3-D Numerical Study of a Bottom Ramp Fish Passage Using Smoothed Particle Hydrodynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. SPH Method and DualSPHysics
2.2.1. Main Formulation of the SPH
2.2.2. DualSPHysics
3. Validation
3.1. Validation against Experiments
- (1)
- eight straight transverse lines, each including six equal spheres (having a diameter d = 0.14 m and effective height 0.125 m above the bed), with spheres located 0.01 m apart (i.e., the gap between the surfaces of two neighboring spheres, measured in the plane of the spheres’ centers), lines located 0.9 m apart, slope 3%, and discharge Q = 0.060 m3/s (denoted “HOR“ by the authors),
- (2)
- eight V-shaped formations, each including seven equal spheres (having a diameter d = 0.14 m and effective height 0.125 m above the bed), with V-formations located 0.9 m apart, slope 3%, and discharge Q = 0.120 m3/s (denoted “VUS“ by the authors).
3.2. Validation against a Numerical Study
4. Results
4.1. Numerical Setup
4.2. Depth Calculation Tool
4.3. Velocity Field Tool
4.4. Bed Roughness Tool
4.5. Area–Velocity Tool
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WFMF, Living Planet Index for Migratory Freshwater Fish. Available online: https://worldfishmigrationfoundation.com/living-planet-index-2020/ (accessed on 29 April 2021).
- AMBER, Adaptive Management of Barriers in European River. Available online: https://amber.international/ (accessed on 29 April 2021).
- FAO & DVWK, Fish Passes. Design, Dimensions and Monitoring. Available online: http://www.fao.org/3/y4454e/y4454e00.htm (accessed on 29 April 2021).
- Forseth, T.; Harby, A. (Eds.) Handbook for Environmental Design in Regulated Salmon Rivers; NINA Special Report 53; Norwegian Institute for Nature Research: Trondheim, Norway, 2014. [Google Scholar]
- NIWA, New Zealand Fish Passage Guidelines. Available online: https://niwa.co.nz/freshwater-and-estuaries/research-projects/new-zealand-fish-passage-guidelines (accessed on 29 April 2021).
- Bombač, M.; Novak, G.; Rodič, P.; Četina, M. Numerical and Physical Model Study of a Vertical Slot Fishway. J. Hydrol. Hydromech. 2014, 62, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Amaral, S.D.; Quaresma, A.L.; Branco, P.; Romão, F.; Katopodis, C.; Ferreira, M.T.; Pinheiro, A.N.; Santos, J.M. Assessment of Retrofitted Ramped Weirs to Improve Passage of Potamodromous Fish. Water 2019, 11, 2441. [Google Scholar] [CrossRef] [Green Version]
- Puzdrowska, M.; Heese, T. Experimental Studies on the Spatial Structure and Distribution of Flow Velocities in Bolt Fishways. J. Ecol. Eng. 2019, 20, 82–99. [Google Scholar] [CrossRef]
- Cea, L.; Pena, L.; Puertas, J.; Vázquez-Cendón, M.E.; Peña, E. Application of Several Depth-Averaged Turbulence Models to Simulate Flow in Vertical Slot Fishways. J. Hydraul. Eng. 2007, 133, 160–172. [Google Scholar] [CrossRef]
- Bermúdez, M.; Puertas, J.; Cea, L.; Pena, L.; Balairón, L. Influence of Pool Geometry on the Biological Efficiency of Vertical Slot Fishways. Ecol. Eng. 2010, 36, 1355–1364. [Google Scholar] [CrossRef]
