Water Quality Degradation in the Lower Mekong Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Hydrology
2.2. Data Collection and Processing
2.3. Water Quality Assessment and Analysis
2.4. Statistical Analysis
3. Results
3.1. Macroinvertebrates and Biotic Water Quality
3.2. Abiotic Water Quality
3.3. Spatial Variation in Water Quality
3.4. Temporal Changes in Water Quality
4. Discussion
4.1. Biotic and Abiotic Metrics for Water Quality Assessment Methods
4.2. Historical Water Quality of the LMB
4.3. Drivers of Temporal Degradation of Water Quality in the LMB
4.4. Water Quality Degradation Hotspots
4.5. Importance of Water Quality for Biodiversity, Sustainable Development, and River Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Null, S.E.; Farshid, A.; Goodrum, G.; Gray, C.A.; Lohani, S.; Morrisett, C.N.; Prudencio, L.; Sor, R. A Meta-Analysis of Environmental Tradeoffs of Hydropower Dams in the Sekong, Sesan, and Srepok (3S) Rivers of the Lower Mekong Basin. Water 2020, 13, 63. [Google Scholar] [CrossRef]
- Sor, R.; Ngor, P.B.; Boets, P.; Goethals, P.L.M.; Lek, S.; Hogan, Z.S.; Park, Y.-S. Patterns of Mekong Mollusc Biodiversity: Identification of Emerging Threats and Importance to Management and Livelihoods in a Region of Globally Significant Biodiversity and Endemism. Water 2020, 12, 2619. [Google Scholar] [CrossRef]
- Ngor, P.B.; Legendre, P.; Oberdorff, T.; Lek, S. Flow alterations by dams shaped fish assemblage dynamics in the complex Mekong-3S river system. Ecol. Indic. 2018, 88, 103–114. [Google Scholar] [CrossRef]
- Lynch, A.J.; Elliott, V.; Phang, S.C.; Claussen, J.E.; Harrison, I.; Murchie, K.J.; Steel, E.A.; Stokes, G.L. Inland fish and fisheries integral to achieving the Sustainable Development Goals. Nat. Sustain. 2020, 3, 579–587. [Google Scholar] [CrossRef]
- Chandler, J. A biological approach to water quality management. J. Water Pollut. Control 1970, 69, 415–422. [Google Scholar]
- Reynoldson, T.B.; Metcalfe-Smith, J.L. An overview of the assessment of aquatic ecosystem health using benthic invertebrates. J. Aquat. Ecosyst. Heal. 1992, 1, 295–308. [Google Scholar] [CrossRef]
- Extence, C.; Bates, A.; Forbes, W.; Barham, P. Biologically based water quality management. Environ. Pollut. 1987, 45, 221–236. [Google Scholar] [CrossRef]
- Gabriels, W.; Lock, K.; De Pauw, N.; Goethals, P.L. Multimetric Macroinvertebrate Index Flanders (MMIF) for biological assessment of rivers and lakes in Flanders (Belgium). Limnol. Ecol. Manag. Inland Waters 2010, 40, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Damanik-Ambarita, M.N.; Lock, K.; Boets, P.; Everaert, G.; Nguyen, T.H.T.; Forio, M.A.E.; Musonge, P.L.S.; Suhareva, N.; Bennetsen, E.; Landuyt, D.; et al. Ecological water quality analysis of the Guayas river basin (Ecuador) based on macroinvertebrates indices. Limnol. Ecol. Manag. Inland Waters 2016, 57, 27–59. [Google Scholar] [CrossRef]
- Capítulo, A.R.; Tangorra, M.; Ocón, C. Use of benthic macroinvertebrates to assess the biological status of Pampean streams in Argentina. Aquat. Ecol. 2001, 35, 109–119. [Google Scholar] [CrossRef]
- Chessman, B.C. New sensitivity grades for Australian river macroinvertebrates. Mar. Freshw. Res. 2003, 54, 95. [Google Scholar] [CrossRef] [Green Version]
- Sutadian, A.D.; Muttil, N.; Yilmaz, A.G.; Perera, B. Development of river water quality indices—A review. Environ. Monit. Assess. 2016, 188, 1–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chea, R.; Grenouillet, G.; Lek, S. Evidence of Water Quality Degradation in Lower Mekong Basin Revealed by Self-Organizing Map. PLoS ONE 2016, 11, e0145527. [Google Scholar] [CrossRef] [Green Version]
