Analysis of Runoff-Sediment Cointegration and Uncertainty Relations at Different Temporal Scales in the Middle Reaches of the Yellow River, China
Abstract
1. Introduction
2. Study Area and Materials
3. Methods
3.1. Cointegration Theory
3.2. Methodology for Runoff-Sediment Relationship
4. Results and Discussion
4.1. Runoff-Sediment Cointegration Equilibrium Relation
4.1.1. Linear Cointegration Relationship at Toudaoguai Station
4.1.2. Nonlinear Cointegration Relationship at the Other Stations
4.2. Runoff-Sediment Uncertainty Relation
4.2.1. Runoff-Sediment Relation at the Within-Flood Event Scale
4.2.2. Runoff-Sediment Relation at the Monthly-Seasonal Scale
4.2.3. Runoff-Sediment Relation at the Annual Scale
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, P.C.; Wu, Y.P.; Gao, J.N.; Yao, Y.Y.; Zhao, F.B.; Lei, X.H.; Qiu, L.J. Shifts of sediment transport regime caused by ecological restoration in the Middle Yellow River Basin. Sci. Total Environ. 2020, 698, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, S.H.; Singh, V.P.; Kiani-Harchegani, M.; Asadi, H. Analysis of sediment rating loops and particle size distributions to characterize sediment source at mid-sized plot scale. Catena 2018, 167, 221–227. [Google Scholar] [CrossRef]
- Smith, H.G.; Dragovich, D. Interpreting sediment delivery processes using suspended sediment-discharge hysteresis patterns from nested upland catchments, south-eastern Australia. Hydrol. Process. 2009, 23, 2415–2426. [Google Scholar] [CrossRef]
- Lu, J.F. Effect of basin morphology on sediment yield in the middle reaches of the Yellow River. Geogr. Res. 2002, 21, 171–178. (In Chinese) [Google Scholar] [CrossRef]
- Fan, X.L.; Shi, C.X.; Shao, W.W.; Zhou, Y.Y. The suspended sediment dynamics in the Inner-Mongolia reaches of the upper Yellow River. Catena 2013, 109, 72–82. [Google Scholar] [CrossRef]
- Fang, H.Y.; Cai, Q.G.; Chen, H.; Li, Q.Y. Temporal changes in suspended sediment transport in a gullied loess basin: The lower Chabagou Creek on the Loess Plateau in China. Earth Surf. Process. Landf. 2008, 33, 1977–1992. [Google Scholar] [CrossRef]
- Sun, L.Y.; Yan, M.; Cai, Q.G.; Fang, H.Y. Suspended sediment dynamics at different time scales in the Loushui River, south-central China. Catena 2016, 136, 152–161. [Google Scholar] [CrossRef]
- Vercruysse, K.; Grabowski, R.C.; Rickson, R.J. Suspended sediment transport dynamics in rivers: Multi-scale drivers of temporal variation. Earth Sci. Rev. 2017, 166, 38–52. [Google Scholar] [CrossRef]
- Oeurng, C.; Sauvage, S.; Sanchez-Perez, J.M. Dynamics of suspended sediment transport and yield in a large agricultural catchment, southwest France. Earth Surf. Process. Landf. 2010, 35, 1289–1301. [Google Scholar] [CrossRef]
- An, C.H.; Lu, J.; Qian, Y.; Luo, Q.S.; Cui, Z.H. Spatial-temporal distribution characteristic and course of sedimentation in the Ningxia-Inner Mongolia reaches of the Yellow River. J. Hydraul. Eng. 2018, 49, 195–206. (In Chinese) [Google Scholar] [CrossRef]
- Pan, B.T.; Pang, H.L.; Zhang, D.; Guan, Q.Y.; Wang, L.; Li, F.Q.; Guan, W.Q.; Cai, A.; Sun, X.Z. Sediment grain-size characteristics and its source implication in the Ningxia-Inner Mongolia sections on the upper reaches of the Yellow River. Geomorphology 2015, 246, 255–262. [Google Scholar] [CrossRef]
