Effects of Dam Construction in the Wang River on Sediment Regimes in the Chao Phraya River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Variability and Trend Analysis on River Discharges and Sediment Loads
2.3. River Discharge and Sediment Observation
3. Results
3.1. River Flow and Sediment Characteristics along the Wang River
3.2. Historical River Flow and Sediment Loads
3.2.1. Historical River Flow along the Wang River
3.2.2. Historical Suspended Sediment Loads along the Wang River
3.2.3. Relationship between River Flow and Suspended Sediment Load
3.2.4. Variability of Sediment Loads along the Wang River
3.3. Effect of Large Dam Constructions on Sediment Loads in the Wang River
4. Discussion
4.1. Sediment Characteristics
4.2. Sediment Dynamics
4.3. Effect of Major Dam Construction on Sediment Supplied to the Chao Phraya River
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Syvitski, J.P.M.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Tessler, Z.D.; Vörösmarty, C.J.; Grossberg, M.; Gladkova, I.; Aizenman, H.; Syvitski, J.P.M.; Georgiou, E.F. Profiling risk and sustainability in coastal deltas of the world. Science 2015, 349, 638–643. [Google Scholar] [CrossRef] [Green Version]
- Mikhailov, V.N.; Mikhailova, M.V. Impact of local water management and hydraulic-engineering projects on river deltas. Water Resour. 2015, 42, 275–284. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, L.; Li, D.; Li, F. Water discharge and sediment load changes in China: Change patterns, causes, and implications. Water 2015, 7, 5849–5875. [Google Scholar] [CrossRef] [Green Version]
- Namsai, M.; Charoenlerkthawin, W.; Sirapojanakul, S.; Burnett, W.C.; Bidorn, B. Did the construction of the Bhumibol Dam cause a dramatic reduction in sediment supply to the Chao Phraya River? Water 2021, 13, 386. [Google Scholar] [CrossRef]
- Brandt, S.A. Classification of geomorphological effects downstream of dams. Catena 2000, 40, 375–401. [Google Scholar] [CrossRef]
- Liu, S.W.; Zhang, X.F.; Xu, Q.X.; Liu, D.C.; Yuan, J.; Wang, M.L. Variation and driving factors of water discharge and sediment load in different regions of the Jinsha River Basin in China in the past 50 years. Water 2019, 11, 1109. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Luo, X.; Liu, W. Stability analysis of hydrodynamic pressure landslides with different permeability coefficients affected by reservoir water level fluctuations and rainstorms. Water 2017, 9, 450. [Google Scholar] [CrossRef] [Green Version]
- Reisenbüchler, M.; Bui, M.D.; Rutschmann, P. Reservoir sediment management using artificial neural networks: A case study of the lower section of the Alpine Saalach River. Water 2021, 13, 818. [Google Scholar] [CrossRef]
- He, Y.; Gui, Z.; Su, C.; Chen, X.; Chen, D.; Lin, K.; Bai, X. Response of sediment load to hydrological change in the upstream part of the Lancang-Mekong river over the past 50 years. Water 2018, 10, 888. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yang, Z.; Wang, Y.; Saito, Y.; Liu, J.P. Reconstruction of sediment flux from the Changjiang (Yangtze River) to the sea since the 1860s. J. Hydrol. 2008, 349, 318–332. [Google Scholar] [CrossRef]
- Yang, Z.S.; Wang, H.J.; Saito, Y.; Milliman, J.D.; Xu, K.; Qiao, S.; Shi, G. Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: The past 55 years and after the Three Gorges Dam. Water Resour. Res. 2006, 42, W04407. [Google Scholar] [CrossRef]
- Liu, C.; Sui, J.; Wang, Z.Y. Sediment load reduction in Chinese rivers. Int. J. Sediment. Res. 2008, 23, 44–55. [Google Scholar] [CrossRef]
