Socio-Hydrological Approach to Explore Groundwater–Human Wellbeing Nexus: Case Study from Sundarbans, India
Abstract
:1. Introduction
- Analyzing the current socio-economic status (shift in occupation) over the decade under a hydrological context for the study area;
- Predicting the sector-wise (household, agricultural and livestock) groundwater demand for different growth scenarios in 2050;
- Identifying the way forward to achieve sustainable water resource management and human wellbeing.
2. Study Area
2.1. Description of the Study Area
2.2. Livelihood of Indian Sundarbans Region
3. Required Dataset
4. Methodology and Model Set Up
- where: D = Groundwater demand at each node;
- A = Activity level;
- C = Water consumption rate at each node.
- (a)
- Higher human growth rate (2.5%), livestock growth rate 1%, and agricultural groundwater demand decrease by 0.2 cubic meters with an interval of 5 years.
- (b)
- Current growth rate of respective zones, livestock growth rate 1%, and agricultural groundwater demand decrease by 0.2 cubic meters with an interval of 5 years.
- (c)
- Lower human growth rate (1%), livestock growth rate 1%, and agricultural groundwater demand decrease by 0.2 cubic meters with an interval of 5 years.
5. Results
5.1. Decadal Trend of Census Data
5.2. Water Demand Derived from WEAP
5.2.1. Domestic Groundwater Demand
5.2.2. Agricultural Groundwater Demand
5.2.3. Livestock Groundwater Demand
5.3. Unmet Groundwater Demand Derived from WEAP
6. Discussion
6.1. Implications of Increasing Groundwater Demand
6.2. Relationship between Agricultural Activities and Climate
6.3. Status of the Agricultural Economy
6.4. Impact of Literacy Rate on Economic Wellbeing
6.5. Overall Socio-Economic Status under the Hydrological Context
6.6. Limitations and Way Forward
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biswas, A.K. History of Hydrology; North-Holland Publishing Company: Amsterdam, The Netherlands, 1970. [Google Scholar]
- Elshafei, Y.; Sivapalan, M.; Tonts, M.; Hipsey, M.R. A prototype framework for models of socio-hydrology: Identification of key feedback loops and parameterisation approach. Hydrol. Earth Syst. Sci. 2014, 18, 2141–2166. [Google Scholar] [CrossRef] [Green Version]
- WWAP. The United Nations World Water Development Report 2017: Wastewater, the Untapped Resource; WWAP (United Nations World Water Assessment Programme); UNESCO: Paris, France, 2017. [Google Scholar]
- Cicle of Blue Website. Available online: https://www.circleofblue.org/2018/world/groundwater-scarcity-pollution-set-india-on-perilous-course (accessed on 28 May 2021).
- Rockström, J.; Gordon, L. Assessment of green water flows to sustain major biomes of the world: Implications for future ecohydrological landscape management. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2001, 26, 843–851. [Google Scholar] [CrossRef]
- Ministry of Jal Shakti. Available online: https://pib.gov.in/PressReleasePage.aspx (accessed on 28 April 2021).
