, R.K.; Gordon, J.S.; Munn, I.A.; Petrolia, D.R.; Cummings, J.R. A hedonic pricing method to estimate the value of waterfronts in the Gulf of Mexico. Urban For. Urban Green.
**2019**, 41, 185–194. [Google Scholar] [CrossRef] - Dahal, R.P.; Grala, R.K.; Gordon, J.S.; Petrolia, D.R.; Munn, I.A. Estimating the willingness to pay to preserve waterfront open spaces using contingent valuation. Land Use Policy
**2018**, 78, 614–626. [Google Scholar] [CrossRef] - Hollas, D.R.; Rutherford, R.C.; Thomson, T.A. Zillow’s Estimates of Single-Family Housing Values. Apprais. J.
**2010**, 78, 26–32. [Google Scholar] - Brown, G.M.J.; Pollakowski, H.O. Economic Valuation of Shoreline. Rev. Econ. Stat.
**1977**, 59, 272–278. [Google Scholar] [CrossRef] - Doss, C.R.; Taff, S.J. The influence of wetland type and wetland proximity on residential property values. J. Agric. Resour. Econ.
**1996**, 21, 120–129. [Google Scholar] - Bolitzer, B.; Netusil, N. The impact of open spaces on property values in Portland, Oregon. J. Environ. Manag.
**2000**, 59, 185–193. [Google Scholar] [CrossRef] - Mahan, B.L.; Polasky, S.; Adams, R.M. Valuing urban wetlands: A property price approach. Land Econ.
**2000**, 76, 100–113. [Google Scholar] [CrossRef] - Bates, L.J.; Santerre, R.E. The Public Demand for Open Space: The Case of Connecticut Communities. J. Urban Econ.
**2001**, 50, 97–111. [Google Scholar] [CrossRef] - Lutzenhiser, M.; Netusil, N.R. The Effect of Open Spaces on a Home’s Sale Price. Contemp. Econ. Policy
**2001**, 19, 291–298. [Google Scholar] [CrossRef] - Geoghegan, J. The value of open spaces in residential land use. Land Use Policy
**2002**, 19, 91–98. [Google Scholar] [CrossRef] - Fan, H.; Yang, H. The impact of urban wetland on the price of house: Evidence from Hangzhou Xixi wetland. In Proceedings of the 2010 2nd International Conference on Communication Systems, Networks and Applications, Hong Kong, China, 29 June–1 July 2010; Volume 2, pp. 350–353. [Google Scholar]
- Jim, C.Y.; Chen, W.Y. Impacts of urban environmental elements on residential housing prices in Guangzhou (China). Landsc. Urban Plan.
**2006**, 78, 422–434. [Google Scholar] [CrossRef] - Cohen, J.P.; Cromley, R.G.; Banach, K.T. Are Homes Near Water Bodies and Wetlands Worth More or Less? An Analysis of Housing Prices in One C onnecticut Town. Growth Chang.
**2015**, 46, 114–132. [Google Scholar] [CrossRef] - Pandit, R.; Polyakov, M.; Tapsuwan, S.; Moran, T. The effect of street trees on property value in Perth, Western Australia. Landsc. Urban Plan.
**2013**, 110, 134–142. [Google Scholar] [CrossRef] - Tapsuwan, S.; Polyakov, M.; Bark, R.; Nolan, M. Valuing the Barmah–Millewa Forest and in stream river flows: A spatial heteroskedasticity and autocorrelation consistent (SHAC) approach. Ecol. Econ.
**2015**, 110, 98–105. [Google Scholar] [CrossRef][Green Version] - Ali, K.; Partridge, M.D.; Olfert, M.R. Can geographically weighted refressions improve regional analysis and policy making? Int. Reg. Sci. Rev.
**2007**, 30, 300–331. [Google Scholar] [CrossRef] - US. Census Bureau. 2010 Census of Population and Housing Characteristics, Summary and Populationand Housing Characteristics, Alabama; USCB: Washington, DC, USA, 2012.
- US. Census Bureau. 2010 Census of Population and Housing Characteristics, Summary and Populationand Housing Characteristics, Mississippi; USCB: Washington, DC, USA, 2012.
- Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion of the 2011 National Land Cover Database for the conterminous United States—Representing a decade of land cover change information. Photogramm. Eng. Remote Sens.
**2015**, 81, 345–354. [Google Scholar] - USCB. Appendix A. Census 2000 Geographic Terms and Concepts; USCB: Washington, DC, USA, 2000; Volume 26.
- USCB. 2010–2014 American Community Survey 5-Year Estimates; USCB: Washington, DC, USA, 2016.
- USCB. 2010 TIGER/Line Shapefiles (Machine Readable Data Files). Prepared by U.S. Census Bureau; USCB: Washington, DC, USA, 2010.
- USCB. MAF/Tiger Feature Class Code Definition; USCB: Washington, DC, USA, 2018.
- Shultz, S.; King, D. The Use of Census Data for Hedonic Price Estimates of Open-Space Amenities and Land Use. J. Real Estate Financ. Econ.