- Li, Q.; Yu, M.; Lu, G.; Cai, T.; Bai, X.; Xia, Z. Impacts of the Gezhouba and Three Gorges Reservoirs on the sediment regime in the Yangtze River, China. J. Hydrol. 2011, 403, 224–233. [Google Scholar] [CrossRef]
- Guo, L.; Su, N.; Zhu, C.; He, Q. How have the river discharges and sediment loads changed in the Changjiang River Basin downstream of the Three Gorges Dam? J. Hydrol. 2018, 560, 259–274. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.F.; Yang, S.L.; Xu, K.H.; Milliman, J.D.; Wang, H.; Yang, Z.; Chen, Z.; Zhang, C.Y. Human impacts on sediment in the Yangtze River: A review and new perspectives. Glob. Planet. Chang. 2018, 162, 8–17. [Google Scholar] [CrossRef]
- Dai, Z.; Mei, X.; Darby, S.E.; Lou, Y.; Li, W. Fluvial sediment transfer in the Changjiang (Yangtze) river-estuary depositional system. J. Hydrol. 2018, 566, 719–734. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Jin, Z.; Guo, L.; Lu, J.; Ren, S.; Zhou, Y. On the cumulative dam impact in the upper Changjiang River: Streamflow and sediment load changes. Catena 2020, 184, 104250. [Google Scholar] [CrossRef]
- Walling, D.E.; Fang, D. Recent trends in the suspended sediment loads of the world’s rivers. Glob. Planet. Chang. 2003, 39, 111–126. [Google Scholar] [CrossRef]
- Milliman, J.D.; Meade, R.H. World-wide delivery of river sediment to the oceans. J. Geol. 1983, 91, 1–21. [Google Scholar] [CrossRef]
- Shalash, S. Effects of sedimentation on the storage capacity of the High Aswan Dam reservoir. Hydrobiologia 1982, 91, 623–639. [Google Scholar] [CrossRef]
- Lu, X.X.; Oeurng, C.; Le, T.P.Q.; Thuy, D.T. Sediment budget as affected by construction of a sequence of dams in the lower Red River, Viet Nam. Geomorphology 2015, 248, 125–133. [Google Scholar] [CrossRef]
- Vinh, V.D.; Ouillon, S.; Thanh, T.D.; Chu, L.V. Impact of the Hoa Binh dam (Vietnam) on water and sediment budgets in the Red River basin and delta. Hydrol. Earth Syst. Sci. 2014, 18, 3987–4005. [Google Scholar] [CrossRef] [Green Version]
- Le, T.P.Q.; Garnier, J.; Gilles, B.; Sylvain, T.; Van Minh, C. The changing flow regime and sediment load of the Red River, Viet Nam. J. Hydrol. 2007, 334, 199–214. [Google Scholar] [CrossRef]
- Ve, N.D.; Fan, D.; Van Vuong, B.; Lan, T.D. Sediment budget and morphological change in the Red River Delta under increasing human interferences. Mar. Geol. 2021, 431, 106379. [Google Scholar] [CrossRef]
- Lu, X.X.; Siew, R.Y. Water discharge and sediment flux changes over the past decades in the Lower Mekong River: Possible impacts of the Chinese dams. Hydrol. Earth Syst. Sci. 2006, 10, 181–195. [Google Scholar] [CrossRef] [Green Version]
- Fu, K.D.; He, D.M.; Lu, X.X. Sedimentation in the Manwan reservoir in the Upper Mekong and its downstream impacts. Quat. Int. 2008, 186, 91–99. [Google Scholar] [CrossRef]
- Liu, C.; He, Y.; Walling, D.E.; Wang, J. Changes in the sediment load of the Lancang–Mekong River over the period 1965–2003. Sci. China Technol. Sci. 2013, 56, 843–852. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Rubin, Z.K.; Minear, J.T. Dams on the Mekong: Cumulative sediment starvation. Water Resour. Res. 2014, 50, 5158–5169. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Schmitt, R.J.; Carling, P.; Darby, S.; Arias, M.; Bizzi, S.; Castelletti, A.; Cochrane, T.A.; Gibson, S.; Kummu, M.; et al. Changing sediment budget of the Mekong: Cumulative threats and management strategies for a large river basin. Sci. Total Environ. 2018, 625, 114–134. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, R.J.; Bizzi, S.; Castelletti, A.; Opperman, J.J.; Kondolf, G.M. Planning dam portfolios for low sediment trapping shows limits for sustainable hydropower in the Mekong. Sci. Adv. 2019, 5, eaaw2175. [Google Scholar] [CrossRef] [Green Version]