- Bombač, M.; Novak, G.; Mlačnik, J.; Četina, M. Extensive Field Measurements of Flow in Vertical Slot Fishway as Data for Validation of Numerical Simulations. Ecol. Eng. 2015, 84, 476–484. [Google Scholar] [CrossRef]
- Bombač, M.; Četina, M.; Novak, G. Study on Flow Characteristics in Vertical Slot Fishways Regarding Slot Layout Optimization. Ecol. Eng. 2017, 107, 126–136. [Google Scholar] [CrossRef]
- Stamou, A.I.; Mitsopoulos, G.; Rutschmann, P.; Bui, M.D. Verification of a 3D CFD Model for Vertical Slot Fish-Passes. Environ. Fluid Mech. 2018, 18, 1435–1461. [Google Scholar] [CrossRef]
- Novak, G.; Tafuni, A.; Domínguez, J.M.; ČETINA, M.; Žagar, D. A Numerical Study of Fluid Flow in a Vertical Slot Fishway With the Smoothed Particle Hydrodynamics Method. Water 2019, 11, 1928. [Google Scholar] [CrossRef] [Green Version]
- Sanagiotto, D.G.; Rossi, J.B.; Bravo, J.M. Applications of Computational Fluid Dynamics in The Design and Rehabilitation of Nonstandard Vertical Slot Fishways. Water 2019, 11, 199. [Google Scholar] [CrossRef] [Green Version]
- Baki, A.B.M.; Zhu, D.Z.; Harwood, A.; Lewis, A.; Healey, K. Hydraulic Design Aspects of Rock-Weir Fishways With Notch for Habitat Connectivity. J. Ecohydraul. 2019, 5, 94–109. [Google Scholar] [CrossRef]
- Ferrand, M.; Laurence, D.R.; Rogers, B.D.; Violeau, D.; Kassiotis, C. Unified Semi-Analytical Wall Boundary Conditions for Inviscid, Laminar or Turbulent Flows in the Meshless SPH Method. Int. J. Numer. Methods Fluids 2013, 71, 446–472. [Google Scholar] [CrossRef] [Green Version]
- Monaghan, J.J. Smoothed Particle Hydrodynamics. Rep. Prog. Phys. 2005, 68, 1703–1759. [Google Scholar] [CrossRef]
- Violeau, D.; Rogers, B.D. Smoothed Particle Hydrodynamics (SPH) for Free-Surface Flows: Past, Present and Future. J. Hydraul. Res. 2016, 54, 1–26. [Google Scholar] [CrossRef]
- Gotoh, H.; Khayyer, A. On the State-of-the-Art of Particle Methods for Coastal and Ocean Engineering. Coast. Eng. J. 2018, 60, 79–103. [Google Scholar] [CrossRef]
- Manenti, S.; Wang, D.; Domínguez, J.M.; Li, S.; Amicarelli, A.; Albano, R. SPH Modeling of Water-Related Natural Hazards. Water 2019, 11, 1875. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, J.M.; Fourtakas, G.; Altomare, C.; Canelas, R.B.; Tafuni, A.; García-Feal, O.; Martínez-Estévez, I.; Mokos, A.; Vacondio, R.; Crespo, A.J.C.; et al. DualSPHysics: From Fluid Dynamics to Multiphysics Problems. Comput. Part. Mech. 2021, 1–29. [Google Scholar] [CrossRef]
- Domínguez, J.M.; Crespo, A.J.C.; Gómez-Gesteira, M. Optimization Strategies for CPU and GPU Implementations of a Smoothed Particle Hydrodynamics Method. Comput. Phys. Commun. 2013, 184, 617–627. [Google Scholar] [CrossRef]
- Altomare, C.; Domínguez, J.M.; Crespo, A.; González-Cao, J.; Suzuki, T.; Gómez-Gesteira, M.; Troch, P. Long-Crested Wave Generation and Absorption for SPH-Based DualSPHysics Model. Coast. Eng. 2017, 127, 37–54. [Google Scholar] [CrossRef]
- Altomare, C.; Tagliafierro, B.; Dominguez, J.; Suzuki, T.; Viccione, G. Improved Relaxation Zone Method in SPH-Based Model for Coastal Engineering Applications. Appl. Ocean Res. 2018, 81, 15–33. [Google Scholar] [CrossRef]
