Temporal and Local Heterogeneities of Water Table Depth under Different Agricultural Water Management Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils, Sites, and Data
2.2. Statistical Methods
3. Results and Discussion
3.1. Observed and Modelled Time Series
3.2. Cross-Correlation Analyses
3.2.1. The Year 2017
3.2.2. Years 2018–2020
3.2.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Celicourt, P.; Rousseau, A.N.; Gumiere, S.J.; Camporese, M. Agricultural hydroinformatics: A blueprint for an emerging framework to foster water management-centric sustainability transitions in farming systems. Front. Water 2020, 2, 1–19. [Google Scholar] [CrossRef]
- Hedley, C.B.; Yule, I.J. Soil water status mapping and two variable-rate irrigation scenarios. Precis. Agric. 2009, 10, 342–355. [Google Scholar] [CrossRef]
- McDonough, K.R.; Hutchinson, S.L.; Hutchinson, J.M.S.; Case, J.L.; Rahmani, V. Validation and assessment of sport-lis surface soil moisture estimates for water resources management applications. J. Hydrol. 2018, 566, 43–54. [Google Scholar] [CrossRef]
- Caron, J.; Pelletier, V.; Kennedy, C.D.; Gallichand, J.; Gumiere, S.; Bonin, S.; Bland, W.; Pepin, S. Guidelines of irrigation and drainage management strategies to enhance cranberry production and optimize water use in north america. Can. J. Soil Sci. 2017, 97, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Masseroni, D.; Facchi, A.; Depoli, E.V.; Renga, F.M.; Gandolfi, C. Irrig-oh: An open-hardware device for soil water potential monitoring and irrigation management. Irrig. Drain. 2016, 65, 750–761. [Google Scholar] [CrossRef]
- Pelletier, V.; Gallichand, J.; Caron, J. Effect of soil water potential threshold for irrigation on cranberry yield and water productivity. Trans. ASABE 2013, 56, 1325–1332. [Google Scholar] [CrossRef]
- Li, M.; Sui, R.; Meng, Y.; Yan, H. A real-time fuzzy decision support system for alfalfa irrigation. Comput. Electron. Agric. 2019, 163. [Google Scholar] [CrossRef]
- Brédy, J.; Gallichand, J.; Celicourt, P.; Gumiere, S.J. Water table depth forecasting in cranberry fields using two decision-tree-modeling approaches. Agric. Water Manag. 2020, 233. [Google Scholar] [CrossRef]
- Knotters, M.; Bierkens, M.F.P. Predicting water table depths in space and time using a regionalised time series model. Geoderma 2001, 103, 51–77. [Google Scholar] [CrossRef]
- Pelletier, V.; Gallichand, J.; Gumiere, S.; Pepin, S.; Caron, J. Water table control for increasing yield and saving water in cranberry production. Sustainability 2015, 7, 10602–10619. [Google Scholar] [CrossRef] [Green Version]
- Dutilleul, P. Multi-frequential periodogram analysis and the detection of periodic components in time series. Commun. Stat. Theory Method 2001, 30, 1063–1098. [Google Scholar] [CrossRef]
- Dutilleul, P.R.L. Spatio-Temporal Heterogeneity: Concepts Analyses; Cambridge University Press: Cambridge. UK, 2011; ISBN 978-0-521-79127-4. [Google Scholar]
- Wendroth, O.; Reuter, H.I.; Kersebaum, K.C. Predicting yield of barley across a landscape: A state-space modeling approach. J. Hydrol. 2003, 272, 250–263. [Google Scholar] [CrossRef]
- Yang, Y.; Wendroth, O. State-space approach to analyze field-scale bromide leaching. Geoderma 2014, 217–218, 161–172. [Google Scholar] [CrossRef]
- Berendrecht, W.L.; Heemink, A.W.; van Geer, F.C.; Gehrels, J.C. State-space modeling of water table fluctuations in switching regimes. J. Hydrol. 2004, 292, 249–261. [Google Scholar] [CrossRef]
- Awe, G.O.; Reichert, J.M.; Timm, L.C.; Wendroth, O. Temporal processes of soil water status in a sugarcane field under residue management. Plant Soil 2015, 387, 395–411. [Google Scholar] [CrossRef]
- Condon, L.E.; Maxwell, R.M. Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: A spatio-temporal framework for understanding water management impacts. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef]
- Dray, S.; Bauman, D.; Blanchet, G.; Borcard, D.; Clappe, S.; Guenard, G.; Thibaut, J.; Larocque, G.; Legendre, P.; Madi, N.; et al. Adespatial: Multivariate Multiscale Spatial Analysis, R package version 0.3-8; 2020. Available online: https://CRAN.R-project.org/package=adespatial (accessed on 13 July 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 13 July 2021).