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, T.; Von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Bakken, T.H.; Modahl, I.S.; Raadal, H.L.; Bustos, A.A.; Arnøy, S. Allocation of water consumption in multipurpose reservoirs. Water Policy 2016, 18, 932–947. [Google Scholar] [CrossRef] [Green Version]
- Bryan, E.; Deressa, T.T.; Gbetibouo, G.A.; Ringler, C. Adaptation to climate change in Ethiopia and South Africa: Options and constraints. Environ. Sci. Policy 2009, 12, 413–426. [Google Scholar] [CrossRef]
- Hazra, S.; Ghosh, T.; DasGupta, R.; Sen, G. Sea level and associated changes in the Sundarbanss. Sci. Cult. 2002, 68, 309–321. [Google Scholar]
- Chowdhury, A.N.; Mondal, R.; Brahma, A.; Biswas, M.K. Culture and stigma: Ethnographic case studies of tiger-widows of Sundarbans Delta, India. World Cult. Psychiatry Res. Rev. 2014, 9, 99–122. [Google Scholar]
- Mandal, S.; Choudhury, B.U.; Satpati, L.N. Monsoon variability, crop water requirement, and crop planning for kharif rice in Sagar Island, India. Int. J. Biometeorol. 2015, 59, 1891–1903. [Google Scholar] [CrossRef]
- Solomon, S. IPCC (2007): Climate change the physical science basis. In AGU Fall Meeting Abstracts; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2007; Volume 2007, p. U43D-01. [Google Scholar]
- Jakariya, M.; Alam, M.S.; Rahman, M.A.; Ahmed, S.; Elahi, M.L.; Khan, A.M.S.; Saad, S.; Tamim, H.M.; Ishtiak, T.; Sayem, S.M.; et al. Assessing climate-induced agricultural vulnerable coastal communities of Bangladesh using machine learning techniques. Sci. Total Environ. 2020, 742, 140255. [Google Scholar] [CrossRef]
- Bhadra, T.; Hazra, S.; Ray, S.S.; Barman, B.C. Assessing the groundwater quality of the coastal aquifers of a vulnerable delta: A case study of the Sundarbans Biosphere Reserve, India. Groundw. Sustain. Dev. 2020, 11, 100438. [Google Scholar] [CrossRef]
- World Bank Publications. Turn Down the Heat: Confronting the New Climate Normal; World Bank Publications: Herndon, VA, USA, 2014. [Google Scholar]
- Inam, A.; Adamowski, J.; Prasher, S.; Halbe, J.; Malard, J.; Albano, R. Coupling of a distributed stakeholder-built system dynamics socio-economic model with SAHYSMOD for sustainable soil salinity management. Part 2: Model coupling and application. J. Hydrol. 2017, 551, 278–299. [Google Scholar] [CrossRef]
- Vaghefi, S.A.; Mousavi, S.J.; Abbaspour, K.C.; Srinivasan, R.; Arnold, J.R. Integration of hydrologic and water allocation models in basin-scale water resources management considering crop pattern and climate change: Karkheh River Basin in Iran. Reg. Environ. Chang. 2015, 15, 475–484. [Google Scholar] [CrossRef]
- Yates, D.; Purkey, D.; Sieber, J.; Huber-Lee, A.; Galbraith, H.; West, J.; Herrod-Julius, S.; Young, C.; Joyce, B.; Rayej, M. Climate driven water resources model of the Sacramento Basin, California. J. Water Resour. Plan. Manag. 2009, 135, 303–313. [Google Scholar] [CrossRef]
- Hum, N.N.M.F.; Talib, S.A. Modeling water supply and demand for effective water management allocation in Selangor. J. Teknol. 2016, 78. [Google Scholar] [CrossRef] [Green Version]
- Al-Amin, S.; Berglund, E.Z.; Mahinthakumar, G.; Larson, K.L. Assessing the effects of water restrictions on socio-hydrologic resilience for shared groundwater systems. J. Hydrol. 2018, 566, 872–885. [Google Scholar] [CrossRef]
- Hoff, H.; Bonzi, C.; Joyce, B.; Tielbörger, K. A water resources planning tool for the Jordan River Basin. Water 2011, 3, 718–736. [Google Scholar] [CrossRef]
- Ospina-Noreña, J.E.; Gay-García, C.; Conde, A.C.; Sanchez-Torres Esqueda, G. Water availability as a limiting factor and optimization of hydropower generation as an adaptation strategy to climate change in the Sinú-Caribe river basin. Atmósfera 2011, 24, 203–220. [Google Scholar]
- Bharati, L.; Anand, B.K.; Smakhtin, V. Analysis of the Inter-Basin Water Transfer Scheme in India: A Case Study of the Godavari-Krishna link; (No. 614-2016-40883); International Water Management Institute: New Delhi, India, 2008. [Google Scholar]