- Ouyang, C.B.; Wang, W.L.; Tian, Y.; Tian, S.M. Evaluation on the variation of water-sediment and human activities in the He-Long Reach of the Yellow River over the past 60 years. J. Sediment Res. 2016, 4, 55–61. (In Chinese) [Google Scholar] [CrossRef]
- Liu, J.X.; Li, Z.G.; Zhang, X.P.; Li, R.; Liu, X.C.; Zhang, H.Y. Responses of vegetation cover to the Grain for Green Program and their driving forces in the He-Long region of the middle reaches of the Yellow River. J. Arid Land 2013, 5, 511–520. [Google Scholar] [CrossRef]
- Zhang, J.P.; Zhao, Y.; Ding, Z.H. Research on the Relationships between rainfall and meteorological yield in irrigation district. Water Resour. Manag. 2014, 28, 1689–1702. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, G.Q.; Li, Z.B.; Li, P. Experimental study on slope runoff, erosion and sediment under different vegetation types. Water Resour. Manag. 2014, 28, 2415–2433. [Google Scholar] [CrossRef]
- Hu, J.F.; Zhao, G.J.; Mu, X.M.; Tian, P.; Gao, P.; Sun, W.Y. Quantifying the impacts of human activities on runoff and sediment load changes in a Loess Plateau catchment, China. J. Soils Sediments 2019, 19, 3866–3880. [Google Scholar] [CrossRef]
- Guo, W.X.; Li, Y.; Wang, H.X.; Cha, H.F. Temporal variations and influencing factors of river runoff and sediment regimes in the Yangtze River, China. Desalin. Water Treat. 2020, 174, 258–270. [Google Scholar] [CrossRef]
- Aich, V.; Zimmermann, A.; Elsenbeer, H. Quantification and interpretation of suspended-sediment discharge hysteresis patterns: How much data do we need? Catena 2014, 122, 120–129. [Google Scholar] [CrossRef]
- Syvitski, J.P.; Morehead, M.D.; Bahr, D.B.; Mulder, T. Estimating fluvial sediment transport: The rating parameters. Water Resour. Res. 2000, 36, 2747–2760. [Google Scholar] [CrossRef]
- Zhang, J.P.; Li, H.B.; Shi, X.X.; Hong, Y. Wavelet-nonlinear cointegration prediction of irrigation water in the irrigation district. Water Resour. Manag. 2019, 33, 2941–2954. [Google Scholar] [CrossRef]
- Engle, R.F.; Granger, C.W.J. Cointegration and error correction: Representation, estimation and testing. Econometrica 1987, 55, 251–276. [Google Scholar] [CrossRef]
- Zhang, J.P.; Zhao, Y.; Xiao, W.H. Multi-resolution cointegration prediction for runoff and sediment load. Water Resour. Manag. 2015, 29, 3601–3613. [Google Scholar] [CrossRef]
- Zhang, J.P.; Li, Y.Y.; Zhao, Y.; Hong, Y. Wavelet-cointegration prediction of irrigation water in the irrigation district. J. Hydrol. 2017, 544, 343–351. [Google Scholar] [CrossRef]
- Zhao, G.J.; Tian, P.; Mu, X.M.; Jiao, J.Y.; Wang, F.; Gao, P. Quantifying the impact of climate variability and human activities on streamflow in the middle reaches of the Yellow River basin, China. J. Hydrol. 2014, 519, 387–398. [Google Scholar] [CrossRef]
- Peng, J.; Chen, S.L.; Dong, P. Temporal variation of sediment load in the Yellow River basin, China, and its impacts on the lower reaches and the river delta. Catena 2010, 83, 135–147. [Google Scholar] [CrossRef]