- Binh, V.D.; Kantoush, S.; Sumi, T. Changes to long-term discharge and sediment loads in the Vietnamese Mekong Delta caused by upstream dams. Geomorphology 2020, 353, 107011. [Google Scholar] [CrossRef]
- Tanabe, S.; Saito, Y.; Sato, Y.; Suzuki, Y.; Sinsakul, S.; Tiyapairach, S.; Chaimanee, N. Stratigraphy and Holocene evolution of the mud–dominated Chao Phraya delta, Thailand. Quat. Sci. Rev. 2003, 22, 789–807. [Google Scholar] [CrossRef]
- Bidorn, B.; Kish, S.A.; Donoghue, J.F.; Bidorn, K.; Mama, R. Sediment transport characteristic of the Ping River Basin, Thailand. Procedia Eng. 2016, 154, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Bidorn, B.; Kish, S.A.; Donoghue, J.F.; Huang, W.; Bidorn, K. Variability of the total sediment supply of the Chao Phraya River, Thailand. River Sedimentation. In Proceedings of the 13th International Symposium on River Sedimentation, Stuttgart, Germany, 19–22 September 2016; CRC Press: Stuttgart, Germany, 2016. [Google Scholar]
- Bidorn, B.; Rukvichai, C. Impacts of coastal development on the shoreline change of the Eastern Gulf of Thailand. In IOP Conf. Series: Earth and Environmental Science, Proceedings of the 5th International Conference on Coastal and Ocean Engineering (ICCOE 2018), Shanghai, China, 27–29 April 2018; IOP Publishing Ltd.: Shanghai, China, 2018; Volume 171, p. 012007. [Google Scholar]
- Namsai, M.; Mama, R.; Sirapojanakul, S.; Chanyotha, S.; Phanomphongphaisan, N.; Bidorn, B. The characteristics of sediment transport in the upper and middle Yom River, Thailand. In Proceedings of the THA 2019 International Conference on Water Management and Climate Change towards Asia’s Water–Energy–Food Nexus and SDGs, Bangkok, Thailand, 23–25 January 2019; Water Resources System Research Unit, Chulalongkorn University: Bangkok, Thailand, 2019; pp. 346–352. [Google Scholar]
- Phanomphongphaisarn, N.; Bidorn, B. Effectiveness and impacts of long jetty at the Southern Coast of Thailand. Eng. J. 2020, 24, 1–17. [Google Scholar] [CrossRef]
- Bidorn, B.; Phanomphongphaisarn, N.; Rukvichai, C.; Kongsawadworakul, P. Evolution of mangrove muddy coast in the Western Coast of the Upper Gulf of Thailand over the past six decades. In Estuaries and Coastal Zones in Times of Global Change; Springer Water; Nguyen, K., Guillou, S., Gourbesville, P., Thiébot, J., Eds.; Springer: Singapore, 2020; pp. 429–442. [Google Scholar]
- Namsai, M.; Bidorn, B.; Chanyotha, S.; Mama, R.; Phanomphongphaisarn, N. Sediment dynamics and temporal variation of runoff in the Yom River, Thailand. Int. J. Sediment. Res. 2020, 35, 365–376. [Google Scholar] [CrossRef]
- Bidorn, B.; Sok, K.; Bidorn, K.; Burnett, W.C. An analysis of the factors responsible for the shoreline retreat of the Chao Phraya Delta (Thailand). Sci. Total Environ. 2021, 769, 145253. [Google Scholar] [CrossRef]
- Bidorn, B.; Kish, S.A.; Donoghue, J.F.; Bidorn, K.; Mama, R. Change in sediment characteristics and sediment load of the Nan River due to large dam construction. In Proceedings of the 37th IAHR World Congress 2017, Kuala Lumpur, Malaysia, 13–18 August 2017; IAHR: Kuala Lumpur, Malaysia, 2017; pp. 403–412. [Google Scholar]
- Vongvissessomjai, S. Chao Phraya Delta: Paddy field irrigation areas in tidal deposits. In Proceedings of the 56th International Executive Council of ICID, Beijing, China, 10−18 September 2005; Available online: https://www.rid.go.th/thaicid/_5_article/2549/10_1ChaoPhraYaDelta.pdf (accessed on 13 April 2021).
