Impacts of Irrigation Managements on Soil CO2 Emission and Soil CH4 Uptake of Winter Wheat Field in the North China Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil Physical and Chemical Properties
2.3. Experimental Design
2.4. CO2, CH4, and Soil Sampling
2.5. CO2 and CH4 Emission Calculation
2.6. Water Use Efficiency and GWP Index Estimates
2.7. Statistical Analysis
3. Results
3.1. Basic Weather Infomation during the Two Growing Seasons
3.2. Dynamics of Soil Environmental Variables
3.3. Effect of Irrigation Scheduling and Irrigation Methods on CO2 Emission
3.4. Effect of Irrigation Scheduling and Irrigation Methods on CH4 Uptake
3.5. Grain Yield and WUE
3.6. Global Warming Potential (GWP)
3.7. GWPI
3.8. GWPI per Unit IA
4. Discussion
4.1. Effects of Irrigation Management on CO2 Emissions
4.1.1. Effects of Irrigation Scheduling Levels on CO2 Emissions
4.1.2. Effects of Irrigation Methods on CO2 Emissions
4.2. Effects of Irrigation Management on CH4 Uptakes
4.2.1. Effect of Irrigation Scheduling Levels on CH4 Uptakes
4.2.2. Effect of Irrigation Methods on CH4 Uptake
4.3. The Regression between Soil Environmental Variables and GHG Emissions
4.4. Global Warming Potential (GWP) Indices
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef] [Green Version]
- Robertson, G.P.; Paul, E.A.; Harwood, R.R. Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science 2000, 289, 1922–1925. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, M.P., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Peyron, M.; Bertora, C.; Pelissetti, S.; Said-Pullicino, D.; Celi, L.; Miniotti, E.; Romani, M.; Sacco, D. Greenhouse gas emissions as affected by different water management practices in temperate rice paddies. Agric. Ecosyst. Environ. 2016, 232, 17–28. [Google Scholar] [CrossRef]
- Ding, T.; Ning, Y.; Zhang, Y. Estimation of greenhouse gas emissions in China 1990–2013. Greenh. Gases Sci. Technol. 2017, 7, 1097–1115. [Google Scholar] [CrossRef]
- Li, C.; Xiong, Y.; Huang, Q.; Xu, X.; Huang, G. Impact of irrigation and fertilization regimes on greenhouse gas emissions from soil of mulching cultivated maize (Zea mays L.) field in the upper reaches of Yellow River, China. J. Clean. Prod. 2020, 120873. [Google Scholar] [CrossRef]
- Rahman, M.M. Carbon dioxide emission from soil. Agric. Res. 2013, 2, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Álvaro-Fuentes, J.; Arrúe, J.L.; Cantero-Martínez, C.; Isla, R.; Plaza-Bonilla, D.; Quílez, D. Fertilization scenarios in sprinkler-irrigated corn under Mediterranean conditions: Effects on greenhouse gas emissions. Soil Sci. Soc. Am. J. 2016, 80, 662–671. [Google Scholar] [CrossRef] [Green Version]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Chem. Der Erde Geochem. 2016, 76, 327–352. [Google Scholar] [CrossRef] [Green Version]
- Sainju, U.M.; Stevens, W.B.; Caesar-Tonthat, T.; Liebig, M.A. Soil greenhouse gas emissions affected by irrigation, tillage, crop rotation, and nitrogen fertilization. J. Environ. Qual. 2012, 41, 1774–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Zhou, L.; Nie, Y.; Fu, Y.; Du, Z.; Shao, J.; Zheng, Z.; Wang, X. Similar responses of soil carbon storage to drought and irrigation in terrestrial ecosystems but with contrasting mechanisms: A meta-analysis. Agric. Ecosyst. Environ. 2016, 228, 70–81. [Google Scholar] [CrossRef]