- Wang, X.J.; Engel, B.; Yuan, X.M.; Yuan, P.X. Variation analysis of streamflows from 1956 to 2016 along the Yellow River, China. Water 2018, 10, 1123. [Google Scholar] [CrossRef]
- Johansen, S. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Leybourne, S.; Kim, T.H.; Newbold, P. A more powerful modification of Johansen’s cointegration tests. Appl. Econ. 2008, 40, 725–729. [Google Scholar] [CrossRef]
- Haug, A.A.; Basher, S.A. Linear or nonlinear cointegration in the purchasing power parity relationship? Appl. Econ. 2011, 43, 185–196. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Zhang, L.P.; Cao, F.L.; Song, X.Y. Annual runoff forecasting research based on the theory of cointegration and error correction model. Wuhan Univ. Eng. Sci. 2006, 39, 6–9. (In Chinese) [Google Scholar] [CrossRef]
- Hurst, H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–779. [Google Scholar]
- Liu, D.H.; Zhang, S.Y. Nonlinear error correction model and forecasting based on wavelet neural networks. Control Decis. 2006, 21, 1114–1118. (In Chinese) [Google Scholar] [CrossRef]
- Asselman, N.E.M. Fitting and interpretation of sediment rating curves. J. Hydrol. 2000, 234, 228–248. [Google Scholar] [CrossRef]
- Hassanzadeh, H.; Bajestan, M.S.; Paydar, G.R. Performance evaluation of correction coefficients to optimize sediment rating curves on the basis of the Karkheh dam reservoir hydrography, West Iran. Arab. J. Geosci. 2018, 11, 9. [Google Scholar] [CrossRef]
- Fan, X.; Shi, C.; Zhou, Y.; Shao, W. Sediment rating curves in the Ningxia-Inner Mongolia reaches of the upper Yellow River and their implications. Quat. Int. 2012, 282, 152–162. [Google Scholar] [CrossRef]
- Gao, P.; Mu, X.M.; Wang, F.; Li, R. Changes in streamflow and sediment discharge and the response to human activities in the middle reaches of the Yellow River. Hydrol. Earth Syst. Sci. 2011, 15, 1–10. [Google Scholar] [CrossRef]
- Hashimoto, H.; Takaoka, H.; Ikematsu, S. Hyper-concentrated flows in tributaries of the middle Yellow River. Monit. Simul. Prev. Remediat. Dense Debris Flows 2006, 90, 353–362. [Google Scholar] [CrossRef]
- Wang, S.J.; Yan, M.; Yan, Y.X.; Shi, C.X.; He, L. Contributions of climate change and human activities to the changes in runoff increment in different sections of the Yellow River. Quat. Int. 2012, 282, 66–77. [Google Scholar] [CrossRef]
- Moosa, I.A.; Vaz, J.J. Cointegration, error correction and exchange rate forecasting. J. Int. Financ. Mark. Inst. Money 2016, 44, 21–34. [Google Scholar] [CrossRef]
- Christoffersen, P.F.; Diebold, F.X. Contegration and long-horizon forecasting. J. Bus. Econ. Stat. 1998, 16, 450–458. [Google Scholar]
- Jacobson, T.; Jansson, P.; Verdin, A.; Warne, A. Monetary policy analysis and inflation targeting in a small open economy: A VAR approach. J. Appl. Econom. 2001, 16, 487–520. [Google Scholar] [CrossRef]
- Hu, J.F.; Gao, P.; Mu, X.M.; Zhao, G.J.; Sun, W.Y.; Li, P.F.; Zhang, L.M. Runoff-sediment dynamics under different flood patterns in a Loess Plateau catchment, China. Catena 2019, 173, 234–245. [Google Scholar] [CrossRef]
- Xu, J.X. Optimal grain-size composition of hyperconcentrated flows in high-intensity coarse sediment producing area of the middle Yellow River basin and its implications in geomorphology. J. Sediment Res. 1999, 5, 3–5. [Google Scholar] [CrossRef]