- Prati, L.; Pavanello, R.; Pesarin, F. Assessment of surface water quality by a single index of pollution. Water Res. 1971, 5, 741–751. [Google Scholar] [CrossRef]
- De Troyer, N.; Mereta, S.T.; Goethals, P.L.; Boets, P. Water Quality Assessment of Streams and Wetlands in a Fast Growing East African City. Water 2016, 8, 123. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Mishra, S.; Taxak, A.; Pandey, R.; Yu, Z.-G. Nature rejuvenation: Long-term (1989–2016) vs short-term memory approach based appraisal of water quality of the upper part of Ganga River, India. Environ. Technol. Innov. 2020, 20, 101164. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Heredia, N.A.; Laub, B.G.; Meredith, C.S.; Mohn, H.E.; Null, S.E.; Pluth, D.A.; Roper, B.B.; Saunders, W.C.; Stevens, D.K.; et al. Approaches for studying fish production: Do river and lake researchers have different perspectives? Can. J. Fish. Aquat. Sci. 2015, 72, 149–160. [Google Scholar] [CrossRef]
- Serpa, D.; Keizer, J.J.; Cassidy, J.; Cuco, A.; Silva, V.; Gonçalves, F.J.M.; Cerqueira, M.; Abrantes, N. Assessment of river water quality using an integrated physicochemical, biological and ecotoxicological approach. Environ. Sci. Process. Impacts 2014, 16, 1434. [Google Scholar] [CrossRef] [PubMed]
- Rocha, F.C.; Andrade, E.M.; Lopes, F.B. Water quality index calculated from biological, physical and chemical attributes. Environ. Monit. Assess. 2014, 187, 4163. [Google Scholar] [CrossRef]
- Adamson, P.T.; Rutherfurd, I.D.; Peel, M.C.; Conlan, I.A. The Hydrology of the Mekong River. In The Mekong Biophysical Environment of an International River Basin; Campbell, I.C., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2009; pp. 53–76. [Google Scholar]
- Rainboth, W.J.; Vidthayanon, C.; Mai, D.Y. Fishes of the Greater Mekong Ecosystem with Species List and Photoraphic Atlas; Burch, J., Pappas, J., Eds.; Museum of Zoology, University of Michigan: Ann Arbor, MI, USA, 2012; ISBN 0076-84-05. [Google Scholar]
- Hortle, K.G.; Bamrungrach, P. Fisheries Habitat and Yield in the Lower Mekong Basin; Mekong River Commission: Phnom Penh, Cambodia, 2015. [Google Scholar]
- Sor, R.; Boets, P.; Chea, R.; Goethals, P.L.; Lek, S. Spatial organization of macroinvertebrate assemblages in the Lower Mekong Basin. Limnol. Ecol. Manag. Inland Waters 2017, 64, 20–30. [Google Scholar] [CrossRef]
- Köhler, F.; Seddon, M.; Bogan, A.E.; Van Tu, D.; Sri-aroon, P.; Allen, D. The status and distribution of freshwater molluscs of the Indo-Burma region. In The Status and Distribution of Freshwater Biodiversity in Indo-Burma; Allen, D., Smith, K., Darwall, W., Eds.; IUCN Gland: Gland, Swizterland, 2012; pp. 66–89. [Google Scholar]
- Sor, R.; Meas, S.; Wong, K.K.; Min, M.; Segers, H. Diversity of Monogononta rotifer species among standing waterbodies in northern Cambodia. J. Limnol. 2014, 73, 192–204. [Google Scholar] [CrossRef] [Green Version]
- Ngor, P.B.; Sor, R.; Prak, L.H.; So, N.; Hogan, Z.S.; Lek, S. Mollusc fisheries and length–weight relationship in Tonle Sap flood pulse system, Cambodia. Ann. de Limnol. Int. J. Limnol. 2018, 54, 34. [Google Scholar] [CrossRef]
- Sor, R.; Segers, H.; Meas, S. Rotifers as bio-indicators of freshwater quality: A case study from the upper Cambodian Mekong River basin. Cambodian J. Nat. Hist. 2015, 2, 148–152. [Google Scholar]
- Cochrane, T.A.; Arias, M.E.; Piman, T. Historical impact of water infrastructure on water levels of the Mekong River and the Tonle Sap system. Hydrol. Earth Syst. Sci. 2014, 18, 4529–4541. [Google Scholar] [CrossRef] [Green Version]
- MRC (Mekong River Commission). An Assessment of Water Quality in the Lower Mekong Basin; MRC Technical Paper No. 19; Mekong River Commission: Vientiane, Laos, 2008; p. 70. [Google Scholar]