- Zornoza, R.; Rosales, R.; Acosta, J.A.; de la Rosa, J.M.; Arcenegui, V.; Faz, Á.; Pérez-Pastor, A. Efficient irrigation management can contribute to reduce soil CO2 emissions in agriculture. Geoderma 2016, 263, 70–77. [Google Scholar] [CrossRef]
- Bowles, T.M.; Barrios-Masias, F.H.; Carlisle, E.A.; Cavagnaro, T.R.; Jackson, L.E. Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Sci. Total Environ. 2016, 566, 1223–1234. [Google Scholar] [CrossRef] [Green Version]
- Abalos, D.; Sanchez-Martin, L.; Garcia-Torres, L.; van Groenigen, J.W.; Vallejo, A. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops. Sci. Total Environ. 2014, 490, 880–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zornoza, R.; Acosta, J.A.; Gabarrón, M.; Gómez-Garrido, M.; Sánchez-Navarro, V.; Terrero, A.; Martínez-Martínez, S.; Faz, Á.; Pérez-Pastor, A. Greenhouse gas emissions and soil organic matter dynamics in woody crop orchards with different irrigation regimes. Sci. Total Environ. 2018, 644, 1429–1438. [Google Scholar] [CrossRef]
- Wu, J.; Guo, W.; Feng, J.; Li, L.; Yang, H.; Wang, X.; Bian, X. Greenhouse gas emissions from cotton field under different irrigation methods and fertilization regimes in arid Northwestern China. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef]
- Franco-Luesma, S.; Álvaro-Fuentes, J.; Plaza-Bonilla, D.; Arrúe, J.L.; Cantero-Martínez, C.; Cavero, J. Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions. Agric. Water Manag. 2019, 221, 303–311. [Google Scholar] [CrossRef]
- NBSC. China Statistics Yearbook 2014; China Statistics Press: Beijing, China, 2015. [Google Scholar]
- Li, J.; Dong, W.; Oenema, O.; Chen, T.; Hu, C.; Yuan, H.; Zhao, L. Irrigation reduces the negative effect of global warming on winter wheat yield and greenhouse gas intensity. Sci. Total Environ. 2019, 646, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Yang, Y.; Han, Z.; Cai, H.; Li, Z. Deficit irrigation effectively reduces soil carbon dioxide emissions from wheat fields in Northwest China. J. Sci. Food Agric. 2019, 99, 5401–5408. [Google Scholar] [CrossRef]
- Wang, G.; Liang, Y.; Zhang, Q.; Jha, S.K.; Gao, Y.; Shen, X.; Sun, J.; Duan, A. Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain. Agric. Water Manag. 2016, 163, 403–407. [Google Scholar] [CrossRef]
- Guo, S.; Qi, Y.; Peng, Q.; Dong, Y.; He, Y.; Yan, Z.; Wang, L. Influences of drip and flood irrigation on soil carbon dioxide emission and soil carbon sequestration of maize cropland in the North China Plain. J. Arid Land 2017, 9, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Inanaga, S.; Li, Z.; Eneji, A.E. Optimizing irrigation scheduling for winter wheat in the North China Plain. Agric. Water Manag. 2005, 76, 8–23. [Google Scholar] [CrossRef]
- Wang, J.; Gong, S.; Xu, D.; Yu, Y.; Zhao, Y. Impact of drip and level-basin irrigation on growth and yield of winter wheat in the North China Plain. Irrig. Sci. 2012, 31, 1025–1037. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, L.; Shen, X.; Li, X.; Sun, J.; Duan, A.; Wu, L. Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency. Agric. Water Manag. 2014, 146, 1–10. [Google Scholar] [CrossRef]
- Saxton, K.; Rawls, W.J.; Romberger, J.S.; Papendick, R. Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Am. J. 1986, 50, 1031. [Google Scholar] [CrossRef]