- Winterwerp, J.C.; Borst, W.G.; De Vries, M.B. Pilot study on the erosion and rehabilitation of a mangrove mud coast. J. Coast. Res. 2005, 21, 223–230. [Google Scholar] [CrossRef]
- Uehara, K.; Sojisuporn, P.; Saito, Y.; Jarupongsakul, T. Erosion and accretion processes in a muddy dissipative coast, the Chao Phraya River delta, Thailand. Earth Surf. Process. Landf. 2010, 35, 1701–1711. [Google Scholar] [CrossRef]
- Gupta, H.; Kao, S.J.; Dai, M. The role of mega dams in reducing sediment fluxes: A case study of large Asian rivers. J. Hydrol. 2012, 464–465, 447–458. [Google Scholar] [CrossRef]
- Milliman, J.D.; Farnsworth, K.L. River Discharge to the Coastal Ocean: A Global Synthesis; Cambridge University Press: New York, NY, USA, 2011; pp. 1–382. [Google Scholar]
- Wang, Y.; Rhoads, B.L.; Wang, D.; Wu, J.; Zhang, X. Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River. J. Hydrol. 2018, 558, 184–195. [Google Scholar] [CrossRef]
- Hydro and Agro Informatics Institute (HAII). Report on Data Collection and Analysis: Database Development Project and Flood and Drought Modeling of 25 River Basins (Wang River Basin); Hydro and Agro Infomatics Institute (HAII): Bangkok, Thailand, 2012. (In Thai) [Google Scholar]
- Hydro and Agro Informatics Institute (HAII). Report on Data Collection and Analysis: Database Development Project and Flood and Drought Modeling of 25 River Basins (Ping River Basin); Hydro and Agro Infomatics Institute (HAII): Bangkok, Thailand, 2012. (In Thai) [Google Scholar]
- Office of Natural Resources and Environmental Policy and Planning. Developing Watershed Management Organizations in Pilot Sub-Basins of the Ping River Basin; Final Report; Office of Natural Resources and Environmental Policy and Planning, Ministry of Natural Resources and Environment: Bangkok, Thailand, 2005.
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Shi, H.; Hu, C.; Wang, Y.; Liu, C.; Li, H. Analyses of trends and causes for variations in runoff and sediment load of the Yellow River. Int. J. Sediment Res. 2017, 32, 171–179. [Google Scholar] [CrossRef]
- Yue, X.; Mu, X.; Zhao, G.; Shao, H.; Gao, P. Dynamic changes of sediment load in the middle reaches of the Yellow River basin, China and implications for eco-restoration. Ecol. Eng. 2014, 73, 64–72. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, X.X.; Higgitt, D.L.; Chen, C.T.A.; Han, J.; Sun, H. Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) Basin, China. Glob. Planet. Chang. 2008, 60, 365–380. [Google Scholar] [CrossRef]
- Mama, R.; Jung, K.; Bidorn, B.; Namsai, M.; Feng, M. The local observed trends and variability in rainfall indices over the past century of the Yom River Basin, Thailand. J. Korean Soc. Hazard Mitig. 2018, 18, 41–55. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C. The Mann–Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Yu, B.; Xu, C.; Liu, M.; Wang, K. Quantifying the impacts of climate and human activities on water and sediment discharge in a karst region of Southwest China. J. Hydrol. 2016, 542, 836–849. [Google Scholar] [CrossRef]
- Edwards, T.K.; Glysson, G.D.; Guy, H.P.; Norman, V.W. Field Methods for Measurement of Fluvial Sediment; US Geological Survey: Denver, CO, USA, 1999; pp. 1–89.
- Helley, E.J.; Smith, W. Development and Calibration of a Pressure-Difference Bedload Sampler; US Department of the Interior, Geological Survey, Water Resources Division: Menlo Park, CA, USA, 1971; pp. 1–18.