- MRC (Mekong River Commission). 2017 Lower Mekong Regional Water Quality Monitoring Report; Mekong River Commission: Vientiane, Laos, 2019. [Google Scholar]
- Eslami, S.; Hoekstra, P.; Trung, N.N.; Kantoush, S.A.; Van Binh, D.; Dung, D.D.; Quang, T.T.; Van Der Vegt, M. Tidal amplification and salt intrusion in the Mekong Delta driven by anthropogenic sediment starvation. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lohani, S.; Dilts, T.E.; Weisberg, P.J.; Null, S.E.; Hogan, Z.S. Rapidly Accelerating Deforestation in Cambodia’s Mekong River Basin: A Comparative Analysis of Spatial Patterns and Drivers. Water 2020, 12, 2191. [Google Scholar] [CrossRef]
- Chantha, O.; Ty, S. Assessing changes in flow and water quality emerging from hydropower development and operation in the Sesan River Basin of the Lower Mekong Region. Sustain. Water Resour. Manag. 2020, 6, 1–12. [Google Scholar] [CrossRef]
- Tian, H.; Yu, G.-A.; Tong, L.; Li, R.; Huang, H.Q.; Bridhikitti, A.; Prabamroong, T. Water Quality of the Mun River in Thailand—Spatiotemporal Variations and Potential Causes. Int. J. Environ. Res. Public Health 2019, 16, 3906. [Google Scholar] [CrossRef] [Green Version]
- Wilbers, G.-J.; Becker, M.; Nga, L.T.; Sebesvari, Z.; Renaud, F. Spatial and temporal variability of surface water pollution in the Mekong Delta, Vietnam. Sci. Total Environ. 2014, 485–486, 653–665. [Google Scholar] [CrossRef]
- Phung, D.; Huang, C.; Rutherford, S.; Dwirahmadi, F.; Chu, C.; Wang, X.; Nguyen, M.; Nguyen, N.H.; Do, C.M.; Nguyen, T.H.; et al. Temporal and spatial assessment of river surface water quality using multivariate statistical techniques: A study in Can Tho City, a Mekong Delta area, Vietnam. Environ. Monit. Assess. 2015, 187, 1–13. [Google Scholar] [CrossRef]
- Kudthalang, N.; Thanee, N. The assessment of water quality in the upper part of the Chi basin using physicochemical variables and benthic macroinvertebrates. Suranaree J. Sci. Technol. 2010, 17, 165–176. [Google Scholar]
- WLE. Dataset on the Dams of the Irrawaddy, Mekong, Red and Salween River Basins; PDR: CGIAR Research Program on Water, Land and Ecosystems—Greater Mekong; CGIAR: Montpellier, France, 2016. [Google Scholar]
- MRC (Mekong River Commission). State of the Basin Report 2010; Mekong River Commission: Vientiane, Laos, 2010; ISBN 9789932080571. [Google Scholar]
- Mahood, S.P.; Poole, C.M.; Watson, J.E.M.; MacKenzie, R.A.; Sharma, S.; Garnett, S.T. Agricultural intensification is causing rapid habitat change in the Tonle Sap Floodplain, Cambodia. Wetl. Ecol. Manag. 2020, 28, 713–726. [Google Scholar] [CrossRef]
- Sor, R. Modelling Spatio-Temporal Changes of Benthic Macroinvertebrate Communities in Asian and European Rivers. Ph.D. Thesis, Université Paul Sabatier—Toulouse III and Ghent University, Toulouse, France, Ghent, Belgium, 10 July 2017. [Google Scholar]
- McCluskey, A.; Lalkhen, A.G. Statistics II: Central tendency and spread of data. Contin. Educ. Anaesth. Crit. Care Pain. 2007, 7, 127–130. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen. Ecol. Appl. 1998, 8, 559. [Google Scholar] [CrossRef]
- Mustow, S. Biological monitoring of rivers in Thailand: Use and adaptation of the BMWP score. Hydrobiologia 2002, 479, 191–229. [Google Scholar] [CrossRef]
- Hawkes, H.A. Origin and development of the biological monitoring working party score system. Water Res. 1998, 32, 964–968. [Google Scholar] [CrossRef]
- US-EPA. Quality Criteria for Water; Office of Water Regulations and Standards, United States Environmental Protection Agency: Washington, DC, USA, 1986.
