Water Footprint of Rangeland Beef Production in New Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. New Mexico Beef Production Systems
2.3. Data
2.4. Beef Cattle Water Footprint (WF)
2.4.1. Green Water Footprint
2.4.2. Blue Water Footprint
Cow-Calf Phase
Backgrounding/Stocker Phase
Feedlot Phase
2.4.3. Overall Water Footprint of Beef Production in NM
2.4.4. Sensitivity Analysis
2.5. The Total Blue Water Use of Beef and Crops
3. Results and Discussion
3.1. Water Footprint of Beef Production
3.2. Sensitivity Analysis
3.2.1. Green Water Footprint
3.2.2. Blue Water Footprint
3.3. Blue Water Use by Beef Cattle and Crops
3.4. Drought, and BWF, GWF
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Searchinger, T.; Hanson, C.; Ranganathan, J.; Lipinski, B.; Waite, R.; Winterbottom, R.; Dinshaw, A.; Heimlich, R.; Boval, M.; Chemineau, P. Creating a Sustainable Food Future. A Menu of Solutions to Sustainably Feed More Than 9 Billion People by 2050. World Resources Report 2013–2014: Interim Findings; World Resources Institute: Washington, DC, USA, 2014. [Google Scholar]
- United Nations. World Population Prospects 2019 Highlights (ST/ESA/SER.A/423); United Nations: New York, NY, USA, 2019; p. 39. [Google Scholar]
- Steensland, A.; Thompson, T. 2020 Global Agricultural Productivity Report: Productivity in a Time of Pandemics; Virginia Tech College of Agriculture and Life Sciences: Blacksburg, VA, USA, 2020. [Google Scholar]
- Revell, B.J. One Man’s Meat… 2050? Ruminations on Future Meat Demand in the Context of Global Warming. J. Agric. Econ. 2015, 66, 573–614. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision. Available online: https://ageconsearch.umn.edu/record/288998 (accessed on 8 June 2021).
- Spiegal, S.; Cibils, A.F.; Bestelmeyer, B.T.; Steiner, J.L.; Estell, R.E.; Archer, D.W.; Auvermann, B.W.; Bestelmeyer, S.V.; Boucheron, L.E.; Cao, H.; et al. Beef Production in the Southwestern United States: Strategies Toward Sustainability. Front. Sustain. Food Syst. 2020, 4, 114. [Google Scholar] [CrossRef]
- Briske, D.D.; Ritten, J.P.; Campbell, A.R.; Klemm, T.; King, A.E.H. Future Climate Variability Will Challenge Rangeland Beef Cattle Production in the Great Plains. Rangelands 2021, 43, 29–36. [Google Scholar] [CrossRef]
- USGCRP; United States Global Change Research Program, Washington, DC, USA. Personal communication, 2017.
- Nations, U. Managing Water under Risk and Uncertainty. The United Nations World Water; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2012; p. 68. [Google Scholar]
- Alley, W.M.; Alley, R. High and Dry; Yale University Press: New Haven, CT, USA, 2017. [Google Scholar]
- Pearce, F. When the Rivers Run Dry; Beacon Press: Boston, MA, USA, 2018. [Google Scholar]
- Hoekstra, A. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011. [Google Scholar]
- Network, W.F. Aims and History; Water Footprint Network. 2018. Available online: http://waterfootprint.org (accessed on 29 August 2019).
- The U.S. Global Change Research Program. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II: Report-in-Brief; Reidmiller, D.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2018; p. 186.
- WRI (World Resources Institute). Aqueduct Water Risk Atlas. 2019. Available online: https://www.wri.org/aqueduct (accessed on 10 August 2019).
- Gremer, J.R.; Bradford, J.B.; Munson, S.M.; Duniway, M.C. Desert Grassland Responses to Climate and Soil Moisture Suggest Divergent Vulnerabilities across the Southwestern United States. Glob. Chang. Biol. 2015, 21, 4049–4062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bestelmeyer, B.T.; Peters, D.P.C.; Archer, S.R.; Browning, D.M.; Okin, G.S.; Schooley, R.L.; Webb, N.P. The Grassland–Shrubland Regime Shift in the Southwestern United States: Misconceptions and Their Implications for Management. BioScience 2018, 68, 678–690. [Google Scholar] [CrossRef] [Green Version]
- Diemer, J.; Crawford, T.; Patrick, M. Agriculture’s Contribution to New Mexico’s Economy. N. M. State Univ. Agric. Exp. Stat. Circ. 2014, 675, 8. [Google Scholar]
- National Agricultural Statistics Service and The National Association of Secretaries of State. New Mexico Agricultural Statistics. 2017 Annual Bulletin; National Agricultural Statistics Service and The National Association of Secretaries of State: Las Cruces, NM, USA, 2018.