- Xu, J.X. The optimal grain size composition of suspended sediment of hyperconcentrated flow in the middle Yellow River. Int. J. Sediment Res. 1997, 12, 170–176. [Google Scholar]
- Xu, J.X. Implication of relationships among suspended sediment size, water discharge and suspended sediment concentration: The Yellow River basin, China. Catena 2002, 49, 289–307. [Google Scholar] [CrossRef]
- Xu, J.X. Zonal distribution of river erosion and sediment yield in China. Chin. Sci. Bull. 1994, 39, 1356–1361. [Google Scholar]
- Fang, H.; Li, Q.; Cai, Q.; Liao, Y. Spatial scale dependence of sediment dynamics in a gullied rolling loess region on the Loess Plateau in China. Environ. Earth Sci. 2011, 64, 693–705. [Google Scholar] [CrossRef]
- Xu, J.X.; Cheng, D.S. Relation between the erosion and sedimemtation zones in the Yellow River, China. Geomorphology 2002, 48, 365–382. [Google Scholar] [CrossRef]
- Li, B.Q.; Liang, Z.M.; Zhang, J.Y.; Wang, G.Q.; Zhao, W.M.; Zhang, H.Y.; Wang, J.; Hu, Y.M. Attribution analysis of runoff decline in a semiarid region of the Loess Plateau, China. Theor. Appl. Climatol. 2018, 131, 845–855. [Google Scholar] [CrossRef]
- Miao, C.Y.; Shi, W.; Chen, X.H.; Yang, L. Spatio-temporal variability of streamflow in the Yellow River: Possible causes and implications. Hydrol. Sci. J. 2012, 57, 1355–1367. [Google Scholar] [CrossRef][Green Version]
- Hou, S.H.; Wang, P.; Chu, W.B. Actions of the Longyangxia and Liujiaxia Reservoirs on the Runoff and Sediment of Yellow River; Yellow River Conservancy Press: Zhengzhou, China, 2005. [Google Scholar]
- Gentile, F.; Bisantino, T.; Corbino, R.; Milillo, F.; Romano, G.; Liuzzi, G.T. Monitoring and analysis of suspended sediment transport dynamics in the Carapelle torrent (Southern Italy). Catena 2010, 80, 1–8. [Google Scholar] [CrossRef]
- Fang, N.F.; Shi, Z.H.; Li, L.; Jiang, C. Rainfall, runoff, and suspended sediment delivery relationships in a small agricultural watershed of the Three Gorges area, China. Geomorphology 2011, 135, 158–166. [Google Scholar] [CrossRef]
- Qian, N.; Wan, Z.H. Mechanics of Sediment Transport; Science Press: Beijing, China, 1983. [Google Scholar]
- Xu, J.X. Erosion caused by hyperconcentrated flow on the Loess Plateau of China. Catena 1999, 36, 1–19. [Google Scholar]
- Wang, Y.J.; Wu, B.S.; Zhong, D.Y. Adjustment in the main-channel geometry of the lower Yellow River before and after the operation of the Xiaolangdi Reservoir from 1986 to 2015. J. Geogr. Sci. 2020, 30, 468–486. [Google Scholar] [CrossRef]
- Yao, W.Y.; Jiao, P. The change of water and sediment in the Yellow River and its research prospect. Soil Water Conserv. China 2016, 9, 55–63. (In Chinese) [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.J.; Liang, W.; Liu, Y.; Wang, Y.F. Driving forces of changes in the water and sediment relationship in the Yellow River. Sci. Total Environ. 2017, 576, 453–461. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, J.; She, D.X. Spatiotemporal variation and statistical characteristic of extreme precipitation in the middle reaches of the Yellow River Basin during 1960–2013. Theor. Appl. Climatol. 2019, 135, 391–408. [Google Scholar] [CrossRef]