- Stephen, C.E.; Mount, D.I.; Hansen, D.J.; Gentile, J.R.; Chapman, G.A.; Brungs, W.A. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses; United States Environmental Protection Agency: Duluth, MN, USA, 1985.
- Shahady, T.; Boniface, H. Water quality management through community engagement in Costa Rica. J. Environ. Stud. Sci. 2018, 8, 488–502. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, K.F. Impacts of Artisanal and Large Scale Gold Mining on Tropical Rivers in West Africa: A Case Study from the Brong Ahafo Region of Ghana. Ph.D. Thesis, Edith Cowan University, Joondalup, Australia, 2020. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Simachaya, W.; Watanamahart, P.; Kaewkrajang, V.; Yenpiem, A. Water Quality Situation in the Chao Phraya Delta; Water Quality Management Division, Pollution Control Department: Bangkok, Thailand, 1999.
- WEPA. State of Water Environmental Issues, Viet Nam. Available online: http://www.wepa-db.net/policies/state/vietnam/surface.htm (accessed on 10 March 2021).
- Bing, H.; Wu, Y.; Liu, E.; Yang, X. Assessment of heavy metal enrichment and its human impact in lacustrine sediments from four lakes in the mid-low reaches of the Yangtze River, China. J. Environ. Sci. 2013, 25, 1300–1309. [Google Scholar] [CrossRef]
- Liu, C.; Xia, J. Water problems and hydrological research in the Yellow River and the Huai and Hai River basins of China. Hydrol. Process. 2004, 18, 2197–2210. [Google Scholar] [CrossRef]
- Abbasi, T.; Abbasi, S.A. Water quality indices based on bioassessment: The biotic indices. J. Water Heal. 2011, 9, 330–348. [Google Scholar] [CrossRef] [Green Version]
- El Sayed, S.M.; Hegab, M.H.; Mola, H.R.A.; Ahmed, N.M.; Goher, M.E. An integrated water quality assessment of Damietta and Rosetta branches (Nile River, Egypt) using chemical and biological indices. Environ. Monit. Assess. 2020, 192, 1–16. [Google Scholar] [CrossRef]
- Nõges, P.; Argillier, C.; Borja, Á.; Mikel, J.; Kode, V.; Pletterbauer, F.; Sagouis, A.; Birk, S. Quantified biotic and abiotic responses to multiple stress in freshwater, marine and ground waters. Sci. Total Environ. 2015, 540, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Aazami, J.; Esmaili-Sari, A.; Abdoli, A.; Sohrabi, H.; Brink, P.J.V.D. Monitoring and assessment of water health quality in the Tajan River, Iran using physicochemical, fish and macroinvertebrates indices. J. Environ. Heal. Sci. Eng. 2015, 13, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Vongsombath, C.; Pham, A.D.; Nguyen, T.M.L.; Kunpradid, T.; Davison, S.P.; Peerapornpisal, Y.; Sok, K.; Meng, M. Report on the 2006 Biomonitoring Survey of the Lower Mekong River and Selected Tributaries; MRC Technical Paper No. 22; Mekong River Commission: Vientiane, Laos, 2009. [Google Scholar]
- Seng, K. Water Quality Impacts of the Yali Falls Dam in Se San River Basin, Ratanakiri Province, Northeast Cambodia. Phnom Penh, Cambodia. 2002. Available online: http://www.mekonginfo.org/assets/midocs/0002408-environment-impact-of-yali-falls-dam-in-sesan-river-basin-rothanakiri-province-northeast-of-cambodia.pdf (accessed on 10 March 2021).