**2001**, 22, 239–252. [Google Scholar] [CrossRef] - Irwin, E.G. The Effects of Open Space on Residential Property Values. Land Econ.
**2002**, 78, 465–480. [Google Scholar] [CrossRef] - Chau, K.W.; Chin, T.L. A Critical Review of Literature on the Hedonic Price Model. Int. J. Hous. Sci. Appl.
**2003**, 2, 145–165. [Google Scholar] - Greene, W.H. Econometric Analysis, 7th ed.; Prentice Hall: Hoboken, NJ, USA, 2012. [Google Scholar]
- Taylor, L. The hedonic method. In A Primer on Nonmarket Valuation; Champ, P., Boyle, K., Brown, T., Eds.; Springer: Berlin, Germany, 2003; pp. 331–393. [Google Scholar]
- Mou, Y.; He, Q.; Zhou, B. Detecting the spatially non-stationary relationships between housing price and its determinants in China: Guide for housing market sustainability. Sustainability
**2017**, 9, 1826. [Google Scholar] [CrossRef][Green Version] - Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons, Ltd.: West Sussex, UK, 2002. [Google Scholar]
- Mennis, J. Mapping the results of geographically weighted regression. Cartogr. J.
**2006**, 43, 171–179. [Google Scholar] [CrossRef][Green Version] - Poudyal, N.C.; Hodges, D.G.; Merrett, C.D. A hedonic analysis of the demand for and benefits of urban recreation parks. Land Use Policy
**2009**, 26, 975–983. [Google Scholar] [CrossRef] - Nilsson, P. Natural amenities in urban space—A geographically weighted regression approach. Landsc. Urban Plan.
**2014**, 121, 45–54. [Google Scholar] [CrossRef] - Allison, P.D. When Can You Safely Ignore Multicollinearity. Available online: https://statisticalhorizons.com/multicollinearity (accessed on 18 January 2019).
- Pokharel, R.; Grala, R.K.; Grebner, D.L.; Cooke, W.H. Mill willingness to use logging residues to produce electricity: A spatial logistic regression approach. For. Sci.
**2019**, 65, 277–288. [Google Scholar] [CrossRef] - Tu, J.; Xia, Z. Examining spatially varying relationships between land use and water quality using geographically weighted regression I: Model design and evaluation. Sci. Total Environ.
**2008**, 407, 358–378. [Google Scholar] [CrossRef] - Gilbert, A.; Chakraborty, J. Using geographically weighted regression for environmental justice analysis: Cumulative cancer risks from air toxics in Florida. Soc. Sci. Res.
**2011**, 40, 273–286. [Google Scholar] [CrossRef] - Haab, T.C.; McConnell, K.E. Valuing Environmental and Natural Resources: The Econometrics of Non-Market Valuation; Edward Elgar Publishing: Cheltenham, UK, 2002; ISBN 1843765438. [Google Scholar]
- Sander, H.A.; Polasky, S. The value of views and open space: Estimates from a hedonic pricing model for Ramsey County, Minnesota, USA. Land Use Policy
**2009**, 26, 837–845. [Google Scholar] [CrossRef] - Bowman, T.; Thompson, J.; Colletti, J. Valuation of open space and conservation features in residential subdivisions. J. Environ. Manag.
**2009**, 90, 321–330. [Google Scholar] [CrossRef] - Luttik, J. The value of trees, water and open space as reflected by house prices in the Netherlands. Landsc. Urban Plan.
**2000**, 48, 161–167. [Google Scholar] [CrossRef] - Liu, J.; Yang, Y.; Xu, S.; Zhao, Y.; Wang, Y.; Zhang, F. A Geographically Temporal Weighted Regression Approach with Travel Distance for House Price Estimation. Entropy
**2016**, 18, 303. [Google Scholar] [CrossRef] - Wei, C.-H.; Qi, F. On the estimation and testing of mixed geographically weighted regression models. Econ. Model.
**2012**, 29, 2615–2620. [Google Scholar] [CrossRef] - Helbich, M.; Brunauer, W.; Vaz, E.; Nijkamp, P. Spatial Heterogeneity in Hedonic House Price Models: The Case of Austria. Urban Stud.
**2014**, 51, 390–411. [Google Scholar] [CrossRef][Green Version] - Charlton, M.; Fotheringham, A.S.; Brunsdon, C. Geographically weighted regression white paper. Kildare Natl. Univ. Irel. Maynooth
**2009**, 2009, 1–14. [Google Scholar] - Wheeler, D.C.; Páez, A. Geographically weighted regression. In Handbook of Applied Spatial Analysis; Springer: Berlin, Germany, 2010; pp. 461–486. [Google Scholar]
- Tomoki, N.; Martin, C.; Chris, B.; Paul, L.; Jing, Y.; A Stewart, F. GWR4.09 User Manual; Department of Geography, Ritsumeikan University: Kyoto, Japan, 2016. [Google Scholar]

