Performance of a Bog Hydrological System Dynamics Simulation Model in an Ecological Restoration Context: Soomaa Case Study, Estonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Test Plots
2.2. The Modelling Techniques
THEN (SmP/OfS)*IS
ELSE 0
3. Results
3.1. Accuracy of Groundwater Level Simulations
3.2. Performance of the Leaf Area Index as Vegetation Proxy
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hepburn, C.; O’Callaghan, B.; Stern, N.; Stiglitz, J.; Zenghelis, D. Will COVID-19 fiscal recovery packages accelerate or retard progress on climate change? Oxf. Rev. Econ. Policy 2020, 36, S359–S381. [Google Scholar] [CrossRef]
- Kiely, G.; Leahy, P.; Mcveigh, P.; Lewis, C.; Sottocornola, M.; Laine, A.; Koehler, A.-K. PeatGHG-Survey of GHG Emission and Sink Potential of Blanket Peatlands; Environmental Protection Agency: Wexford, Ireland, 2018.
- Kimmel, K.; Mander, Ü. Ecosystem services of peatlands: Implications for restoration. Prog. Phys. Geogr. 2010, 34, 491–514. [Google Scholar] [CrossRef]
- Andersen, R.; Farrell, C.; Graf, M.; Muller, F.; Calvar, E.; Frankard, P.; Caporn, S.; Anderson, P. An overview of the progress and challenges of peatland restoration in Western Europe. Restor. Ecol. 2017, 25, 271–282. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Straškraba, M.; Jørgensen, S.N. Wetland Modelling. Developments in Environmental Modelling; Elsvier: Amsterdam, The Netherlands, 1988; ISBN 9780444597694. [Google Scholar]
- Lamers, L.P.; Vile, M.A.; Grootjans, A.P.; Acreman, M.C.; van Diggelen, R.; Evans, M.G.; Richardson, C.J.; Rochefort, L.; Kooijman, A.M.; Roelofs, J.G.; et al. Ecological restoration of rich fens in Europe and North America: From trial and error to an evidence-based approach. Biol. Rev. 2015, 90, 182–203. [Google Scholar] [CrossRef] [Green Version]
- Java, O. Significance of thinning degraded swamps forest stand in sustainable ecosystem’s development. In Proceedings of the 8th International Scientific Conference Rural Development 2017, Kaunas, Lithuania, 23–24 November 2017; pp. 1–5. [Google Scholar]
- Anderson, R.; Vasander, H.; Geddes, N.; Laine, A.; Tolvanen, A.; O’Sullivan, A.; Aapala, K. Afforested and forestry-drained peatland restoration. In Peatland Restoration and Ecosystem Services—Science, Policy and Practices; Bonn, A., Allott, T., Evans, M., Joosten, H., Stoneman, R., Eds.; Cambridge University Press: Cambridge, UK, 2016; pp. 213–233. [Google Scholar]
- Remm, L.; Lõhmus, A.; Leibak, E.; Kohv, M.; Salm, J.O.; Lõhmus, P.; Rosenvald, R.; Runnel, K.; Vellak, K.; Rannap, R. Restoration dilemmas between future ecosystem and current species values: The concept and a practical approach in Estonian mires. J. Environ. Manag. 2019, 250, 1–8. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Z.; He, C.; Peng, H.; Xia, P.; Nie, Y. The regional hydro-ecological simulation system for 30 years: A systematic review. Water 2020, 12, 2878. [Google Scholar] [CrossRef]
- Koohestani, N.; Meftah Halaghi, M.; Dehghani, A. Numerical simulation of groundwater level using MODFLOW software (A case study: Narmab watershed, Golestan province). Int. J. Adv. Biol. Biomed. Res. 2013, 1, 858–873. [Google Scholar]
- Longcang, S.; Yang, X.; Peieng, W. Groundwater Flow Numeric Simulation Method Based on Uncertaintiesof MODFLOW Parameters. J. Jilin Univ. Earth Sci. Ed. 2017, 47, 1803–1809. [Google Scholar] [CrossRef]
- Akter, A.; Ahmed, S. Modeling of groundwater level changes in an urban area. Sustain. Water Resour. Manag. 2021, 7, 1–20. [Google Scholar] [CrossRef]
- Texas A&M University. Soil & Water Assessment Tool. Available online: https://swat.tamu.edu/ (accessed on 18 June 2021).
- O’Keeffe, J.; Marcinkowski, P.; Utratna, M.; Piniewski, M.; Kardel, I.; Kundzewicz, Z.W.; Okruszko, T. Modelling climate change’s impact on the hydrology of Natura 2000 wetland habitats in the Vistula and Odra River Basins in Poland. Water 2019, 11, 2191. [Google Scholar] [CrossRef] [Green Version]
- Stockholm Environment Institute Why WEAP? Available online: https://www.weap21.org/index.asp?action=201 (accessed on 18 June 2021).