- Miettinen, J.; Shi, C.; Liew, S.C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Chang. Biol. 2011, 17, 2261–2270. [Google Scholar] [CrossRef]
- Minh, H.V.T.; Avtar, R.; Kumar, P.; Le, K.N.; Kurasaki, M.; Van Ty, T. Impact of Rice Intensification and Urbanization on Surface Water Quality in an Giang Using a Statistical Approach. Water 2020, 12, 1710. [Google Scholar] [CrossRef]
- Namkhan, M.; Gale, G.A.; Savini, T.; Tantipisanuh, N. Loss and vulnerability of lowland forests in mainland Southeast Asia. Conserv. Biol. 2021, 35, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.; Potapov, P.; Moore, R.; Hancher, M.; Turubanova, S.; Tyukavina, A.; Thau, D.; Stehman, S.; Goetz, S.; Loveland, T.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Issaka, S.; Ashraf, M.A. Impact of soil erosion and degradation on water quality: A review. Geol. Ecol. Landsc. 2017, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Finnegan, A.M.D.; Gouramanis, C. Projected plastic waste loss scenarios between 2000 and 2030 into the largest freshwater-lake system in Southeast Asia. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Spruce, J.; Bolten, J.; Mohammed, I.; Srinivasan, R.; Lakshmi, V. Mapping Land Use Land Cover Change in the Lower Mekong Basin From 1997 to 2010. Front. Environ. Sci. 2020, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Ling, T.-Y.; Gerunsin, N.; Soo, C.-L.; Nyanti, L.; Sim, S.-F.; Grinang, J. Seasonal Changes and Spatial Variation in Water Quality of a Large Young Tropical Reservoir and Its Downstream River. J. Chem. 2017, 2017, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wei, G.; Yang, Z.; Cui, B.; Li, B.; Chen, H.; Bai, J.; Dong, S. Impact of Dam Construction on Water Quality and Water Self-Purification Capacity of the Lancang River, China. Water Resour. Manag. 2009, 23, 1763–1780. [Google Scholar] [CrossRef]
- Gyasi, S.F.; Boamah, B.; Awuah, E.; Otabil, K.B. A Perspective Analysis of Dams and Water Quality: The Bui Power Project on the Black Volta, Ghana. J. Environ. Public Heal. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Tánago, M.G.; De Jalón, D.G.; Román, M. River Restoration in Spain: Theoretical and Practical Approach in the Context of the European Water Framework Directive. Environ. Manag. 2012, 50, 123–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coates, D.; Poeu, O.; Suntornratana, U.; Tung, N.T.; Viravong, S. Biodiversity and Fisheries in the Mekong River Basin; Mekong River Commission: Vientiane, Laos, 2003. [Google Scholar]
- Hirsch, P.; Jensen, K.M.; Boveroer, B.; Carrard, N.; FitzGerald, S.; Lyster, R. National Interests and Transboundary Water Governance in the Mekong; Danish International Development Assistance, The University of Sydney and Mekong Resource Center: Copenhagen, Denmark, 2006. [Google Scholar]
- Hirsch, P. The shifting regional geopolitics of Mekong dams. Politi. Geogr. 2016, 51, 63–74. [Google Scholar] [CrossRef]
- MRC. Procedures for Notification, Prior Consultation and Agreement (PNPCA) Prior Consultation: Technical Report on Prior Consultation for the Proposed Don Sahong Hydropower Project; Mekong River Commission: Vientiane, Laos, 2015. [Google Scholar]
- Arias, M.E.; Holtgrieve, G.W.; Ngor, P.B.; Dang, T.D.; Piman, T. Maintaining perspective of ongoing environmental change in the Mekong floodplains. Curr. Opin. Environ. Sustain. 2019, 37, 1–7. [Google Scholar] [CrossRef]
- Ngor, P.B.; McCann, K.S.; Grenouillet, G.; So, N.; McMeans, B.C.; Fraser, E.; Lek, S. Evidence of indiscriminate fishing effects in one of the world’s largest inland fisheries. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grenouillet, G.; McCann, K.S.; McMeans, B.C.; Fraser, E.; So, N.; Hogan, Z.S.; Lek, S.; Ngor, P.B. Reply to: ‘Flooding is a key driver of the Tonle Sap dai fishery in Cambodia’. Sci. Rep. 2021, 11, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Ratner, B.D.; So, S.; Mam, K.; Oeur, I.; Kim, S. Conflict and collective action in Tonle Sap fisheries: Adapting governance to support community livelihoods. Nat. Resour. Forum 2017, 41, 71–82. [Google Scholar] [CrossRef]
- Chan, B.; Ngor, P.B.; Hogan, Z.S.; So, N.; Brosse, S.; Lek, S. Temporal Dynamics of Fish Assemblages as a Reflection of Policy Shift from Fishing Concession to Co-Management in One of the World’s Largest Tropical Flood Pulse Fisheries. Water 2020, 12, 2974. [Google Scholar] [CrossRef]
- Gerrard, P. Integrating Wetland Ecosystem Values into Urban Planning: The Case of That Luang Marsh, Lao PDR; The World Conservation Union Asia Regional Environmental Economics Programme and WWF: Vientiane, Laos, 2004. [Google Scholar]
- Brown, M.; Hong, S.; Smith, J.; Hagan, J.; Keat, B. Sanitation in Floating Communities in Cambodia. 2010. Available online: https://www.globalgiving.org/pfil/6803/101217_Sanitation_in_Floating_Communities_in_Cambodia_Report_for_MRD_small_size.pdf (accessed on 12 March 2021).