**Figure 2.**Analysis steps in extending the ordinary least squares (OLS) regression to the geographic weighted regression (GWR) model.

**Figure 3.**Relationships between assessed house value and proximity to waterfront ecosystem services.

**Figure 4.**Local parameter coefficients of proximity to waterfront ecosystem services estimated from GWR model that were statistically significant at 10% or a better significance level: (

**A**) bay, (

**B**) stream, (

**C**) river, (

**D**) other water body, and (

**E**) bayou.

**Table 1.**Definition of variables used in the study to estimate a monetary value of distance to waterfront ecosystem services in coastal counties of Mississippi and Alabama, U.S.

Variable | Description | Mean | Std. Dev. |
---|---|---|---|

Dependent Variable | |||

House value (2010 US$ in thousands) | Median house assessed value as reported by residents in 2010 | 139.20 | 72.02 |

Independent Variables | |||

House structural attributes | |||

Room | Median number of rooms. | 5.54 | 0.80 |

House age | Median house age. | 31.79 | 15.98 |

Neighborhood attributes | |||

Income (US$ in thousands) | Median household income in 2010. | 44.99 | 19.64 |

Resident age | Median resident age. | 38.99 | 6.73 |

Poverty | Percentage of families below a poverty line. | 16.14 | 14.90 |

Population density | Number of people per square mile (thousands). | 1.55 | 1.53 |

Vacant | Percentage of vacant houses. | 15.02 | 11.02 |

Recreational | Percentage of houses used for seasonal, recreational, or occasional purposes. | 2.81 | 7.45 |

Road (m) | Distance to primary or secondary road. | 1798.28 | 1867.78 |

Rail (m) | Distance to the nearest active railroad track. | 6986.84 | 11,902.43 |

School (m) | Distance to the nearest public school. | 2457.16 | 2641.52 |

Shopping (m) | Distance to the nearest shopping center. | 6150.95 | 7806.10 |

Hospital (m) | Distance to the nearest hospital. | 8370.56 | 7891.07 |

Airport (m) | Distance to the nearest airport. | 11,153.00 | 7157.78 |

Ecosystem service attributes | |||

Park (m) | Distance to the nearest public park. | 4254.13 | 4974.38 |

Bay (m) | Distance to the nearest bay. | 7787.85 | 7991.89 |

River (m) | Distance to the nearest river. | 6027.44 | 4151.44 |

Stream (m) | Distance to the nearest stream. | 6506.19 | 4898.54 |

Bayou (m) | Distance to the nearest bayou. | 8055.22 | 6312.58 |

Water (m) | Distance to the nearest water body other than bay, river, stream, and bayou. | 995.04 | 867.39 |

**Table 2.**Parameter estimates from the ordinary least square (OLS) global and geographically weighted regression (GWR) local models used to estimate the monetary value associated with proximity to waterfront ecosystem services in Mississippi and Alabama (U.S.), and results of the spatial variability test.

Variables | Global Model | Local Model | Test for Spatial Variability (Difference of Criterion) ^{a} | |||||
---|---|---|---|---|---|---|---|---|

Parameter Coefficient | White Std. Error | Min. | Lower Quartile | Median | Upper Quartile | Max. | ||

Intercept | 8.647 *** | 0.915 | 7.523 | 7.746 | 7.891 | 10.040 | 10.178 | 1575.438 *** |

Rooms | 0.059 * | 0.031 | 0.031 | 0.042 | 0.049 | 0.098 | 0.104 | −35.518 *** |

House Age | −0.014 *** | 0.003 | −0.017 | −0.016 | −0.015 | −0.014 | −0.013 | −14.978 *** |

House Age–squared | 0.000 *** | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.432 |

Ln(Income) | 0.420 *** | 0.067 | 0.266 | 0.273 | 0.496 | 0.507 | 0.525 | 5057.518 *** |