- Das, K.; Mishra, A.K.; Singh, A.; Agrahari, S.; Chakrabarti, R.; Mukherjee, A. Solute exchanges between multi-depth groundwater and surface water of climatically vulnerable Gangetic delta front aquifers of Sundarbanss. J. Environ. Manag. 2021, 284, 112026. [Google Scholar] [CrossRef]
- Vogel, R.M.; Sieber, J.; Archfield, S.A.; Smith, M.P.; Apse, C.D.; Huber-Lee, A. Relations among storage, yield, and instream flow. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Yates, D.; Sieber, J.; Purkey, D.; Huber-Lee, A. WEAP21—A demand-, priority-, and preference-driven water planning model: Part 1: Model characteristics. Water Int. 2005, 30, 487–500. [Google Scholar] [CrossRef]
- Sahana, M.; Rehman, S.; Sajjad, H.; Hong, H. Exploring effectiveness of frequency ratio and support vector machine models in storm surge flood susceptibility assessment: A study of Sundarbans Biosphere Reserve, India. Catena 2020, 189, 104450. [Google Scholar] [CrossRef]
- Ghosh, A.; Mukhopadhyay, S. Quantitative study on shoreline changes and Erosion Hazard assessment: Case study in Muriganga–Saptamukhi interfluve, Sundarbans, India. Modeling Earth Syst. Environ. 2016, 2, 75. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, A.B.; Choudhury, A. Mangroves of the Sundarbans. Volume 1: India; International Union for Conservation of Nature and Natural Resources (IUCN): Gland, Switzerland, 1994. [Google Scholar]
- Mukherjee, A.; Fryar, A.E.; Howell, P.D. Regional hydrostratigraphy and groundwater flow modeling in the arsenic-affected areas of the western Bengal basin, West Bengal. India. Hydrogeol. J. 2007, 15, 1397. [Google Scholar] [CrossRef]
- Mukherjee, A.; Fryar, A.E.; Thomas, W.A. Geologic, geomorphic and hydrologic framework and evolution of the Bengal basin, India and Bangladesh. J. Asian Earth Sci. 2009, 34, 227–244. [Google Scholar] [CrossRef]
- Das, K.; Mukherjee, A. Depth-dependent groundwater response to coastal hydrodynamics in the tropical, Ganges river mega-delta front (the Sundarbans): Impact of hydraulic connectivity on drinking water vulnerability. J. Hydrol. 2019, 575, 499–512. [Google Scholar] [CrossRef]
- Bhadra, T.; Das, S.; Hazra, S.; Barman, B.C. Assessing the demand, availability and accessibility of potable water in Indian Sundarbans biosphere reserve area. Int. J. Recent Sci. Res. 2018, 9, 25437–25443. [Google Scholar]
- Danda, A.A.; Rahman, M. Transformation of the Sundarbans Eco-region: Lessons from Past Approaches and Suggested Development Options. In The Sundarbanss: A Disaster-Prone Eco-Region; Springer: Cham, Switzerland, 2019; pp. 61–89. [Google Scholar]
- Mitra, A.; Gangopadhyay, A.; Dube, A.; Schmidt, A.C.; Banerjee, K. Observed changes in water mass properties in the Indian Sundarbans (northwestern Bay of Bengal) during 1980–2007. Curr. Sci. 2009, 97, 1445–1452. [Google Scholar]
- Sánchez-Triana, E.; Paul, T.; Ortolano, L.; Ruitenebeek, J. Building Resilience for the Sustainable Development of the Sundarbanss; Strategy Report No. 88061-1N; South Asia Region Sustainable Development Department Environment Water Resources Management Unit, The World Bank: Washington, DC, USA, 2014. [Google Scholar]
- DasGupta, R.; Hashimoto, S.; Okuro, T.; Basu, M. Scenario-based land change modelling in the Indian Sundarbans delta: An exploratory analysis of plausible alternative regional futures. Sustain. Sci. 2019, 14, 221–240. [Google Scholar] [CrossRef]
- Datta, D.; Chattopadhyay, R.N.; Deb, S. Prospective livelihood opportunities from the mangroves of the Sunderbans, India. Res. J. Environ. Sci. 2011, 5, 536. [Google Scholar]
- Sen, H.S.; Ghorai, D. The Sundarbanss: A flight into the wilderness. In The Sundarbanss: A Disaster-Prone Eco-Region; Springer: Cham, Switzerland, 2019; pp. 3–28. [Google Scholar]
- Ministry of Home Affairs, Government of India, Census Digital Library. Available online: https://censusindia.gov.in/DigitalLibrary/MapsCategory.aspx (accessed on 17 May 2020).