- STIMSON. Mekong Mainstream Dams. Available online: https://www.stimson.org/2020/mekong-mainstream-dams/#:~:text= (accessed on 12 March 2021).
- Chien, H.; Pierce, K. Impacts of changed stream flow on selected water quality parameters in the Upper Esopus Creek Watershed of New York, USA. J. Geogr. Earth Sci. 2018, 6, 71–78. [Google Scholar] [CrossRef]
- Haag, W.R.; Warren, M.L., Jr. Role of ecological factors and reproductive strategies in structuring freshwater mussel communities. Can. J. Fish. Aquat. Sci. 1998, 55, 297–306. [Google Scholar] [CrossRef]
- Davis, N.M.; Weaver, V.; Parks, K.; Lydy, M.J. An Assessment of Water Quality, Physical Habitat, and Biological Integrity of an Urban Stream in Wichita, Kansas, Prior to Restoration Improvements (Phase I). Arch. Environ. Contam. Toxicol. 2003, 44, 351–359. [Google Scholar] [CrossRef]
- Chadwick, M.A.; Dobberfuhl, D.R.; Benke, A.C.; Huryn, A.D.; Suberkropp, K.; Thiele, J.E. Urbanization affects stream ecosystem function by altering hydrology, chemistry, and biotic richness. Ecol. Appl. 2006, 16, 1796–1807. [Google Scholar] [CrossRef]
- Cook, S.E.; Fisher, M.J.; Andersson, M.S.; Rubiano, J.; Giordano, M. Water, food and livelihoods in river basins. Water Int. 2009, 34, 13–29. [Google Scholar] [CrossRef]
- Wei, C.; Gao, C.; Han, D.; Zhao, W.; Lin, Q.; Wang, G. Spatial and Temporal Variations of Water Quality in Songhua River from 2006 to 2015: Implication for Regional Ecological Health and Food Safety. Sustainability 2017, 9, 1502. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.J.; Baldigo, B.; Duffy, B.T.; George, S.D.; Dresser, B. Resilience of benthic macroinvertebrates to extreme floods in a Catskill Mountain river, New York, USA: Implications for water quality monitoring and assessment. Ecol. Indic. 2019, 104, 107–115. [Google Scholar] [CrossRef]
- Stoddard, J.; Peck, D.; Paulsen, S.; Van Sickle, J.; Hawkins, C.; Herlihy3, A.; Hughes, R.; Kaufmann, P.; Larsen, D.; Lomnicky, G.; et al. An Ecological Assessment of Western Streams and Rivers; United States Environmental Protection Agency: Washington, DC, USA, 2005.
- Mrozińska, N.; Glińska-Lewczuk, K.; Burandt, P.; Kobus, S.; Gotkiewicz, W.; Szymańska, M.; Bąkowska, M.; Obolewski, K. Water Quality as an Indicator of Stream Restoration Effects—A Case Study of the Kwacza River Restoration Project. Water 2018, 10, 1249. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, V.C.; Schirmer, M. Water quality deterioration as a driver for river restoration: A review of case studies from Asia, Europe and North America. Environ. Earth Sci. 2015, 74, 3145–3158. [Google Scholar] [CrossRef]
- EEA. Water and Agriculture: Towards Sustainable Solutions. 2020. Available online: https://www.eea.europa.eu/publications/water-and-agriculture-towards-sustainable-solutions/viewfile (accessed on 11 March 2021).
- Intralawan, A.; Wood, D.; Frankel, R.; Costanza, R.; Kubiszewski, I. Tradeoff analysis between electricity generation and ecosystem services in the Lower Mekong Basin. Ecosyst. Serv. 2018, 30, 27–35. [Google Scholar] [CrossRef]
- Mekong Dam Monitor—An Open-Source Online Platform for Near-Real Time Monitoring of Dams and Environmental Impacts in the Mekong Basin. Available online: https://www.stimson.org/project/mekong-dam-monitor (accessed on 11 March 2021).