- Dang, S.Z.; Yao, M.F.; Liu, X.Y.; Dong, G.T. Variations and statistical probability characteristic analysis of extreme precipitation in the Hekouzhen-Longmen Region of the Yellow River, China. Asia Pac. J. Atmos. Sci. 2019, 55, 641–655. [Google Scholar] [CrossRef]
- Wenyi, Y.; Dachuan, R.; Jiangnan, C. Recent changes in runoff and sediment regimes and future projections in the Yellow River basin. Adv. Water Sci. 2013, 24, 607–616. [Google Scholar] [CrossRef]
- Zhao, G.J.; Mu, X.M.; Tian, P.; Wang, F.; Gao, P. The variation of streamflow and sediment flux in the middle reaches of Yellow River over the past 60 years and the influencing factors. Resour. Sci. 2012, 34, 1070–1078. (In Chinese) [Google Scholar]
- Mao, Z.P.; Peng, W.Q.; Zhou, H.D. Study on the influence of operation mode of Sanmenxia rservoir on wetland ecosystem in reservoir area. Water Resour. Dev. Res. 2005, 9, 12–17. (In Chinese) [Google Scholar] [CrossRef]
Sequences | Type | Null Hypothesis | ADF Value | %5 Threshold | P Value of ADF Statistic | P Value of Trend Item | Conclusion |
---|---|---|---|---|---|---|---|
SL | Trend, intercept | exist unit root | −5.49 | −3.52 | 0.0003 | 0.0004 | Trendy, stationary |
runoff | Trend, intercept | exist unit root | −4.78 | −3.52 | 0.0020 | 0.0035 | Trendy, stationary |
SSC | Trend, intercept | exist unit root | −5.49 | −3.52 | 0.0003 | 0.0002 | Trendy, stationary |
D(SL) 1 | none | exist unit root | −8.39 | −1.95 | 0.0000 | — | stationary |
D(runoff) | none | exist unit root | −8.23 | −1.95 | 0.0000 | — | stationary |
D(SSC) | none | exist unit root | −8.00 | −1.95 | 0.0000 | — | stationary |
Lag | AIC | SC | HQ |
---|---|---|---|
1 | −6.11 | −5.72 | −5.97 |
2 | −6.00 | −5.22 | −5.72 |
3 | −5.94 | −4.78 | −5.53 |
4 | −6.05 | −4.49 | −5.49 |
5 | −5.98 | −4.04 | −5.29 |
6 | −6.10 | −3.77 | −5.27 |
Trace Test | Maximum Eigenvalue | |||||
---|---|---|---|---|---|---|
Hypothesized No. of CE(s) (Cointegration Equation(s)) | Trace Statistic | 0.05 Critical Value | p Value | Max-Eigen Statistic | 0.05 Critical Value | p Value |
None | 58.12 | 29.80 | 0.0000 | 30.84 | 21.13 | 0.0016 |
At most 1 | 27.29 | 15.49 | 0.0006 | 16.80 | 14.26 | 0.0194 |
At most 2 | 10.49 | 3.84 | 0.0012 | 10.49 | 3.84 | 0.0012 |
Year | Measured Value | OLS(Three Variables) 1 | ECM1(Three Variables) 2 | OLS(SL, SSC) 3 | ECM2(SL, SSC) 4 | OLS(SL, Runoff) | ECM3(SL, Runoff) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Calculated Value | Re5 | Calculated Value | Re | Calculated Value | Re | Calculated Value | Re | Calculated Value | Re | Calculated Value | Re | ||
2001 | 0.20 | 0.18 | 9.12% | 0.18 | 9.92% | 0.17 | 14.66% | 0.18 | 10.84% | 0.23 | 13.57% | 0.20 | 0.36% |
2002 | 0.27 | 0.33 | 24.29% | 0.31 | 14.40% | 0.37 | 35.65% | 0.36 | 33.45% | 0.25 | 6.72% | 0.25 | 7.46% |
2003 | 0.28 | 0.29 | 3.98% | 0.28 | 0.61% | 0.32 | 13.02% | 0.31 | 10.24% | 0.22 | 20.43% | 0.23 | 18.64% |
2004 | 0.24 | 0.28 | 17.26% | 0.30 | 23.62% | 0.28 | 17.33% | 0.28 | 16.90% | 0.27 | 14.64% | 0.30 | 24.69% |
2005 | 0.40 | 0.45 | 12.57% | 0.43 | 6.74% | 0.48 | 18.21% | 0.46 | 13.19% | 0.37 | 8.91% | 0.37 | 9.65% |