- Zhang, F.; Crespo, A.; Altomare, C.; Domínguez, J.M.; Marzeddu, A.; Shang, S.-P.; Gómez-Gesteira, M. DualSPHysics: A Numerical Tool to Simulate Real Breakwaters. J. Hydrodyn. 2018, 30, 95–105. [Google Scholar] [CrossRef]
- González-Cao, J.; Altomare, C.; Crespo, A.; Domínguez, J.; Gómez-Gesteira, M.; Kisacik, D. On the Accuracy of DualSPHysics to Assess Violent Collisions With Coastal Structures. Comput. Fluids 2019, 179, 604–612. [Google Scholar] [CrossRef]
- Barreiro, A.; Domínguez, J.M.; Crespo, A.J.C.; González-Jorge, H.; Roca, D.; Gómez-Gesteira, M. Integration of UAV Photogrammetry and SPH Modelling of Fluids to Study Runoff on Real Terrains. PLoS ONE 2014, 9, e111031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Cao, J.; García-Feal, O.; Dominguez, J.M.; Crespo, A.J.C.; Gómez-Gesteira, M. Analysis of the Hydrological Safety of Dams Combining Two Numerical Tools: Iber and DualSPHysics. J. Hydrodyn. 2018, 30, 87–94. [Google Scholar] [CrossRef]
- English, A.; Domínguez, J.M.; Vacondio, R.; Crespo, A.J.C.; Stansby, P.K.; Lind, S.J.; Chiapponi, L.; Gómez-Gesteira, M. Modified Dynamic Boundary Conditions (mDBC) for General-Purpose Smoothed Particle Hydrodynamics (SPH): Application to Tank Sloshing, Dam Break and Fish Pass Problems. Comput. Part. Mech. 2021, 1–15. [Google Scholar] [CrossRef]
- Tafuni, A.; Sahin, I. Non-Linear Hydrodynamics of Thin Laminae Undergoing Large Harmonic Oscillations in a Viscous Fluid. J. Fluids Struct. 2015, 52, 101–117. [Google Scholar] [CrossRef]
- Novak, G.; Domínguez, J.M.; Tafuni, A.; ČETINA, M.; Žagar, D. Evaluation of the Drag Coefficient of a Fully Submerged Body Using SPH. Acta Hydrotech. 2019, 32, 107–119. [Google Scholar] [CrossRef]
- Kazemi, E.; Nichols, A.; Tait, S.; Shao, S. SPH Modelling of Depth-Limited Turbulent Open Channel Flows over Rough Boundaries. Int. J. Numer. Methods Fluids 2016, 83, 3–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabreil, E.; Tait, S.J.; Shao, S.; Nichols, A. SPHysics Simulation of Laboratory Shallow Free Surface Turbulent Flows over a Rough Bed. J. Hydraul. Res. 2018, 56, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Wei, J.; Li, S.; Song, P.; Zhang, B. A Meshless WCSPH Boundary Treatment for Open-Channel Flow over Small-Scale Rough Bed. Math. Probl. Eng. 2019, 2019, 1–17. [Google Scholar] [CrossRef]
- Kazemi, E.; Koll, K.; Tait, S.; Shao, S. SPH Modelling of Turbulent Open Channel Flow over and Within Natural Gravel Beds With Rough Interfacial Boundaries. Adv. Water Resour. 2020, 140, 103557. [Google Scholar] [CrossRef]
- Novak, G.; Rak, G.; Prešeren, T.; Bajcar, T. Non-Intrusive Measurements of Shallow Water Discharge. Flow Meas. Instrum. 2017, 56, 14–17. [Google Scholar] [CrossRef]
- Antuono, M.; Colagrossi, A.; Marrone, S. Numerical Diffusive Terms in Weakly-Compressible SPH Schemes. Comput. Phys. Commun. 2012, 183, 2570–2580. [Google Scholar] [CrossRef]
- Bonet, J.; Lok, T.-S. Variational and Momentum Preservation Aspects of Smooth Particle Hydrodynamic Formulations. Comput. Methods Appl. Mech. Eng. 1999, 180, 97–115. [Google Scholar] [CrossRef]