BMWP Score | BMWP Index | ASPT Score | ASPT Index | Lincoln Index | Water Quality Classification |
---|---|---|---|---|---|
0–9 | 1 | 0.0–2.0 | 1 | 1.0–1.5 | Very Poor |
10–24 | 2 | 2.1–3.0 | 2 | 2.0–2.5 | Poor |
24–50 | 3 | 3.1–3.5 | 3 | 3.0–3.5 | Fair |
51–80 | 4 | 3.6–4.0 | 4 | 4.0–4.5 | Good |
81–100 | 5 | 4.1–4.4 | 5 | 5.0–5.5 | Very Good |
101–120 | 6 | 4.5–4.9 | 6 | ≥6.0 | Very Good |
>120 | 7 | ≥5.0 | 7 | - | Very Good |
Variable | Abbreviation | Threshold Value | Score |
---|---|---|---|
Dissolved Oxygen | DO | >5 mg/L | 1 |
Total Phosphorus | TP | <50 μg/L | 1 |
Total Ammonia | TA | <20 μg/L | 1 |
Chloride | Cl | <250 mg/L | 1 |
Variables | Abbreviation | Unit | Observed Value | Index Variable Computation |
---|---|---|---|---|
Dissolved Oxygen | DO | % | DO < 50% | XDO = |
Dissolved Oxygen | DO | % | 50% ≤ DO < 100% | XDO = 0.08 × (100 – DO) |
Dissolved Oxygen | DO | % | DO ≥ 100% | XDO = 0.08 × (DO – 100) |
Ammonium-N | NH4+-N | mg/L | NH4+-N (mg/L) | = |
Chemical Oxygen Demand | COD | mg/L | COD (mg/L) | XCOD = COD × ( |
Prati Index (XPrati) | Reciprocal XPrati | Water Quality Assessment |
---|---|---|
0 ≤ XPrati < 1 | >1.0 | Good Quality |
1 ≤ XPrati < 2 | 1.0 ≥ XPrati > 0.5 | Fair Quality |
2 ≤ XPrati < 4 | 0.5 ≥ XPrati > 0.25 | Polluted Quality |
4 ≤ XPrati < 8 | 0.25 ≥ XPrati > 0.125 | Very Polluted Quality |
8 ≤ XPrati | 0.125 ≥ XPrati | Extremly Polluted Quality |
US-EPA | Prati-Basic | Prati-DO | ||||
---|---|---|---|---|---|---|
WQ Status | 2000s | 2010s | 2000s | 2010s | 2000s | 2010s |
Very Poor | 0 | 0 | 0 | 0 | 1 (2%) | 2 (4%) |
Poor | 1 (2%) | 1 (2%) | 1 (2%) | 1 (2%) | 9 (19%) | 17 (36%) |
Fair | 11 (23%) | 22 (47%) | 9 (19%) | 16 (34%) | 17 (36%) | 15 (32%) |
Good | 24 (51%) | 19 (40%) | 37 (79%) | 30 (64%) | 20 (43%) | 13 (28%) |
Very Good | 11 (23%) | 5 (11%) | na | na | na | na |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sor, R.; Ngor, P.B.; Soum, S.; Chandra, S.; Hogan, Z.S.; Null, S.E. Water Quality Degradation in the Lower Mekong Basin. Water 2021, 13, 1555. https://doi.org/10.3390/w13111555
Sor R, Ngor PB, Soum S, Chandra S, Hogan ZS, Null SE. Water Quality Degradation in the Lower Mekong Basin. Water. 2021; 13(11):1555. https://doi.org/10.3390/w13111555
Chicago/Turabian StyleSor, Ratha, Peng Bun Ngor, Savoeurn Soum, Sudeep Chandra, Zeb S. Hogan, and Sarah E. Null. 2021. "Water Quality Degradation in the Lower Mekong Basin" Water 13, no. 11: 1555. https://doi.org/10.3390/w13111555
APA StyleSor, R., Ngor, P. B., Soum, S., Chandra, S., Hogan, Z. S., & Null, S. E. (2021). Water Quality Degradation in the Lower Mekong Basin. Water, 13(11), 1555. https://doi.org/10.3390/w13111555