- DHI MIKE SHE. Available online: https://www.mikepoweredbydhi.com/products/mike-she (accessed on 18 June 2021).
- Natural Resources Conservation Service HEC-RAS. Available online: https://go.usa.gov/xXcRM (accessed on 18 June 2021).
- Tufts University Modeling Framework for Simulating, River, Stream, and Lake Water Quality. Available online: http://www.qual2k.com/home/default.html (accessed on 18 June 2021).
- Forrester, J.W. System dynamics, systems thinking, and soft OR. Syst. Dyn. Rev. 1994, 10, 245–256. [Google Scholar] [CrossRef]
- Elshorbagy, A.; Jutla, A.; Barbour, L.; Kells, J. System dynamics approach to assess the sustainability of reclamation of disturbed watersheds. Can. J. Civ. Eng. 2005, 32, 144–158. [Google Scholar] [CrossRef]
- Keshta, N.; Elshorbagy, A.; Carey, S. A generic system dynamics model for simulating and evaluating the hydrological performance of reconstructed watersheds. Hydrol. Earth Syst. Sci. 2009, 13, 865–881. [Google Scholar] [CrossRef] [Green Version]
- Java, O. Restoration of a degraded bog hydrological regime using System Dynamics modeling. CBU Int. Conf. Proc. 2018, 6, 1105–1113. [Google Scholar] [CrossRef] [Green Version]
- Java, O.; Kohv, M.; Lõhmus, A. Hydrological model for decision-making: Männikjärve bog case study, Estonia. Balt. J. Mod. Comput. 2020, 8, 379–390. [Google Scholar] [CrossRef]
- Gong, P.; Pu, R.; Biging, G.S.; Larrieu, M.R. Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1355–1362. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Moskal, L.M. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors 2009, 9, 2719–2745. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Wang, J.; Liu, G.; Cheng, F. Forest Leaf Area Index inversion based on Landsat OLI data in the Shangri-La City. J. Indian Soc. Remote. Sens. 2019, 47, 967–976. [Google Scholar] [CrossRef]
- Lõhmus, A.; Leivits, M.; Pēterhofs, E.; Zizas, R.; Hofmanis, H.; Ojaste, I.; Kurlavičius, P. The Capercaillie (Tetrao urogallus): An iconic focal species for knowledge-based integrative management and conservation of Baltic forests. Biodivers. Conserv. 2017, 26, 1–21. [Google Scholar] [CrossRef]
- Laine, A.M.; Leppälä, M.; Tarvainen, O.; Päätalo, M.L.; Seppänen, R.; Tolvanen, A. Restoration of managed pine fens: Effect on hydrology and vegetation. Appl. Veg. Sci. 2011, 14, 340–349. [Google Scholar] [CrossRef]
- Abudu Kasei, R.; Ampadu, B.; Sapanbil, G.S. Relationship between rainfall-runoff on the White Volta River at Pwalugu of the Volta Basin in Ghana. J. Environ. Earth Sci. 2013, 3, 92–100. [Google Scholar]
- Custers, J.; Graafstal, H. Characterisation of the Water Flow in a Pool-Ridge Microtope in a Bog. A Case Study of Männikjärve Bog, Estonia; Unpublished Report; Wageningen University: Wageningen, The Netherlands; Tallinn University: Tallinn, Estonia, 2005. [Google Scholar]
- Liu, H.; Lennartz, B. Hydraulic properties of peat soils along a bulk density gradient—A meta study. Hydrol. Process. 2019, 33, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Rawls, W.J.; Brakensiek, D.L.; Saxton, K.E. Estimation of soil water properties. Trans. ASAE 1982, 25, 1316–1320. [Google Scholar] [CrossRef]
- da Silva, F.F.; Wallach, R.; Chen, Y. Hydraulic properties of sphagnum peat moss and tuff (scoria) and their potential effects on water availability. Plant Soil 1993, 154, 119–126. [Google Scholar] [CrossRef]
- Fuel, S.N.; Kellner, E. Svensk Kärnbränslehantering AB Effects of Variations in Hydraulic Conductivity and Flow Conditions on Groundwater Flow and Solute Transport in Peatlands. C. Grup. AB; Technical Report; Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 15 February 2007; pp. 1–55. [Google Scholar]
- Schlotzhauer, S.M.; Price, J.S. Soil water flow dynamics in a managed cutover peat field, Quebec: Field and laboratory investigations. Water Resour. Res. 1999, 35, 3675–3683. [Google Scholar] [CrossRef]