- Sawalhah, M.N.; Holechek, J.L.; Cibils, A.F.; Geli, H.M.E.; Zaied, A. Rangeland Livestock Production in Relation to Climate and Vegetation Trends in New Mexico. Rangel. Ecol. Manag. 2019, 72, 832–845. [Google Scholar] [CrossRef]
- Zaied, A.J.; Geli, H.M.E.; Sawalhah, M.N.; Holechek, J.L.; Cibils, A.F.; Gard, C.C. Historical Trends in New Mexico Forage Crop Production in Relation to Climate, Energy, and Rangelands. Sustainability 2020, 12, 2051. [Google Scholar] [CrossRef] [Green Version]
- Gay, C.W.; Dwyer, D.D.; Allision, C.; Schickedanz, J. New Mexico Range Plants. N. M. Coop. Ext. Circ. 1980, 374, 86. [Google Scholar]
- Holechek, J.; Pieper, R.; Herbel, C. Range Management Principles and Practices; Prentice Hall: Upper Saddle River, NJ, USA, 2011. [Google Scholar]
- Culbert, J.I. Cattle Industry of New Mexico. Econ. Geogr. 1941, 17, 155–168. [Google Scholar] [CrossRef]
- Drouillard, J.S. Current Situation and Future Trends for Beef Production in the United States of America—A Review. Asian Australas. J. Anim. Sci. 2018, 31, 1007. [Google Scholar] [CrossRef] [Green Version]
- Western Regional Climate Center. Climate of New Mexico, Western Regional Climate Center. Available online: https://wrcc.dri.edu/wwdt/time/ (accessed on 6 June 2020).
- Society for Range Management. A Glossary of Terms Used in Range Management, 3rd ed.; Society for Range Management: Denver, CO, USA, 1989. [Google Scholar]
- Gauman, J.; New Mexico Livestock Board, Albuquerque, NM, USA. Exported Weaned Calves. Personal communication, 2019. [Google Scholar]
- Marston, L.; Ao, Y.; Konar, M.; Mekonnen, M.M.; Hoekstra, A.Y. High-resolution Water Footprints of Production of the United States. Water Resour. Res. 2018, 54, 2288–2316. [Google Scholar] [CrossRef]
- Jones, M.O.; Allred, B.W.; Naugle, D.E.; Maestas, J.D.; Donnelly, P.; Metz, L.J.; Karl, J.; Smith, R.; Bestelmeyer, B.; Boyd, C.; et al. Innovation in Rangeland Monitoring: Annual, 30 m, Plant Functional Type Percent Cover Maps for U.S. Rangelands, 1984–2017. Ecosphere 2018, 9, e02430. [Google Scholar] [CrossRef]
- Jones, M.O.; Robinson, N.P.; Naugle, D.E.; Maestas, J.D.; Reeves, M.C.; Lankston, R.W.; Allred, B.W. Annual and 16-Day Rangeland Production Estimates for the Western United States. bioRxiv 2020, 77, 112–117. [Google Scholar] [CrossRef]
- Robinson, N.P.; Jones, M.O.; Moreno, A.; Erickson, T.A.; Naugle, D.E.; Allred, B.W. Rangeland Productivity Partitioned to Sub-Pixel Plant Functional Types. Remote Sens. 2019, 11, 1427. [Google Scholar] [CrossRef] [Green Version]
- Samuelson, K.L.; Hubbert, M.E.; Galyean, M.L.; Löest, C.A. Nutritional Recommendations of Feedlot Consulting Nutritionists: The 2015 New Mexico State and Texas Tech University Survey. J. Anim. Sci. 2016, 94, 2648–2663. [Google Scholar] [CrossRef]
- Sala, O.E.; Parton, W.J.; Joyce, L.A.; Lauenroth, W.K. Primary Production of the Central Grassland Region of the United States. Ecology 1988, 69, 40–45. [Google Scholar] [CrossRef]
- USDA-NRCS. Rangeland Analysis Platform. Available online: https://rangelands.app/ (accessed on 24 March 2020).