- Department of Planning Statistics [Govt. of West Bengal]. Available online: http://www.wbpspm.gov.in/publications/District%20Statistical%20Handbook (accessed on 26 May 2020).
- Phansalkar, S.J. Livestock-water interaction: Status and issues. In Proceedings of the 5th IWMI-Tata Annual Partners Meet, Gujarat, India, 8–10 March 2006. [Google Scholar]
- Central Groundwater Board Annual Report. Available online: http://cgwb.gov.in/reportspublished.html (accessed on 19 May 2020).
- Directorate of Economics and Statistics under the Supervision of Department of Agriculture, Cooperation and Farmers Welfare. Available online: https://eands.dacnet.nic.in/latest_20011.htm (accessed on 7 July 2020).
- Handbook of Fisheries Statistics. Available online: http://dof.gov.in/statistics (accessed on 14 June 2020).
- Kou, L.; Li, X.; Lin, J.; Kang, J. Simulation of urban water resources in Xiamen based on a WEAP model. Water 2018, 10, 732. [Google Scholar] [CrossRef] [Green Version]
- Javadinejad, S.; Ostad-Ali-Askari, K.; Eslamian, S. Application of multi-index ecision analysis to management scenarios considering climate change prediction in the Zayandeh Rud River Basin. Water Conserv. Sci. Eng. 2019, 4, 53–70. [Google Scholar] [CrossRef]
- Kumar, P.; Avtar, R.; Dasgupta, R.; Johnson, B.A.; Mukherjee, A.; Ahsan, M.N.; Nguyen, D.C.; Nguyen, H.Q.; Shaw, R.; Mishra, B.K. Socio-hydrology: A key approach for adaptation to water scarcity and achieving human wellbeing in large riverine islands. Prog. Disaster Sci. 2020, 8, 100134. [Google Scholar] [CrossRef]
- Popkin, B.M.; D’Anci, K.E.; Rosenberg, I.H. Water, hydration, and health. Nutr. Rev. 2010, 68, 439–458. [Google Scholar] [CrossRef]
- Dhawan, V. Water and agriculture in India. In Background Paper for the South Asia Expert Panel during the Global Forum for Food and Agriculture (GFFA). German Asia-Pacific Business Association, German Agri-Business alliance, TERI; 2017; Volume 28, Available online: https://www.oav.de/fileadmin/user_upload/5_Publikationen/5_Studien/170118_Study_Water_Agriculture_India.pdf (accessed on 26 March 2021).
- Macrotends Data. Available online: https://www.macrotrends.net/countries/IND/india/rural-population (accessed on 19 March 2021).
- India’s Population to Cross 152 Crore in Next 16 Years, More People Will Be of Working Age. Available online: https://theprint.in/india/indias-population-to-cross-152-crore-in-next-16-years-more-people-will-be-of-working-age/481018/ (accessed on 19 March 2021).
- World Bank Data. Available online: https://data.worldbank.org/indicator/SP.RUR.TOTL.ZS?locations=IN (accessed on 19 March 2021).
- Vikashpedia. Available online: https://vikaspedia.in/agriculture/agri-directory/reports-and-policy-briefs/20th-livestock-census (accessed on 2 April 2021).