- Handyside, P.E. Water Table Management for Cranberry Production on Sandy and Peat Soils in Québec; McGill University: Montréal, QC, Canada, 2003. [Google Scholar]
- Hall, I.V. Cranberry growth as related to water levels in the soil. Can. J. Plant Sci. 1971, 51, 237–238. [Google Scholar] [CrossRef]
- Baumann, D.L.; Workmaster, B.A.; Kosola, K.R. ‘Ben lear’ and ‘stevens’ cranberry root and shoot growth response to soil water potential. HortScience 2005, 40, 795–798. [Google Scholar] [CrossRef]
- Caron, J.; Bonin, S.; Pepin, S.; Kummer, L.; Vanderleest, C.; Bland, W.L. Determination of irrigation set points for cranberries from soil- and plant-based measurements. Can. J. Soil Sci. 2016, 96, 37–50. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, V.; Pepin, S.; Laurent, T.; Gallichand, J.; Caron, J. Cranberry gas exchange under short-term hypoxic soil conditions. HortScience 2016, 51, 910–914. [Google Scholar] [CrossRef] [Green Version]
- Gumiere, S.J.; Camporese, M.; Botto, A.; Lafond, J.A.; Paniconi, C.; Gallichand, J.; Rousseau, A.N. Machine learning vs. Physics-based modeling for real-time irrigation management. Front. Water 2020, 2. [Google Scholar] [CrossRef] [Green Version]
- Celicourt, P.; Gumiere, S.J.; Lafond, J.A.; Gumiere, T.; Gallichand, J.; Rousseau, A.N. Automated mapping of water table for cranberry subirrigation management: Comparison of three spatial interpolation methods. Water 2020, 12, 3322. [Google Scholar] [CrossRef]
Year | Type/Prec. 1 | Time Lags (Hour) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 15 | 23 | ||
2017 | B1/C | 0.098 | 0.121 | 0.1242 | 0.122 | 0.124 | 0.119 | 0.108 | 0.079 | ||||||
B2/C | 0.079 | 0.129 | 0.141 | 0.140 | 0.135 | 0.132 | 0.129 | 0.116 | 0.100 | ||||||
B3/B | 0.115 | 0.181 | 0.191 | 0.185 | 0.183 | 0.184 | 0.171 | 0.153 | 0.173 | 0.151 | 0.097 | ||||
B4/A | −0.059 | −0.060 | −0.053 | −0.097 | −0.053 | −0.064 | −0.055 | −0.051 | −0.062 | ||||||
B5/A | 0.050 | 0.057 | 0.069 | 0.076 | 0.061 | 0.062 | 0.066 | 0.059 | |||||||
S1/B | 0.115 | 0.201 | 0.222 | 0.207 | 0.200 | 0.192 | 0.180 | 0.156 | 0.155 | 0.140 | 0.077 | ||||
S2/B | 0.087 | 0.174 | 0.202 | 0.190 | 0.194 | 0.192 | 0.176 | 0.153 | 0.166 | 0.158 | 0.093 | ||||
S3/B | 0.064 | 0.113 | 0.117 | 0.140 | 0.146 | 0.148 | 0.142 | 0.145 | 0.167 | 0.109 | |||||
N1/B | 0.051 | 0.069 | 0.076 | 0.078 | 0.080 | 0.090 | 0.098 | 0.101 | 0.086 | ||||||
N2/A | 0.137 | 0.121 | 0.115 | 0.115 | 0.082 | 0.070 | 0.073 | 0.050 | 0.063 | ||||||
2018 | S1/B | 0.125 | 0.272 | 0.228 | 0.216 | 0.198 | 0.148 | 0.070 | |||||||
S2/B | 0.214 | 0.215 | 0.187 | 0.179 | 0.166 | 0.142 | 0.083 | ||||||||
S3/B | 0.137 | 0.114 | 0.124 | 0.127 | 0.125 | 0.096 | |||||||||
N1/B | 0.058 | 0.089 | 0.076 | 0.084 | 0.081 | 0.096 | 0.087 | ||||||||
2019 | N1/B | 0.059 | 0.152 | 0.140 | 0.088 | 0.067 | 0.074 | 0.072 | 0.056 | 0.050 | 0.054 | ||||
N2/A | 0.204 | 0.202 | 0.179 | 0.179 | 0.170 | 0.168 | 0.164 | 0.145 | 0.135 | 0.088 | |||||
N3/A | 0.079 | 0.134 | 0.122 | 0.141 | 0.139 | 0.139 | 0.138 | 0.130 | 0.127 | 0.107 | |||||
2020 | B3/B | 0.178 | 0.181 | 0.146 | 0.138 | 0.150 | 0.148 | 0.141 | 0.141 | 0.138 | 0.129 | 0.081 | |||
S2/B | 0.214 | 0.251 | 0.187 | 0.173 | 0.186 | 0.177 | 0.161 | 0.162 | 0.153 | 0.135 | 0.082 | ||||
S3/B | 0.196 | 0.209 | 0.167 | 0.160 | 0.173 | 0.170 | 0.157 | 0.159 | 0.151 | 0.140 | 0.081 | ||||
N1/B | 0.094 | 0.190 | 0.142 | 0.121 | 0.135 | 0.135 | 0.128 | 0.129 | 0.118 | 0.121 | 0.083 |
Bottom/Surface | Time Lag (Hours) | ||
---|---|---|---|
0 | 1 | 11 | |
B3/S1 | 0.666 1 | 0.286 | 0.081 |
B3/S2 | 0.713 | 0.164 | 0.103 |
B3/S3 | 0.194 | 0.493 | 0.087 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lafond, J.A.; Gumiere, S.J.; Vanlandeghem, V.; Gallichand, J.; Rousseau, A.N.; Dutilleul, P. Temporal and Local Heterogeneities of Water Table Depth under Different Agricultural Water Management Conditions. Water 2021, 13, 2148. https://doi.org/10.3390/w13162148
Lafond JA, Gumiere SJ, Vanlandeghem V, Gallichand J, Rousseau AN, Dutilleul P. Temporal and Local Heterogeneities of Water Table Depth under Different Agricultural Water Management Conditions. Water. 2021; 13(16):2148. https://doi.org/10.3390/w13162148
Chicago/Turabian StyleLafond, Jonathan A., Silvio J. Gumiere, Virginie Vanlandeghem, Jacques Gallichand, Alain N. Rousseau, and Pierre Dutilleul. 2021. "Temporal and Local Heterogeneities of Water Table Depth under Different Agricultural Water Management Conditions" Water 13, no. 16: 2148. https://doi.org/10.3390/w13162148