- Scholljegerdes, E.; New Mexico State University, Las Cruces, NM, USA. Feed Supplement Composition. Personal communication, 2020. [Google Scholar]
- Sammis, T.W. Yield of Alfalfa and Cotton as Influenced by Irrigation 1. Agron. J. 1981, 73, 323–329. [Google Scholar] [CrossRef]
- US Department of Agriculture (USDA). Irrigation Water Requirements. In Part 623. National Engineering Handbook; US Department of Agriculture (USDA): Washington, DC, USA, 1993; Chapter 2; p. 210. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. The Green, Blue and Grey Water Footprint of Farm Animals and Animal Products. Volume 2: Appendices; UNESCO-IHE, Institute for Water Education: Delft, The Netherlands, 2010. [Google Scholar]
- Beckett, J.L.; Oltjen, J.W. Estimation of the Water Requirement for Beef Production in the United States. J. Anim. Sci. 1993, 71, 818–826. [Google Scholar] [CrossRef]
- Duff, G.; New Mexico State University, Las Cruces, NM, USA. Animal Feed Consumption. Personal communication, 2020. [Google Scholar]
- Sweeten, J.M.; O’Neal, H.P.; Withers, R.F. Feedyard Energy Guidlines; Texas A & M University, Agricultural Extension Service: College Station, TX, USA, 1990. [Google Scholar]
- Hamby, D.M. A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess. 1994, 32, 135–154. [Google Scholar] [CrossRef]
- Rotz, C.A.; Asem-Hiablie, S.; Place, S.; Thoma, G. Environmental Footprints of Beef Cattle Production in the United States. Agric. Syst. 2019, 169, 1–13. [Google Scholar] [CrossRef]
- Schwalm, C.R.; Anderegg, W.R.; Michalak, A.M.; Fisher, J.B.; Biondi, F.; Koch, G.; Litvak, M.; Ogle, K.; Shaw, J.D.; Wolf, A. Global Patterns of Drought Recovery. Nature 2017, 548, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Holechek, J.L.; Geli, H.M.; Cibils, A.F.; Sawalhah, M.N. Climate Change, Rangelands, and Sustainability of Ranching in the Western United States. Sustainability 2020, 12, 4942. [Google Scholar] [CrossRef]
- McIntosh, M.M.; Holechek, J.L.; Spiegal, S.A.; Cibils, A.F.; Estell, R.E. Long-Term Declining Trends in Chihuahuan Desert Forage Production in Relation to Precipitation and Ambient Temperature. Rangel. Ecol. Manag. 2019, 72, 976–987. [Google Scholar] [CrossRef]
- Capper, J.L. The Environmental Impact of Beef Production in the United States: 1977 Compared with 2007. J. Anim. Sci 2011, 89, 4249–4261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pimentel, D.J.; Houser, E.; Preiss, O.; White, H.; Fang, L.; Mesnick, T.; Barsky, S.; Tariche, J.; Schreck, S.A. Water Resources: Agriculture, the Environment, and Society. BioScience 1997, 47, 97–106. [Google Scholar] [CrossRef]
- Coyne, J.M.; Evans, R.D.; Berry, D.P. Dressing Percentage and the Differential between Live Weight and Carcass Weight in Cattle Are Influenced by Both Genetic and Non-Genetic Factors. J. Anim. Sci. 2019, 97, 1501–1512. [Google Scholar] [CrossRef]
- Maré, F.A.; Jordaan, H. Industrially Finished Calves: A Water Footprint-Profitability Paradox. Water 2019, 11, 2565. [Google Scholar] [CrossRef] [Green Version]
- Gerbens-Leenes, P.W.; Mekonnen, M.M.; Hoekstra, A.Y. The Water Footprint of Poultry, Pork and Beef: A Comparative Study in Different Countries and Production Systems. Water Resour. Ind. 2013, 1–2, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y. The Hidden Water Resource Use behind Meat and Dairy. Anim. Front. 2012, 2, 3–8. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. A Global Assessment of the Water Footprint of Farm Animal Products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef] [Green Version]
- Ridoutt, B.G.; Sanguansri, P.; Freer, M.; Harper, G.S. Water Footprint of Livestock: Comparison of Six Geographically Defined Beef Production Systems. Int. J. Life Cycle Assess. 2012, 17, 165–175. [Google Scholar] [CrossRef]
- Dieter, C.H.; Caldwell, M.A.; Hamis, R.R.; Ivahenko, T.T.; Lovelace, J.K.; Barker, N.L.; Linsey, K.S. Estimated Use of Water in the United States in 2015; U.S. Geological Survey Circular: Reston, VA, USA, 2018; p. 65.