- Masser, M.P.; Jensen, J.W.; Brunson, M.W. Calculating Area and Volume of Ponds and Tanks; Southern Regional Aquaculture Center: Stoneville, MI, USA, 1991. [Google Scholar]
- Toure, A.; Diekkrüger, B.; Mariko, A.; Cissé, A.S. Assessment of groundwater resources in the context of climate change and population growth: Case of the Klela Basin in Southern Mali. Climate 2017, 5, 45. [Google Scholar] [CrossRef]
- The Poultry Site, Broiler Water Consumption. Available online: https://www.thepoultrysite.com/articles/broiler-water-consumption (accessed on 3 April 2021).
- Water Consumption in Broiler. Available online: https://www.fivetanimalhealth.com/management-articles/water-consumption-broilers (accessed on 4 April 2021).
- Leal Filho, W.; Esilaba, A.O.; Rao, K.P.; Sridhar, G. Adapting African Agriculture to Climate Change: Transforming Rural Livelihoods; Springer: Berlin, Germany, 2015. [Google Scholar]
- PRS Legislative Research. Available online: https://prsindia.org/policy/analytical-reports/state-agriculture-india (accessed on 15 April 2021).
- Government of India. Some Characteristics of Agricultural Households in India; January–December 2013; National Sample Survey Office, Ministry of Statistics and Programme Implementation: Puram, India, 2015.
- Bhalla, G.S. Agricultural growth and regional variations. In India in a Globalising World: Some Aspects of Macro Economy, Agriculture and Poverty, Essays in Honour of Prof. C. H. Hanumantha Rao; Centre for Economic and Social Studies, And Academic Foundation: New Delhi, India, 2006; pp. 309–346. [Google Scholar]
- Mukherji, A.; Das, A. The political economy of metering agricultural tube wells in West Bengal, India. Water Int. 2014, 39, 671–685. [Google Scholar] [CrossRef]
- Yeoh, E.; Chu, K.M. Literacy, Education and Economic Development in Contemporary China. 2012. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2207559 (accessed on 8 April 2021).
- Bloom, D.E. Population Dynamics in India and Implications for Economic Growth; Working Paper no. 65; Harvard University: Cambridge, MA, USA, 2011; Available online: www.hsph.harvard.edu/pgda/WorkingPapers/2011/PGDA_WP_65.pdf (accessed on 8 April 2021).
- Labour Commissionerate, Labour Department, Government of West Bengal. Available online: https://wblc.gov.in/synopsys/January/2021 (accessed on 19 April 2021).
- Bhanja, S.N.; Mukherjee, A.; Rodell, M.; Wada, Y.; Chattopadhyay, S.; Velicogna, I.; Pangaluru, K.; Famiglietti, J.S. Groundwater rejuvenation in parts of India influenced by water-policy change implementation. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dubey, S.K.; Chand, B.K.; Trivedi, R.K.; Mandal, B.; Rout, S.K. Evaluation on the prevailing aquaculture practices in the Indian Sundarbans delta: An insight analysis. J. Food Agric. Environ. 2016, 14, 133–141. [Google Scholar]
- Panori, A.; Psycharis, Y.; Ballas, D. Spatial segregation and migration in the city of Athens: Investigating the evolution of urban socio-spatial immigrant structures. Popul. Space Place 2019, 25, e2209. [Google Scholar] [CrossRef]
- Ghosh, A.; Schmidt, S.; Fickert, T.; Nüsser, M. The Indian Sundarbans mangrove forests: History, utilization, conservation strategies and local perception. Diversity 2015, 7, 149–169. [Google Scholar] [CrossRef]