Year | Measured Value | OLS(Runoff, SSC) | ECM4(Runoff, SSC) | ||
---|---|---|---|---|---|
Calculated Value | Re | Calculated Value | Re | ||
2001 | 113.28 | 100.65 | 11.15% | 110.70 | 2.28% |
2002 | 122.75 | 144.66 | 17.85% | 144.58 | 17.78% |
2003 | 115.57 | 135.14 | 16.93% | 128.31 | 11.02% |
2004 | 127.61 | 127.75 | 0.11% | 121.47 | 4.81% |
2005 | 150.21 | 164.64 | 9.61% | 159.32 | 6.07% |
Sequence | SL | Runoff | SSC |
---|---|---|---|
Longmen | 0.66 | 0.71 | 0.63 |
Tongguan | 0.68 | 0.92 | 0.55 |
Huanyuankou | 0.79 | 0.91 | 0.89 |
Sequence | SL | Runoff | SSC |
---|---|---|---|
Longmen | 1.34 | 1.29 | 1.37 |
Tongguan | 1.32 | 1.08 | 1.45 |
Huanyuankou | 1.21 | 1.09 | 1.11 |
Longmen | Tongguan | Huayuankou | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||||||||||||||
0.864 | −0.706 | 1.082 | −0.375 | 2.333 | −1.499 | 1.118 | 0.290 | 0.815 | 0.260 | 1.443 | −0.336 | −0.649 | −1.037 | 0.789 | 0.621 | 0.817 | 1.451 |
1.968 | −0.156 | −0.829 | −2.087 | 1.244 | −1.579 | 0.780 | 0.401 | −0.921 | −0.368 | −1.209 | −0.542 | 0.328 | −1.573 | 0.674 | 0.584 | −0.230 | −0.372 |
0.144 | −1.121 | −1.194 | 0.974 | 0.716 | −0.403 | 0.733 | −0.447 | −1.149 | −0.343 | −2.014 | 0.250 | 1.483 | −0.354 | 0.206 | −1.759 | 0.245 | 0.943 |
−0.626 | −0.530 | 1.138 | 2.009 | −1.166 | −2.042 | 0.015 | −2.176 | 0.292 | −2.253 | −0.493 | −0.262 | −0.942 | −0.335 | −0.504 | −0.224 | −0.733 | 0.635 |
1.849 | −0.086 | −0.373 | 0.544 | 0.074 | 0.642 | −1.064 | −1.222 | −1.240 | −0.893 | 0.704 | −1.816 | −0.870 | −0.542 | −0.531 | −0.459 | −2.289 | −1.505 |
2.918 | −0.011 | 0.231 | −0.782 | −1.112 | −0.231 | 0.460 | 0.280 | 0.971 | 1.397 | −0.803 | 0.083 | −0.366 | −0.151 | −2.844 | −2.180 | 0.537 | 0.177 |
1.549 | −0.269 | 0.520 | 0.805 | −1.026 | 0.815 | −1.294 | 2.442 | −1.363 | −0.628 | −0.810 | −2.731 | 0.417 | −1.048 | −1.315 | −1.127 | −1.479 | 0.230 |
−0.974 | 1.024 | 1.101 | −1.680 | −1.136 | −1.361 | 1.557 | 0.761 | 0.564 | 0.357 | −1.619 | 0.238 | −0.659 | 0.559 | 1.042 | −0.525 | 2.584 | 0.416 |
Longmen | Tongguan | Huayuankou | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.105 | 0.645 | 0.427 | 1.165 | 0.834 | 0.515 | 0.149 | 0.382 | −0.903 | −1.331 | 1.037 | 0.024 | −0.885 | 0.437 | −1.881 |
−0.520 | 0.441 | −0.347 | 1.136 | 0.117 | 0.178 | −0.376 | −0.832 | −0.189 | 0.174 | 1.134 | −0.573 | −0.715 | 0.467 | −0.557 |
−0.199 | 0.566 | −1.803 | −0.207 | −0.273 | 0.095 | −1.193 | 1.198 | −0.325 | 0.854 | −1.243 | 0.752 | −1.895 | −1.593 | −1.623 |
−1.799 | 1.835 | −1.121 | 0.756 | −2.132 | 0.415 | 0.675 | 0.891 | 2.124 | 0.351 | −0.801 | −0.670 | −1.117 | 1.222 | −1.236 |
−0.860 | 0.521 | 0.784 | 1.630 | 0.573 | 1.035 | −0.287 | −0.074 | −0.606 | −0.776 | 0.159 | −0.298 | 0.618 | 0.197 | −0.217 |
0.717 | 0.388 | 0.742 | −0.847 | −0.377 | 5.803 | 0.004 | 0.267 | −0.325 | −1.547 | −0.380 | −0.750 | −1.139 | −1.693 | −0.373 |
−0.065 | −0.095 | −1.098 | −0.540 | −1.677 | −0.454 | −0.715 | −0.848 | −1.614 | 2.228 | 1.159 | 0.108 | 1.883 | 1.297 | −0.327 |
0.839 | −1.327 | 0.556 | −1.702 | −1.024 | 0.953 | −1.569 | −0.533 | −0.644 | 2.832 | 1.442 | 1.056 | 0.529 | −1.654 | 0.080 |
Longmen | Tongguan | Huayuankou | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