- McIntosh, M.M.; Cibils, A.F.; Estell, R.E.; Nyamuryekung’e, S.; González, A.L.; Gong, Q.; Cao, H.; Spiegal, S.A.; Soto-Navarro, S.A.; Blair, A.D. Weight Gain, Grazing Behavior and Carcass Quality of Desert Grass-Fed Rarámuri Criollo vs. Crossbred Steers. Livest. Sci. 2021, 249, 104511. [Google Scholar] [CrossRef]
- Anderson, D.M.; Estell, R.E.; Gonzalez, A.L.; Cibils, A.F.; Torell, L.A. Criollo Cattle: Heritage Genetics for Arid Landscapes. Rangelands 2015, 37, 62–67. [Google Scholar] [CrossRef] [Green Version]
Production System | Green Water Footprint (GWF) | Blue Water Footprint (BWF) |
---|---|---|
Cow-calf | ||
Backgrounding/Stocker | - | |
Feedlot | - |
Feed | BWF (L/kg)/Level | Reference |
---|---|---|
Alfalfa | 830/New Mexico | Sammis [37] |
Corn | 1137/USA | USDA [38] |
Cottonseed meal | 279/Global | Mekonnen and Hoekstra [39] |
Cottonseed hulls | 432/Global | Mekonnen and Hoekstra [39] |
Dried distillers grains | 66/Global | Mekonnen and Hoekstra [40] |
Winter wheat | 986/USA | USDA [38] |
Wheat middlings | 382/Global | Mekonnen and Hoekstra [39] |
Soybean hulls | 58/Global | Mekonnen and Hoekstra [39] |
Animal Class | Model Coefficients | ||||
---|---|---|---|---|---|
Intercept | Animal Weight (kg) b1 | Temperature (°C) b2 | Temperature2 (°C) b3 | R2 | |
Maintenance cow | −0.28 | 0.034 | −0.38 | 0.03 | 0.93 |
Nursing cow | 37 | 0.0 | 1.2 | 0.0088 | 0.98 |
Pregnant cow | 39 | −0.034 | −0.013 | 0.026 | 0.94 |
Calf | 0.9 | 0.067 | 0.0034 | 0.017 | 0.99 |
Bull | 9.5 | 0.038 | −0.68 | 0.052 | 0.95 |
Production System | Offtake | Weight | Green Water Footprint | Blue Water Footprint | Total Water Footprint |
---|---|---|---|---|---|
(AU) | (%) | _________________________(L/kgmeat)____________________________ | |||
Cow-calf | 0.4 | 31 | 74,396 | 372 | 74,769 |
Backgrounding/Stocker | 0.2 | 15 | 0 | 11,224 | 11,224 |
Feedlot | 0.7 | 54 | 0 | 6187 | 6187 |
Weighted Average | 23,063 | 5140 | 28,203 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawalhah, M.N.; Geli, H.M.E.; Holechek, J.L.; Cibils, A.F.; Spiegal, S.; Gifford, C. Water Footprint of Rangeland Beef Production in New Mexico. Water 2021, 13, 1950. https://doi.org/10.3390/w13141950
Sawalhah MN, Geli HME, Holechek JL, Cibils AF, Spiegal S, Gifford C. Water Footprint of Rangeland Beef Production in New Mexico. Water. 2021; 13(14):1950. https://doi.org/10.3390/w13141950
Chicago/Turabian StyleSawalhah, Mohammed N., Hatim M. E. Geli, Jerry L. Holechek, Andres F. Cibils, Sheri Spiegal, and Craig Gifford. 2021. "Water Footprint of Rangeland Beef Production in New Mexico" Water 13, no. 14: 1950. https://doi.org/10.3390/w13141950
APA StyleSawalhah, M. N., Geli, H. M. E., Holechek, J. L., Cibils, A. F., Spiegal, S., & Gifford, C. (2021). Water Footprint of Rangeland Beef Production in New Mexico. Water, 13(14), 1950. https://doi.org/10.3390/w13141950