Median Age | 0.007 ** | 0.003 | −0.002 | −0.001 | 0.000 | 0.014 | 0.014 | −12.500 *** |

Poverty | −0.001 | 0.002 | −0.002 | −0.002 | −0.001 | 0.001 | 0.001 | 1.059 |

Ln(Pop den) | 0.000 | 0.021 | −0.031 | −0.026 | 0.014 | 0.021 | 0.036 | −20.126 *** |

Vacant | −0.009 ** | 0.004 | −0.012 | −0.009 | −0.008 | −0.008 | −0.006 | 1.249 |

Recreation | 0.019 *** | 0.006 | 0.009 | 0.015 | 0.022 | 0.024 | 0.033 | −0.832 * |

Ln(Road) | 0.004 | 0.014 | −0.004 | 0.002 | 0.004 | 0.009 | 0.028 | −15.059 *** |

Ln(Rail) | 0.013 | 0.013 | −0.021 | −0.008 | 0.011 | 0.017 | 0.028 | −15.908 *** |

Ln(School) | 0.000 | 0.022 | −0.021 | −0.016 | 0.011 | 0.012 | 0.016 | −49.912 *** |

Ln(Shopping centers) | −0.036 * | 0.021 | −0.051 | −0.033 | −0.029 | −0.024 | −0.013 | −51.620 *** |

Ln(Hospital) | −0.086 *** | 0.025 | −0.157 | −0.143 | −0.137 | −0.055 | −0.032 | −29.118 *** |

Ln(Airport) | 0.006 | 0.026 | 0.000 | 0.016 | 0.052 | 0.062 | 0.076 | −149.902 *** |

Ln(Park) | −0.010 | 0.021 | −0.036 | −0.032 | 0.010 | 0.016 | 0.023 | −37.697 *** |

Ln(Bay) | −0.059 *** | 0.009 | −0.064 | −0.057 | −0.054 | −0.052 | −0.047 | −9.532 *** |

Ln(River) | −0.004 | 0.012 | −0.032 | −0.028 | −0.025 | −0.008 | −0.005 | −2.123 ** |

Ln(Stream) | −0.030 * | 0.017 | −0.078 | −0.059 | −0.055 | −0.046 | −0.033 | −76.215 *** |

Ln(Bayou) | 0.038 ** | 0.018 | 0.032 | 0.036 | 0.048 | 0.061 | 0.073 | −47.041 *** |

Ln(Water) | −0.029 *** | 0.011 | −0.040 | −0.035 | −0.015 | −0.014 | −0.012 | −12.116 *** |

R^{2} | 0.518 | 0.572 | ||||||

R^{2} adj | 0.500 | 0.530 | ||||||

AICc | 447.863 | 427.544 | ||||||

CV | 0.123 | 0.120 | ||||||

Residual Sum of sq. | 69.201 | 61.425 | ||||||

Bandwidth (m.) | 533.083 | |||||||

N | 620 | 620 |

^{a}negative value of difference criterion suggests a spatial variability.

**Table 3.**Estimated marginal implicit prices per 1 km decrease in distance to waterfront ecosystem services.

Waterfront Type | Marginal Implicit Price per km | |
---|---|---|

OLS | GWR * | |

Nearest bay | $5133 | $4039 to $5574 |

Nearest stream | $2566 | $2898 to $6773 |

Nearest river | NS | $2455 to $2802 |

Nearest bayou | −$3267 | −$3608 to −$6343 |

Nearest other water body | $2534 | $2287 to $3432 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dahal, R.P.; Grala, R.K.; Gordon, J.S.; Munn, I.A.; Petrolia, D.R. Geospatial Heterogeneity in Monetary Value of Proximity to Waterfront Ecosystem Services in the Gulf of Mexico. *Water* **2021**, *13*, 2401.
https://doi.org/10.3390/w13172401

**AMA Style**

Dahal RP, Grala RK, Gordon JS, Munn IA, Petrolia DR. Geospatial Heterogeneity in Monetary Value of Proximity to Waterfront Ecosystem Services in the Gulf of Mexico. *Water*. 2021; 13(17):2401.
https://doi.org/10.3390/w13172401

**Chicago/Turabian Style**

Dahal, Ram P., Robert K. Grala, Jason S. Gordon, Ian A. Munn, and Daniel R. Petrolia. 2021. "Geospatial Heterogeneity in Monetary Value of Proximity to Waterfront Ecosystem Services in the Gulf of Mexico" *Water* 13, no. 17: 2401.
https://doi.org/10.3390/w13172401