- Rachlewicz, G.; Zwoliński, Z.; Kociuba, W.; Stawska, M. Field testing of three bedload samplers’ efficiency in a gravel-bed river, Spitsbergen. Geomorphology 2017, 287, 90–100. [Google Scholar] [CrossRef]
- Lemma, H.; Nyssen, J.; Frankl, A.; Poesen, J.; Adgo, E.; Billi, P. Bedload transport measurements in the Gilgel Abay River, Lake Tana Basin, Ethiopia. J. Hydrol. 2019, 577, 123968. [Google Scholar] [CrossRef]
- Turowski, J.M.; Rickenmann, D.; Dadson, S.J. The partitioning of the total sediment load of a river into suspended load and bedload: A review of empirical data. Sedimentology 2010, 57, 1126–1146. [Google Scholar] [CrossRef]
- Royal Irrigation Department (RID). The Relation between Suspended Sediment and Drainage Area in 25 River Basins; Royal Irrigation Department: Bangkok, Thailand, 2012. (In Thai)
- Panda, D.K.; Kumar, A.; Mohanty, S. Recent trends in sediment load of tropical (Peninsular) river basins of India. Glob. Planet. Chang. 2011, 75, 108–118. [Google Scholar] [CrossRef]
- Walling, D.E. Human impact on land–ocean sediment transfer by the world’s rivers. Geomorphology 2006, 79, 192–216. [Google Scholar] [CrossRef]
- Wu, C.; Ji, C.; Shi, B.; Wang, Y.; Gao, J.; Yang, Y.; Mu, J. The impact of climate change and human activities on streamflow and sediment load in the Pearl River basin. Int. J. Sediment Res. 2019, 34, 307–321. [Google Scholar] [CrossRef]
- Zuliziana, S.; Tanuma, K.; Yoshimura, C.; Saavedra, O.C. Distributed model of hydrological and sediment transport processes in large river basins in Southeast Asia. Hydrol. Earth Syst. Sci. Discuss. 2015, 12, 6755–6797. [Google Scholar]
- Li, D.; Lu, X.X.; Yang, X.; Chen, L.; Lin, L. Sediment load responses to climate variation and cascade reservoirs in the Yangtze River: A case study of the Jinsha River. Geomorphology 2018, 322, 41–52. [Google Scholar] [CrossRef]
- Guo, L.P.; Mu, X.M.; Hu, J.M.; Gao, P.; Zhang, Y.F.; Liao, K.T.; Bai, H.; Chen, X.L.; Song, Y.J.; Jin, N. Assessing impacts of climate change and human activities on streamflow and sediment discharge in the Ganjiang River Basin (1964–2013). Water 2019, 11, 1679. [Google Scholar] [CrossRef] [Green Version]
- Royal Irrigation Department (RID). Report on Study of Dam Break of Kiew Koh Ma Dam; Royal Irrigation Department: Bangkok, Thailand, 2010. (In Thai)
Station | 1 Dist. | Drainage | Data | Period | Max. | Ave. | Min. | 4 p-Value | 5 Trend |
---|---|---|---|---|---|---|---|---|---|
(River) | (km) | (km2) | |||||||
W.25 | 388 | 762 | 2 Qw (m3/s) | 2009–2019 | 186 | 5 | ~0 | 0.879 | Decreasing |
(Wang) | 3 Qs (t/d) | 2009–2019 | 14,325 | 81 | ~0 | 0.879 | Decreasing | ||
W.16A | 335 | 1392 | Qw (m3/s) | 1971–2019 | 510 | 8 | ~0 | 0.425 | Decreasing |
(Wang) | Qs (t/d) | 1986–2019 | 47,554 | 140 | ~0 | 0.0036 | Decreasing | ||
W.1C | 241 | 3478 | Qw (m3/s) | 1929–2019 | 820 | 22 | ~0 | <0.0001 | Decreasing |