- Mehmood, F.; Wang, G.; Gao, Y.; Liang, Y.; Chen, J.; Si, Z.; Ramatshaba, T.S.; Zain, M.; Duan, A. Nitrous oxide emission from winter wheat field as responded to irrigation scheduling and irrigation methods in the North China Plain. Agric. Water Manag. 2019, 222, 367–374. [Google Scholar] [CrossRef]
- Li, Q.; Dong, B.; Qiao, Y.; Liu, M.; Zhang, J. Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China. Agric. Water Manag. 2010, 97, 1676–1682. [Google Scholar] [CrossRef]
- Jha, S.K.; Gao, Y.; Liu, H.; Huang, Z.; Wang, G.; Liang, Y.; Duan, A. Root development and water uptake in winter wheat under different irrigation methods and scheduling for North China. Agric. Water Manag. 2017, 182, 139–150. [Google Scholar] [CrossRef]
- Zhao, J.; Yun-She, D.; Yu-Chun, Q.; Domroes, M. Precipitation pulses and soil CO2 emission in desert shrubland of Artemisia ordosica on the Ordos Plateau of Inner Mongolia, China. Pedosphere 2009, 19, 799–807. [Google Scholar] [CrossRef]
- Shi, Y.; Wu, W.; Meng, F.; Zhang, Z.; Zheng, L.; Wang, D. Integrated management practices significantly affect N2O emissions and wheat-maize production at field scale in the North China Plain. Nutr. Cycl. Agroecosyst. 2013, 95, 203–218. [Google Scholar] [CrossRef]
- Baker, J.; Doyle, G.; McCarty, G.; Mosier, A.; Parkin, T.; Reicosky, D.; Smith, J.; Venterea, R. Chamber-Based Trace Gas Flux Measurement Protocol; United States Department of Agriculture: Washington, DC, USA, 2003. [Google Scholar]
- Zou, J.; Huang, Y.; Jiang, J.; Zheng, X.; Sass, R.L. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Glob. Biogeochem. Cycles 2005, 19. [Google Scholar] [CrossRef]
- Song, C.; Yan, B.; Wang, Y.; Wang, Y.; Lou, Y.; Zhao, Z. Fluxes of carbon dioxide and methane from swamp and impact factors in Sanjiang Plain, China. Chin. Sci. Bull. 2003, 48, 2749–2753. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Z.; Guo, L.; Cai, M.; Cao, C. Emissions of CH4 and CO2 from double rice cropping systems under varying tillage and seeding methods. Atmos Environ. 2013, 80, 438–444. [Google Scholar] [CrossRef]
- Hillel, D. Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Sun, H.Y.; Liu, C.M.; Zhang, X.Y.; Shen, Y.J.; Zhang, Y.Q. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agric. Water Manag. 2006, 85, 211–218. [Google Scholar] [CrossRef]
- Kumar, A.; Nayak, A.K.; Mohanty, S.; Das, B.S. Greenhouse gas emission from direct seeded paddy fields under different soil water potentials in Eastern India. Agric. Ecosyst. Environ. 2016, 228, 111–123. [Google Scholar] [CrossRef]
- Shang, Q.; Yang, X.; Gao, C.; Wu, P.; Liu, J.; Xu, Y.; Shen, Q.; Zou, J.; Guo, S. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Glob. Chang. Biol. 2011, 17, 2196–2210. [Google Scholar] [CrossRef]
- Fang, Q. Effect of irrigation on water use efficiency of winter wheat. Trans. CSAE 2004, 20, 34–39. [Google Scholar]
- Hu, T.; Kang, S.; Li, F.; Zhang, J. Effects of partial root-zone irrigation on the nitrogen absorption and utilization of maize. Agric. Water Manag. 2009, 96, 208–214. [Google Scholar] [CrossRef]
- Halverson, L.J.; Jones, T.M.; Firestone, M.K. Release of intracellular solutes by four soil bacteria exposed to dilution stress. Soil Sci. Soc. Am. J. 2000, 64, 1630–1637. [Google Scholar] [CrossRef]
- Fierer, N.; Schimel, J.P. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Sci. Soc. Am. J. 2003, 67, 798–805. [Google Scholar] [CrossRef]