−0.125 | −0.098 | −1.171 | −0.048 | 1.304 | −0.949 | 0.326 | −0.875 | 3.251 | 0.736 | 0.877 | 0.942 | 2.041 | −0.922 | 0.627 |
0.362 | −0.250 | 0.513 | 1.592 | 2.143 | −0.462 | −0.445 | −1.033 | −0.258 | 1.316 | 1.095 | −0.836 | 0.860 | −0.940 | −0.872 |
−0.270 | 0.773 | −1.944 | 1.065 | −0.892 | 3.345 | −0.269 | 1.797 | −0.590 | −4.218 | 0.258 | −0.438 | 0.795 | 0.403 | −0.477 |
−0.378 | −0.439 | 0.942 | 0.218 | −1.966 | −0.697 | 0.863 | 1.900 | −0.271 | −0.336 | 0.543 | 2.995 | −2.532 | −2.595 | −0.096 |
0.028 | −0.773 | 0.395 | −1.320 | −0.126 | −0.522 | −0.733 | −1.514 | 1.362 | −0.208 | −0.686 | −0.608 | 0.792 | 0.255 | −0.518 |
1.396 | 0.411 | −0.136 | 0.829 | 1.435 | 0.819 | 1.251 | 2.607 | 0.208 | 0.701 | −1.107 | 1.934 | 0.633 | −0.831 | −0.369 |
0.001 | 0.002 | 1.051 | 0.547 | −0.198 | 0.354 | 0.851 | 1.702 | 0.758 | −0.443 | −0.356 | 1.048 | −0.484 | 1.163 | 1.099 |
−0.783 | 1.215 | 0.053 | −0.971 | −0.703 | 0.896 | 0.270 | 0.224 | −0.974 | 0.352 | 0.198 | −0.546 | 0.940 | −0.958 | 0.707 |
Longmen | Tongguan | Huayuankou | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.543 | −0.946 | −1.298 | 0.687 | 4.025 | 1.027 | 0.067 | 0.492 | −1.086 | 0.122 | −1.789 | 0.697 | −0.055 | 0.511 | −0.642 |
1.366 | −1.012 | 1.036 | 1.613 | 3.357 | −1.074 | 0.308 | −0.607 | −0.278 | 0.676 | −0.146 | 0.847 | −0.950 | −0.704 | −1.174 |
0.767 | −2.963 | 1.494 | −2.682 | −1.007 | 1.759 | 0.614 | 0.267 | 2.839 | 0.425 | 0.261 | 0.518 | 1.122 | 1.271 | −0.696 |
−0.395 | 1.472 | 1.331 | 0.753 | 3.346 | −0.395 | −1.461 | −0.532 | −1.080 | 1.297 | 0.528 | 0.087 | −1.204 | 0.120 | −1.374 |
0.174 | 0.320 | 1.211 | 0.578 | 1.204 | −1.163 | −0.379 | 1.314 | 0.488 | −3.237 | 0.799 | 0.832 | −0.547 | −2.036 | 0.062 |
−0.716 | −0.818 | −2.101 | −1.226 | 0.619 | −0.586 | −1.913 | −0.721 | −1.118 | −0.864 | 0.235 | −0.885 | −1.124 | −1.041 | 0.485 |
0.904 | 1.318 | 0.550 | 0.514 | 1.208 | 1.010 | −0.428 | −0.285 | 1.264 | 0.710 | −0.958 | 0.113 | 0.250 | −2.124 | −0.289 |
−1.062 | −1.794 | 0.918 | 0.145 | −0.501 | 1.009 | 1.021 | −0.848 | 0.308 | −0.010 | −0.590 | 1.445 | 0.792 | 0.802 | 0.124 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Li, D.; Yuan, X.; Qi, X.; Zhang, P. Analysis of Runoff-Sediment Cointegration and Uncertainty Relations at Different Temporal Scales in the Middle Reaches of the Yellow River, China. Water 2020, 12, 2589. https://doi.org/10.3390/w12092589
Wang X, Li D, Yuan X, Qi X, Zhang P. Analysis of Runoff-Sediment Cointegration and Uncertainty Relations at Different Temporal Scales in the Middle Reaches of the Yellow River, China. Water. 2020; 12(9):2589. https://doi.org/10.3390/w12092589
Chicago/Turabian StyleWang, Xiujie, Dandan Li, Ximin Yuan, Xiling Qi, and Pengfei Zhang. 2020. "Analysis of Runoff-Sediment Cointegration and Uncertainty Relations at Different Temporal Scales in the Middle Reaches of the Yellow River, China" Water 12, no. 9: 2589. https://doi.org/10.3390/w12092589
APA StyleWang, X., Li, D., Yuan, X., Qi, X., & Zhang, P. (2020). Analysis of Runoff-Sediment Cointegration and Uncertainty Relations at Different Temporal Scales in the Middle Reaches of the Yellow River, China. Water, 12(9), 2589. https://doi.org/10.3390/w12092589