- Dutta, D.; Das, P.K.; Paul, S.; Sharma, J.R.; Dadhwal, V.K. Assessment of ecological disturbance in the mangrove forest of Sundarbanss caused by cyclones using MODIS time-series data (2001–2011). Nat. Hazards 2015, 79, 775–790. [Google Scholar] [CrossRef]
Parameter | Value | Reference |
---|---|---|
Base year for modeling | 2011 | |
End year for modeling | 2050 | |
Human Population (cap) | 3,309,526 | Census India, 2011 [42] |
Agricutural land irrigated by groundwater (Ha) | 26,000 | District statistical abstract [43] |
Livestock Population (cap) | 4,082,384 | District statistical abstract [43] |
Human population growth rate | 1.5% | Census India, 2011 [42] |
Livestock population growth rate | 1% | District statistical abstract [43] |
Agricultural worker (%) | 76% (1991), 56% (2001), 54% (2011) | Census India, 2011 [42] |
Non-Agricultural worker (%) | 24% (1991), 44% (2001), 46% (2011) | Census India, 2011 [42] |
Socioeconomic parameter (Literacy rate) | Described in Section 6.4 | Census India, 2011 [42] |
Hydroclimatic parameters (rainfall, groundwater level) | Described in Section 6.2, Section 6.3 | Central Groundwater Board Annual Report [45] |
Table for Initial Parameters to Set Up the Model | |||||||||
---|---|---|---|---|---|---|---|---|---|
Domestic | Agriculture | Livestock | |||||||
Zone I | Zone II | Zone III | Zone I | Zone II | Zone III | Zone I | Zone II | Zone III | |
Annual Activity | 1,008,653 (no.) | 1,140,562 (no) | 1,160,311 (no.) | 8000 (Ha) | 5000 (Ha) | 13,000 (Ha) | 1,301,355 (no.) | 1,622,139 (no.) | 1,158,890 (no.) |
Annual water use | 14.5 (m3) | 14.5 (m3) | 14.5 (m3) | 10,000 (m3) | 10,000 (m3) | 10,000 (m3) | 5 (m3) | 5 (m3) | 5 (m3) |
Consumption | 25% | 25% | 25% | 80% | 80% | 80% | 25% | 25% | 25% |
Zone 1 | Zone 2 | Zone 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Reference | HGR | LGR | Reference | HGR | LGR | Reference | HGR | LGR | |
Domestic | 26.13 | 31.65 | 21.55 | 35.8 | 43.32 | 24.38 | 68.24 | 124.72 | 34.08 |
agriculture | 67.2 | 67.2 | 67.2 | 42 | 42 | 42 | 109.2 | 109.2 | 109.2 |
Livestock | 15.25 | 15.25 | 10.38 | 12.44 | 12.44 | 12.44 | 13.1 | 13.1 | 13.1 |
Total | 108.58 | 114.1 | 99.13 | 90.24 | 97.76 | 78.82 | 190.54 | 247.02 | 156.38 |
Zone 1 | Zone 2 | Zone 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Reference | HGR | LGR | Reference | HGR | LGR | Reference | HGR | LGR | |
Domestic | 12.14 | 21.45 | 10.55 | 15.8 | 21.45 | 12.8 | 18.5 | 30.7 | 16.46 |
agriculture | 34.2 | 37.6 | 32.44 | 24.45 | 26.65 | 21.38 | 69.52 | 73.16 | 66.33 |
Livestock | 7.65 | 8.45 | 6.84 | 5.25 | 5.82 | 4.97 | 4.65 | 4.65 | 4.65 |
Total | 53.99 | 67.5 | 49.83 | 45.5 | 53.92 | 39.15 | 92.67 | 108.51 | 87.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halder, S.; Kumar, P.; Das, K.; Dasgupta, R.; Mukherjee, A. Socio-Hydrological Approach to Explore Groundwater–Human Wellbeing Nexus: Case Study from Sundarbans, India. Water 2021, 13, 1635. https://doi.org/10.3390/w13121635
Halder S, Kumar P, Das K, Dasgupta R, Mukherjee A. Socio-Hydrological Approach to Explore Groundwater–Human Wellbeing Nexus: Case Study from Sundarbans, India. Water. 2021; 13(12):1635. https://doi.org/10.3390/w13121635
Chicago/Turabian StyleHalder, Soham, Pankaj Kumar, Kousik Das, Rajarshi Dasgupta, and Abhijit Mukherjee. 2021. "Socio-Hydrological Approach to Explore Groundwater–Human Wellbeing Nexus: Case Study from Sundarbans, India" Water 13, no. 12: 1635. https://doi.org/10.3390/w13121635