- Sainju, U.; Jabro, J.; Stevens, W. Soil carbon dioxide emission as influenced by irrigation, tillage, cropping system, and nitrogen fertilization. J. Environ. Qual. 2008, 37, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Buyanovsky, G.; Wagner, G. Annual cycles of carbon dioxide level in soil air. Soil Sci. Soc. Am. J. 1983, 47, 1139–1145. [Google Scholar] [CrossRef]
- Scheer, C.; Grace, P.R.; Rowlings, D.W.; Payero, J. Soil N2O and CO2 emissions from cotton in Australia under varying irrigation management. Nutr. Cycl. Agroecosystems 2013, 95, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Han, G.; Zhou, G.; Xu, Z.; Yang, Y.; Liu, J.; Shi, K. Biotic and abiotic factors controlling the spatial and temporal variation of soil respiration in an agricultural ecosystem. Soil Biol. Biochem. 2007, 39, 418–425. [Google Scholar] [CrossRef]
- Orchard, V.A.; Cook, F. Relationship between soil respiration and soil moisture. Soil Biol. Biochem. 1983, 15, 447–453. [Google Scholar] [CrossRef]
- Bai, W.-M.; Li, L.-H. Effect of irrigation methods and quota on root water uptake and biomass of alfalfa in the Wulanbuhe sandy region of China. Agric. Water Manag. 2003, 62, 139–148. [Google Scholar] [CrossRef]
- Entry, J.A.; Mills, D.; Mathee, K.; Jayachandran, K.; Sojka, R.E.; Narasimhan, G. Influence of irrigated agriculture on soil microbial diversity. Appl. Soil Ecol. 2008, 40, 146–154. [Google Scholar] [CrossRef]
- Chen, H.; Hou, H.J.; Wang, X.Y.; Zhu, Y.; Saddique, Q.; Wang, Y.F.; Cai, H. The effects of aeration and irrigation regimes on soil CO2 and N2O emissions in a greenhouse tomato production system. J. Integr. Agric. 2018, 17, 449–460. [Google Scholar] [CrossRef]
- Zhang, W.F.; Dou, Z.X.; He, P.; Ju, X.T.; Powlson, D.; Chadwick, D.; Norse, D.; Lu, Y.L.; Zhang, Y.; Wu, L.; et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Li, X.; Christie, P.; Li, J. Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L.) cropping systems. Agric. Ecosyst. Environ. 2005, 111, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Schlesinger, W.H.; Bernhardt, E.S. Biogeochemistry: An Analysis of Global Change; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Sylvia, D.M.; Fuhrmann, J.J.; Hartel, P.G.; Zuberer, D.A. Principles and Applications of Soil Microbiology; Pearson: London, UK, 2005. [Google Scholar]
- Sylvia, D.; Fuhrmann, J.; Hartel, P.; Zuberer, D. Habitat and organisms. Princ. Appl. Soil Microbiol. Prentice Hall Up. Saddle River N. J. 1999, 72–92. [Google Scholar]
- NDRCC (National Development and Reform Commission of China). The People’s Republic of China: Initial National Communication on Climate Change; China Planning Press: Beijng, China, 2004. [Google Scholar]
- Zou, X.; Li, Y.-E.; Gao, Q.; Wan, Y. How water saving irrigation contributes to climate change resilience-a case study of practices in China. Mitig. Adapt. Strateg. Glob. Chang. 2012, 17, 111–132. [Google Scholar] [CrossRef] [Green Version]
- MWRC (The Ministry of Water Resources of China). National Water-Saving Irrigation Planning; The Ministry of Water Resources of China: Beijing, China, 2006.
- Zou, X.; Li, K.; Cremades, R.; Gao, Q.; Wan, Y.; Qin, X. Greenhouse gas emissions from agricultural irrigation in China. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 295–315. [Google Scholar] [CrossRef] [Green Version]
- Conrad, R. Soil microbial processes and the cycling of atmospheric trace gases. Phil. Trans. R. Soc. Lond. A 1995, 351, 219–230. [Google Scholar]