(Wang) | Qs (t/d) | 1994–2019 | 24,245 | 213 | ~0 | 0.012 | Decreasing | ||
W.3A | 124 | 8985 | Qw (m3/s) | 1967–2019 | 2814 | 42 | ~0 | 0.247 | Decreasing |
(Wang) | Qs (t/d) | 1997–2019 | 87,782 | 554 | ~0 | 0.540 | Decreasing | ||
W.23 | 71 | 9930 | Qw (m3/s) | 2001–2019 | 1342 | 42 | ~0 | 0.093 | Decreasing |
(Wang) | Qs (t/d) | 2001–2019 | 83,457 | 726 | ~0 | 0.068 | Decreasing | ||
W.4A | 30 | 10,493 | Qw (m3/s) | 1972–2019 | 1074 | 40 | ~0 | 0.581 | Decreasing |
(Wang) | Qs (t/d) | 1989–2000 | 37,150 | 582 | ~0 | 0.101 | Decreasing | ||
P.17 | –200 | 45,297 | Qw (m3/s) | 1954–2019 | 2351 | 252 | ~0 | 0.507 | Decreasing |
(Ping) | Qs (t/d) | 2001–2019 | 32,902 | 1753 | 9 | 0.127 | Decreasing | ||
C.2 | –242 | 109,973 | Qw (m3/s) | 1956–2019 | 5450 | 711 | 15 | 0.316 | Decreasing |
(CPY) | Qs (t/d) | 1965–2019 | 493,805 | 13,705 | 236 | 0.001 | Decreasing |
Site | Dist. (km) | 1 A (m2) | 2 V (m/s) | 3 Qw (m3/s) | 4 Qs (t/d) | 5 Qb (t/d) | 6 Qt (t/d) | Qb/Qs | Qb/Qt | d50 (mm) |
---|---|---|---|---|---|---|---|---|---|---|
Dry season | ||||||||||
XW.1 | 387.6 | 2.8 | 0.05 | 0.1 | 0.11 | 0 | 0.11 | 0 | 0 | 1.78 |
XW.2 | 383.4 | 13.9 | 0.01 | 0.1 | 0.08 | 0 | 0.08 | 0 | 0 | 0.73 |
XW.3 | 361.9 | 7.0 | 0.10 | 0.7 | 0.4 | 0 | 0.40 | 0 | 0 | 1.33 |
XW.4 | 334.6 | 13.4 | 0.16 | 2.1 | 1.7 | 0.40 | 2.10 | 0.24 | 0.19 | 2.47 |
XW.5 | 319.6 | 7.9 | 0.23 | 1.8 | 4.59 | 1.61 | 6.20 | 0.35 | 0.26 | 2.11 |
XW.6 | 308.4 | 30.7 | 0.13 | 4.1 | 5.7 | 0 | 5.70 | 0 | 0 | 1.20 |
XW.7 | 284.0 | 38.6 | 0.04 | 1.7 | 0.63 | 0 | 0.63 | 0 | 0 | 2.24 |
XW.8 | 277.5 | 3.3 | 0.79 | 2.3 | 0.88 | 0.56 | 1.44 | 0.64 | 0.39 | 0.85 |
XW.9 | 247.6 | 10.5 | 0.35 | 3.7 | 11.01 | 1.15 | 12.16 | 0.10 | 0.10 | 0.53 |
XW.10 | 240.3 | 57.5 | 0.07 | 3.9 | 6.44 | 0 | 6.44 | 0 | 0 | 1.12 |
XW.11 | 217.0 | 232.6 | 0.02 | 5.1 | 24.74 | 0 | 24.74 | 0 | 0 | 1.50 |
XW.12 | 197.8 | 33.6 | 0.18 | 6.2 | 3.22 | 0 | 3.22 | 0 | 0 | 1.19 |
XW.13 | 165.2 | 80.5 | 0.07 | 5.5 | 1.24 | 0 | 1.24 | 0 | 0 | 0.92 |
XW.14 | 123.7 | 49.3 | 0.10 | 5.1 | 3.53 | 0 | 3.53 | 0 | 0 | 2.07 |
XW.15 | 71.1 | 28.0 | 0.25 | 6.9 | 2.62 | 0.26 | 2.88 | 0.10 | 0.09 | 0.69 |
XW.16 | 53.8 | 21.4 | 0.31 | 6.7 | 2.32 | 0.11 | 2.43 | 0.05 | 0.05 | 0.60 |
XW.17 | 34.7 | 15.4 | 0.38 | 5.8 | 1.7 | 0.07 | 1.77 | 0.04 | 0.04 | 1.63 |
XW.18 | 3.1 | 45.7 | 0.14 | 6.5 | 6.86 | 0 | 6.86 | 0 | 0 | 1.03 |
Wet season | ||||||||||
XW.1 | 387.6 | 3.4 | 0.22 | 0.8 | 0.48 | 0.39 | 0.87 | 0.81 | 0.45 | 1.77 |
XW.2 | 383.4 | 11.5 | 0.10 | 1.1 | 0.94 | 0 | 0.94 | 0 | 0 | 2.40 |
XW.3 | 361.9 | 11.3 | 0.20 | 2.2 | 2.95 | 0.64 | 3.59 | 0.22 | 0.18 | 1.24 |
XW.4 | 334.6 | 12.6 | 0.13 | 1.6 | 0.92 | 0 | 0.92 | 0 | 0 | 2.50 |
XW.5 | 319.6 | 13.5 | 0.22 | 2.9 | 0.98 | 3.56 | 4.54 | 3.63 | 0.78 | 2.50 |
XW.6 | 308.4 | 24.0 | 0.38 | 9.2 | 16.14 | 3.64 | 19.78 | 0.23 | 0.18 | 1.46 |