- Moussa, R. When monstrosity can be beautiful while normality can be ugly: Assessing the performance of event-based flood models. Hydrol. Sci. J. 2010, 55, 1074–1084. [Google Scholar] [CrossRef]
- Krīgere, I.; Kalniņa, L.; Dreimanis, I.; Lazdiņš, A.; Pakalne, M. Rewetting (re-creating mire conditions). In Sustainable and Responsible After-Use of Peat Extraction Areas; Priede, A., Gancone, A., Eds.; Biedrība “Baltijas krasti”: Riga, Latvia, 2019; pp. 195–201. ISBN 9789934198458. [Google Scholar]
- Miller, S.N.; Semmens, D.J.; Miller, R.C.; Hernandez, M.; Goodrich, D.C.; Miller, W.P.; Kepner, W.G.; Ebert, D. GIS-Based Hydrologic Modeling: The Automated Geospatial Watershed Assessment Tool. In Proceedings of the 2nd Federal Interagency Hydrologic Modleing Conference, Las Vegas, NV, USA, 28 July–1 August 2002; pp. 1–12. [Google Scholar]
- Reaney, S.M. The use of agent based modelling techniques in hydrology: Determining the spatial and temporal origin of channel flow in semi-arid catchments. Earth Surf. Process. Landf. 2008, 33, 317–327. [Google Scholar] [CrossRef]
- Huber, L.; Bahro, N.; Leitinger, G.; Tappeiner, U.; Strasser, U. Agent-based modelling of a coupled water demand and supply system at the catchment scale. Sustainability 2019, 11, 6178. [Google Scholar] [CrossRef] [Green Version]
- Collenteur, P.; Mälicke, M.; Visser, M.; Vremec, M. Python-Hydrology-Tools. Available online: https://github.com/raoulcollenteur/Python-Hydrology-Tools (accessed on 8 August 2021).
- Python Software Foundation Applications for Python. Available online: https://www.python.org/about/apps/ (accessed on 30 June 2021).
- Comparing Python and Julia for Hydrological Modeling. Available online: https://medium.com/@kel.markert/comparing-python-and-julia-for-hydrologic-modeling-7334ffa9534b (accessed on 2 August 2021).
ID | Peat (m) | Date of Forest Thinning | Date of Closure of Drainage Ditches | Tree Removal at Thinning (%) |
---|---|---|---|---|
1 | 0.8 | 14.08.2014 | Not performed | 44 |
2 | 1.2 | 15.10.2014 | Not performed | 31 |
3 | 1.2 | 15.02.2015 | Not performed | 38 |
4 | 1.3 | Not performed | 01.12.2015 | 0 |
5 | 1.2 | 18.02.2015 | 01.12.2015 | 34 |
ID | Mean Difference (cm) | Correlation | R2 | RMSE | NSE |
---|---|---|---|---|---|
1 | 0.96 | 0.70 | 0.50 | 0.32 | 0.39 |
2 | 1.25 | 0.78 | 0.60 | 0.37 | 0.23 |
3 | 0.88 | 0.68 | 0.47 | 0.28 | 0.25 |
4 | 1.64 | 0.94 | 0.89 | 0.42 | 0.89 |
5 | 2.63 | 0.94 | 0.88 | 0.71 | 0.19 |
ID | NIR before Forest Stand Thinning | Red before Forest Stand Thinning | LAI before Forest Stand Thinning | NIR after Forest Stand Thinning | Red after Forest Stand Thinning | LAI after Forest Stand Thinning | Forest Stand Thinning Intensity (%) | Changes in LAI (%) |
---|---|---|---|---|---|---|---|---|
1 | 85 | 29 | 2.36 | 97 | 53 | 1.76 | 44 | −25 |
2 | 77 | 41 | 1.76 | 97 | 60 | 1.54 | 31 | −13 |
3 | 52 | 30 | 1.65 | 56 | 41 | 1.28 | 38 | −22 |
4 | 59 | 31 | 1.78 | 70 | 36 | 1.81 | 0 | +2 |
5 | 37 | 21 | 1.67 | 44 | 26 | 1.61 | 34 | −4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Java, O.; Kohv, M.; Lõhmus, A. Performance of a Bog Hydrological System Dynamics Simulation Model in an Ecological Restoration Context: Soomaa Case Study, Estonia. Water 2021, 13, 2217. https://doi.org/10.3390/w13162217
Java O, Kohv M, Lõhmus A. Performance of a Bog Hydrological System Dynamics Simulation Model in an Ecological Restoration Context: Soomaa Case Study, Estonia. Water. 2021; 13(16):2217. https://doi.org/10.3390/w13162217
Chicago/Turabian StyleJava, Oskars, Marko Kohv, and Asko Lõhmus. 2021. "Performance of a Bog Hydrological System Dynamics Simulation Model in an Ecological Restoration Context: Soomaa Case Study, Estonia" Water 13, no. 16: 2217. https://doi.org/10.3390/w13162217
APA StyleJava, O., Kohv, M., & Lõhmus, A. (2021). Performance of a Bog Hydrological System Dynamics Simulation Model in an Ecological Restoration Context: Soomaa Case Study, Estonia. Water, 13(16), 2217. https://doi.org/10.3390/w13162217