- Le Mer, J.; Roger, P. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 2001, 37, 25–50. [Google Scholar] [CrossRef]
- Jonsson, L.M.; Dighton, J.; Lussenhop, J.; Koide, R.T. The effect of mixing ground leaf litters to soil on the development of pitch pine ectomycorrhizal and soil arthropod communities in natural soil microcosm systems. Soil Biol. Biochem. 2006, 38, 134–144. [Google Scholar] [CrossRef]
- Jang, I.; Lee, S.; Zoh, K.D.; Kang, H. Methane concentrations and methanotrophic community structure influence the response of soil methane oxidation to nitrogen content in a temperate forest. Soil Biol. Biochem. 2011, 43, 620–627. [Google Scholar] [CrossRef]
- Pareja-Sánchez, E.; Cantero-Martínez, C.; Álvaro-Fuentes, J.; Plaza-Bonilla, D. Tillage and nitrogen fertilization in irrigated maize: Key practices to reduce soil CO2 and CH4 emissions. Soil Tillage Res. 2019, 191, 29–36. [Google Scholar] [CrossRef]
- Liu, L.; Hu, C.; Yang, P.; Ju, Z.; Olesen, J.E.; Tang, J. Effects of experimental warming and nitrogen addition on soil respiration and CH4 fluxes from crop rotations of winter wheat-soybean/fallow. Agric. For. Meteorol. 2015, 207, 38–47. [Google Scholar] [CrossRef]
- Tan, Y.; Xu, C.; Liu, D.; Wu, W.; Lal, R.; Meng, F. Effects of optimized N fertilization on greenhouse gas emission and crop production in the North China Plain. Field Crop. Res. 2017, 205, 135–146. [Google Scholar] [CrossRef]
- Shrestha, B.; Sitaula, B.; Singh, B.; Bajracharya, R. Fluxes of CO2 and CH4 in soil profiles of a mountainous watershed of Nepal as influenced by land use, temperature, moisture and substrate addition. Nutr. Cycl. Agroecosyst. 2004, 68, 155–164. [Google Scholar] [CrossRef]
- Yavitt, J.; Fahey, T.; Simmons, J. Methane and carbon dioxide dynamics in a northern hardwood ecosystem. Soil Sci. Soc. Am. J. 1995, 59, 796–804. [Google Scholar] [CrossRef]
- Aronson, E.; Helliker, B. Methane flux in non-wetland soils in response to nitrogen addition: A meta-analysis. Ecology 2010, 91, 3242–3251. [Google Scholar] [CrossRef] [PubMed]
- Rigler, E.; Zechmeister-Boltenstern, S. Oxidation of ethylene and methane in forest soils—effect of CO2 and mineral nitrogen. Geoderma 1999, 90, 147–159. [Google Scholar] [CrossRef]
- Meijide, A.; Cárdenas, L.M.; Sánchez-Martín, L.; Vallejo, A. Carbon dioxide and methane fluxes from a barley field amended with organic fertilizers under Mediterranean climatic conditions. Plant Soil 2010, 328, 353–367. [Google Scholar] [CrossRef]
- Mielnick, P.; Dugas, W.A. Soil CO2 flux in a tallgrass prairie. Soil Biol. Biochem. 2000, 32, 221–228. [Google Scholar] [CrossRef]
- Smith, K.A.; Ball, T.; Conen, F.; Dobbie, K.E.; Massheder, J.; Rey, A. Exchange of greenhouse gases between soil and atmosphere: Interactions of soil physical factors and biological processes. Eur. J. Soil Sci. 2003, 54, 779–791. [Google Scholar] [CrossRef] [Green Version]
- Schaufler, G.; Kitzler, B.; Schindlbacher, A.; Skiba, U.; Sutton, M.; Zechmeister-Boltenstern, S. Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature. Eur. J. Soil Sci. 2010, 61, 683–696. [Google Scholar] [CrossRef]
- Lee, J.; Hopmans, J.W.; van Kessel, C.; King, A.P.; Evatt, K.J.; Louie, D.; Rolston, D.E.; Six, J. Tillage and seasonal emissions of CO2, N2O and NO across a seed bed and at the field scale in a Mediterranean climate. Agric. Ecosyst. Environ. 2009, 129, 378–390. [Google Scholar] [CrossRef]