- Monaghan, J. Simulating Free Surface Flows With SPH. J. Comput. Phys. 1994, 110, 399–406. [Google Scholar] [CrossRef]
- Altomare, C.; Crespo, A.J.; Domínguez, J.M.; Gómez-Gesteira, M.; Suzuki, T.; Verwaest, T. Applicability of Smoothed Particle Hydrodynamics for Estimation of Sea Wave Impact on Coastal Structures. Coast. Eng. 2015, 96, 1–12. [Google Scholar] [CrossRef]
- Dalrymple, R.; Rogers, B. Numerical Modeling of Water Waves with the SPH Method. Coast. Eng. 2006, 53, 141–147. [Google Scholar] [CrossRef]
- Fourtakas, G.; Domínguez, J.M.; Vacondio, R.; Rogers, B.D. Local Uniform Stencil (LUST) Boundary Condition for Arbitrary 3-D Boundaries in Parallel Smoothed Particle Hydrodynamics (SPH) Models. Comput. Fluids 2019, 190, 346–361. [Google Scholar] [CrossRef]
- Crespo, A.J.C.; Gómez-Gesteira, M.; Dalrymple, R.A. Boundary conditions generated by dynamic particles in SPH methods. Comput. Mater. Contin. 2007, 5, 173–184. [Google Scholar] [CrossRef]
- Kupferschmidt, C.; Zhu, D.Z. Physical modelling of pool and weir fishways with rock weirs. River Res. Appl. 2017, 339, 1130–1142. [Google Scholar] [CrossRef]
- Tafuni, A.; Domínguez, J.M.; Vacondio, R.; Crespo, A. A Versatile Algorithm for the Treatment of Open Boundary Conditions in Smoothed Particle Hydrodynamics GPU Models. Comput. Methods Appl. Mech. Eng. 2018, 342, 604–624. [Google Scholar] [CrossRef]
- Brito, M.; Canelas, R.; García-Feal, O.; Domínguez, J.M.; Crespo, A.; Ferreira, R.; Neves, M.; Teixeira, L. A Numerical Tool for Modelling Oscillating Wave Surge Converter with Nonlinear Mechanical Constraints. Renew. Energy 2020, 146, 2024–2043. [Google Scholar] [CrossRef]
- Domínguez, J.M.; Crespo, A.J.C.; Barreiro, A.; Gómez-Gesteira, M. Development of a new pre-processing tool for SPH models with complex geometries. In Proceedings of the 6th International SPHERIC Workshop, Hamburg, Germany, 8–10 June 2011; pp. 117–124. [Google Scholar]
- Domínguez, J.; Crespo, A.; Valdez-Balderas, D.; Rogers, B.; Gómez-Gesteira, M. New Multi-GPU Implementation for Smoothed Particle Hydrodynamics on Heterogeneous Clusters. Comput. Phys. Commun. 2013, 184, 1848–1860. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novak, G.; Domínguez, J.M.; Tafuni, A.; Silva, A.T.; Pengal, P.; Četina, M.; Žagar, D. 3-D Numerical Study of a Bottom Ramp Fish Passage Using Smoothed Particle Hydrodynamics. Water 2021, 13, 1595. https://doi.org/10.3390/w13111595
Novak G, Domínguez JM, Tafuni A, Silva AT, Pengal P, Četina M, Žagar D. 3-D Numerical Study of a Bottom Ramp Fish Passage Using Smoothed Particle Hydrodynamics. Water. 2021; 13(11):1595. https://doi.org/10.3390/w13111595
Chicago/Turabian StyleNovak, Gorazd, José M. Domínguez, Angelo Tafuni, Ana T. Silva, Polona Pengal, Matjaž Četina, and Dušan Žagar. 2021. "3-D Numerical Study of a Bottom Ramp Fish Passage Using Smoothed Particle Hydrodynamics" Water 13, no. 11: 1595. https://doi.org/10.3390/w13111595
APA StyleNovak, G., Domínguez, J. M., Tafuni, A., Silva, A. T., Pengal, P., Četina, M., & Žagar, D. (2021). 3-D Numerical Study of a Bottom Ramp Fish Passage Using Smoothed Particle Hydrodynamics. Water, 13(11), 1595. https://doi.org/10.3390/w13111595