XW.7 | 284.0 | 20.0 | 0.27 | 5.4 | 1.76 | 7.34 | 9.10 | 4.17 | 0.81 | 3.70 |
XW.8 | 277.5 | 45.6 | 0.14 | 6.4 | 3.71 | 0 | 3.71 | 0 | 0 | 1.35 |
XW.9 | 247.6 | 8.1 | 0.82 | 6.6 | 17.04 | 2.65 | 19.69 | 0.16 | 0.14 | 1.41 |
XW.10 | 240.3 | 32.8 | 0.35 | 11.4 | 48.76 | 3.43 | 52.19 | 0.07 | 0.07 | 1.52 |
XW.11 | 217.0 | 229.1 | 0.12 | 26.5 | 37.79 | 0.04 | 37.83 | 0.001 | 0.001 | 0.68 |
XW.12 | 197.8 | 75.7 | 0.37 | 27.8 | 17.29 | 0.85 | 18.14 | 0.05 | 0.05 | 0.61 |
XW.13 | 165.2 | 132.7 | 0.22 | 29.3 | 37.22 | 0.26 | 37.48 | 0.01 | 0.01 | 1.40 |
XW.14 | 123.7 | 72.8 | 0.39 | 28.2 | 49.45 | 0.88 | 50.33 | 0.02 | 0.01 | 1.98 |
XW.15 | 71.1 | 44.7 | 0.41 | 18.4 | 12.4 | 9.65 | 22.05 | 0.78 | 0.45 | 0.54 |
XW.16 | 53.8 | 50.7 | 0.53 | 26.9 | 92.73 | 34.97 | 127.7 | 0.38 | 0.27 | 0.69 |
XW.17 | 34.7 | 43.6 | 0.59 | 25.8 | 107.66 | 32.28 | 139.94 | 0.30 | 0.23 | 1.07 |
XW.18 | 3.1 | 67.3 | 0.32 | 21.2 | 67.23 | 6.82 | 74.05 | 0.10 | 0.09 | 0.84 |
Station | 1 Dist. (km) | Drainage (km2) | Period | Qt (×106 t/y) | 2 p-Value | 3 Trend | ||
---|---|---|---|---|---|---|---|---|
Max. | Ave. | Min. | ||||||
W.25 | +388 | 762 | 2009–2019 | 0.11 | 0.04 | 0.001 | 0.879 | Increasing |
W.16A | +335 | 1392 | 1971–2019 | 0.29 | 0.07 | 0.001 | 0.002 | Decreasing |
W.1C | +241 | 3478 | 1929–2019 | 0.36 | 0.10 | 0.003 | <0.0001 | Decreasing |
W.3A | +124 | 8985 | 1967–2019 | 1.03 | 0.20 | 0.01 | 0.337 | Decreasing |
W.23 | +71 | 9930 | 2001–2019 | 2.14 | 0.45 | 0.01 | 0.023 | Decreasing |
W.4A | +30 | 10,493 | 1972–2019 | 1.44 | 0.26 | 0.01 | 0.927 | Increasing |
P.17 | –200 | 45,297 | 1954–2019 | 2.66 | 0.82 | 0.18 | 0.128 | Decreasing |
C.2 | –242 | 109,973 | 1956–2019 | 21.81 | 4.83 | 0.60 | 0.003 | Decreasing |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charoenlerkthawin, W.; Namsai, M.; Bidorn, K.; Rukvichai, C.; Panneerselvam, B.; Bidorn, B. Effects of Dam Construction in the Wang River on Sediment Regimes in the Chao Phraya River Basin. Water 2021, 13, 2146. https://doi.org/10.3390/w13162146
Charoenlerkthawin W, Namsai M, Bidorn K, Rukvichai C, Panneerselvam B, Bidorn B. Effects of Dam Construction in the Wang River on Sediment Regimes in the Chao Phraya River Basin. Water. 2021; 13(16):2146. https://doi.org/10.3390/w13162146
Chicago/Turabian StyleCharoenlerkthawin, Warit, Matharit Namsai, Komkrit Bidorn, Chaipant Rukvichai, Balamurugan Panneerselvam, and Butsawan Bidorn. 2021. "Effects of Dam Construction in the Wang River on Sediment Regimes in the Chao Phraya River Basin" Water 13, no. 16: 2146. https://doi.org/10.3390/w13162146
APA StyleCharoenlerkthawin, W., Namsai, M., Bidorn, K., Rukvichai, C., Panneerselvam, B., & Bidorn, B. (2021). Effects of Dam Construction in the Wang River on Sediment Regimes in the Chao Phraya River Basin. Water, 13(16), 2146. https://doi.org/10.3390/w13162146