- Mosier, A.; Wassmann, R.; Verchot, L.; King, J.; Palm, C. Methane and nitrogen oxide fluxes in tropical agricultural soils: Sources, sinks and mechanisms. Environ. Dev. Sustain. 2004, 6, 11–49. [Google Scholar] [CrossRef]
- Dunfield, P.; Dumont, R.; Moore, T.R. Methane production and consumption in temperate and subarctic peat soils: Response to temperature and pH. Soil Biol. Biochem. 1993, 25, 321–326. [Google Scholar] [CrossRef]
- Dunfield, P.F. The Soil Methane Sink. Greenh. Gas Sink. 2007, 152. [Google Scholar]
- Van den Pol-van Dasselaar, A.; Corre, W.; Prieme, A.; Klemedtsson, Å.; Weslien, P.; Klemedtsson, L.; Stein, A.; Oenema, O. Spatial variability of methane, nitrous oxide, and carbon dioxide emissions from drained grasslands. Soil Sci. Soc. Am. J. 1998, 62, 810–817. [Google Scholar] [CrossRef]
- Gao, B.; Ju, X.; Su, F.; Meng, Q.; Oenema, O.; Christie, P.; Chen, X.; Zhang, F. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study. Sci. Total Environ. 2014, 472, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Venterea, R.T.; Bijesh, M.; Dolan, M.S. Fertilizer source and tillage effects on yield-scaled nitrous oxide emissions in a corn cropping system. J. Environ. Qual. 2011, 40, 1521–1531. [Google Scholar] [CrossRef] [Green Version]
Soil Depth (cm) | Particle Size Distribution | Soil Texture | Bulk Density (g/cm3) | Field Capacity (%) | Permanent Wilting Point (%) | Saturation Capacity (%) | Saturated Hydraulic Conductivity (cm/day) | ||
---|---|---|---|---|---|---|---|---|---|
Clay (%) | Silt (%) | Sand (%) | |||||||
0–20 | 3.8 | 43.1 | 53.1 | Sandy Loam | 1.6 | 32.2 | 9.7 | 36.8 | 119.0 |
20–40 | 6.6 | 45.4 | 48.0 | Loam | 1.6 | 30.6 | 10.2 | 40.2 | 93.6 |
40–60 | 6.1 | 48.3 | 45.6 | Sandy Loam | 1.5 | 31.4 | 13.0 | 39.9 | 97.7 |
60–80 | 4.6 | 47.4 | 48.0 | Sandy Loam | 1.4 | 28.8 | 9.6 | 38.1 | 110.0 |
80–100 | 1.6 | 16.9 | 81.5 | Loamy Sand | 1.5 | 29.8 | 4.7 | 29.8 | 228.2 |
Average | 4.5 | 40.3 | 55.2 | Sandy Loam | 1.5 | 30.6 | 9.5 | 36.9 | 129.7 |
Soil Depth (cm) | pH | EC (µs cm−1) | Available N (mg kg−1) | Available P (mg kg−1) | Available K (mg kg−1) | Organic Carbon (g kg−1) |
---|---|---|---|---|---|---|
0–20 | 8.5 | 132.4 | 44.6 | 16.1 | 128.8 | 1.9 |
20–40 | 8.6 | 140.3 | 44.6 | 15.0 | 126.2 | 1.6 |
40–60 | 8.7 | 146.3 | 42.7 | 14.4 | 128.3 | 1.0 |
60–80 | 8.8 | 155.6 | 41.8 | 14.2 | 124.1 | 0.7 |
80–100 | 8.9 | 147.6 | 41.8 | 15.3 | 122.1 | 0.5 |
Average | 8.7 | 144.4 | 43.1 | 15.0 | 126.0 | 1.1 |
2017 | 2018 | |||
---|---|---|---|---|
Treatments | Date (Julian Day) | Total Irrigation Amount (mm) | Date (Julian Day) | Total Irrigation Amount (mm) |
S1 | 98, 104, 126, 138 | 120 | 93, 104, 129 | 90 |
S2 | 98, 104, 117, 131, 138 | 150 | 93, 104,115, 129 | 120 |
S3 | 98, 104, 117, 126, 131, 138 | 180 | 93, 104, 115, 122, 129 | 150 |
D1 | 98, 104, 131, 138 | 120 | 93, 104, 129 | 90 |
D2 | 98, 104, 117, 131, 138 | 150 | 93, 104, 122, 129 | 120 |
D3 | 98, 104, 117, 126, 131, 138 | 180 | 93, 104, 115, 122, 129 | 150 |
B1 | 98, 126, 138 | 180 | 104 | 60 |
B2 | 98, 104, 117, 131 | 240 | 104, 122 | 120 |
B3 | 98, 104, 117, 126, 131 | 300 | 104, 115, 129 | 180 |
Variables | SWC | Temperature | NH4+-N | NO3−-N | Cumulative CO2 Emission | Cumulative CH4 Uptake | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | (°C) | (mg kg−1) | (mg kg−1) | (kg ha−1) | (kg ha−1) | |||||||
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
Irrigation scheduling | *** | *** | *** | *** | ** | *** | *** | *** | *** | *** | *** | *** |
Irrigation methods | ** | *** | * | *** | * | * | *** | *** | *** | *** | ns | * |
Irrigation scheduling × Irrigation methods | * | *** | ** | *** | ns | * | ** | *** | ns | *** | ns | ns |
Treatment a | Regression Equation (p < 0.05) b | Standardized Estimation Regression Coefficient c (p < 0.05) | Number of Observations d | Adjusted R2 | |||
---|---|---|---|---|---|---|---|
T | W | A | N | ||||
CO2 | FCO2 = −482.8 + 13.7W | ns | 0.7 ** | ns | ns | 117 | 0.8 |
CH4 | FCH4 = 167.13 − 1.78W | ns | −0.8 *** | ns | ns | 117 | 0.7 |
Grain Yield (t ha−1) | GWP (Mg CO2-eq ha−1) | GWPI (CO2-eq) | GWPIPIA (CO2-eq mm−1) | |||||
---|---|---|---|---|---|---|---|---|
Treatments | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 |
S1 | 8.6 ± 0.0 e | 7.9 ± 0.0 g | 29.4 ± 0.4 d | 31.7 ± 0.6 cd | 3.4 ± 0.1 d | 4.0 ± 0.1 c | 2.9 × 10−2 a | 4.4 × 10−2 b |
S2 | 9.2 ± 0.0 c | 9.0 ± 0.0 cd | 31.7 ± 0.1 c | 35.3 ± 0.1 b | 3.5 ± 0.0 d | 3.9 ± 0.1 c | 2.3 × 10−2 c | 3.3 × 10−2 d |
S3 | 9.1 ± 0.0 c | 8.9 ± 0.0 de | 33.0 ± 0.5 b | 35.4 ± 0.0 b | 3.6 ± 0.1 c | 4.0 ± 0.0 c | 2.0 × 10−2 e | 2.6 × 10−2 d |
D1 | 8.5 ± 0.0 e | 8.2 ± 0.4 f | 26.5 ± 0.4 e | 27.6 ± 0.5 e | 3.1 ± 0.1 f | 3.4 ± 0.1 e | 2.6 × 10−2 b | 3.7 × 10−2 c |
D2 | 9.7 ± 0.0 a | 9.7 ± 0.3 a | 29.4 ± 0.4 d | 32.1 ± 0.9 c | 3.0 ± 0.0 f | 3.3 ± 0.1 e | 2.0 × 10−2 e | 2.8 × 10−2 d |
D3 | 9.4 ± 0.1 b | 9.3 ± 0.2 b | 31.2 ± 0.3 c | 34.2 ± 0.3 b | 3.3 ± 0.0 e | 3.7 ± 0.0 d | 1.8 × 10−2 f | 2.5 × 10−2 e |
B1 | 8.3 ± 0.0 f | 7.1 ± 0.1 h | 32.3 ± 0.5 bc | 30.2 ± 0.4 d | 3.9 ± 0.1 b | 4.2 ± 0.1 b | 2.2 × 10−2 d | 7.1 × 10−2 a |
B2 | 9.1 ± 0.0 c | 9.1 ± 0.0 c | 33.3 ± 0.2 b | 35.7 ± 0.4 b | 3.7 ± 0.0 c | 3.9 ± 0.1 c | 1.5 × 10−2 g | 3.3 × 10−2 d |
B3 | 8.9 ± 0.0 d | 8.8 ± 0.0 e | 36.6 ± 0.3 a | 41.5 ± 0.2 a | 4.1 ± 0.0 a | 4.7 ± 0.0 a | 1.4 × 10−2 h | 2.6 × 10−2 d |
Irrigation scheduling | *** | *** | *** | *** | *** | *** | *** | *** |
Irrigation methods | *** | *** | *** | *** | *** | *** | *** | *** |
Irrigation scheduling × Irrigation methods | *** | *** | ns | ** | ns | ** | ns | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehmood, F.; Wang, G.; Gao, Y.; Liang, Y.; Zain, M.; Rahman, S.U.; Duan, A. Impacts of Irrigation Managements on Soil CO2 Emission and Soil CH4 Uptake of Winter Wheat Field in the North China Plain. Water 2021, 13, 2052. https://doi.org/10.3390/w13152052
Mehmood F, Wang G, Gao Y, Liang Y, Zain M, Rahman SU, Duan A. Impacts of Irrigation Managements on Soil CO2 Emission and Soil CH4 Uptake of Winter Wheat Field in the North China Plain. Water. 2021; 13(15):2052. https://doi.org/10.3390/w13152052
Chicago/Turabian StyleMehmood, Faisal, Guangshuai Wang, Yang Gao, Yueping Liang, Muhammad Zain, Shafeeq Ur Rahman, and Aiwang Duan. 2021. "Impacts of Irrigation Managements on Soil CO2 Emission and Soil CH4 Uptake of Winter Wheat Field in the North China Plain" Water 13, no. 15: 2052. https://doi.org/10.3390/w13152052
APA StyleMehmood, F., Wang, G., Gao, Y., Liang, Y., Zain, M., Rahman, S. U., & Duan, A. (2021). Impacts of Irrigation Managements on Soil CO2 Emission and Soil CH4 Uptake of Winter Wheat Field in the North China Plain. Water, 13(15), 2052. https://doi.org/10.3390/w13152052