Research on Livestock Carrying Capacity of Arid Pastoral Areas Based on Dynamic Water–Forage–Livestock Balance in OtogBanner, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. LCCModel Based on Dynamic FLB
2.3.2. LCCModel Based on Dynamic WFLB
3. Results
3.1. Analysis of Livestock Carrying Capacity in Pastoral Areas
3.2. Analysis of Stocking Capacity Balance in Pastoral Area
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, J.P.; Zhang, L.B.; Liu, W.L.; Qi, Y.; Wo, X. Livestock-carrying capacity and overgrazing status of alpine grassland in the Three-River Headwaters region, China. J. Geogr. Sci. 2014, 24, 303–312. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Liu, X.; Qiao, Q. Research on Sustainable Development in an Alpine Pastoral Area Based on Equilibrium Analysis Between the Grassland Yield, Livestock Carrying Capacity, and Animal Husbandry Population. Sustainability 2019, 11, 4659. [Google Scholar] [CrossRef] [Green Version]
- Papanastasis, V.P. Restoration of Degraded Grazing Lands through Grazing Management: Can It Work? Restor. Ecol. 2009, 17, 441–445. [Google Scholar] [CrossRef]
- Nandintsetseg, B.; Shinoda, M.; Erdenetsetseg, B. Contributions of multiple climate hazards and overgrazing to the 2009/2010 winter disaster in Mongolia. Nat. Hazards 2018, 92, 109–126. [Google Scholar] [CrossRef]
- Briske, D.D.; Zhao, M.L.; Han, G.D.; Xiu, C.B.; Kemp, D.R.; Willms, W.; Havstad, K.; Kang, L.; Wang, Z.W.; Wu, J.G.; et al. Strategies to alleviate poverty and grassland degradation in Inner Mongolia: Intensification vs. production efficiency of livestock systems. J. Environ. Manag. 2015, 152, 177–182. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, Z.; Zhang, Y.; Jing, H.; Gao, S.; Fang, J. Does “Forage-Livestock Balance” policy impact ecological efficiency of grasslands in China? J. Clean. Prod. 2019, 207, 343–349. [Google Scholar] [CrossRef]
- Cao, Y.N.; Wu, J.S.; Zhang, X.Z.; Niu, B.; Li, M.; Zhang, Y.J.; Wang, X.T.; Wang, Z.P. Dynamic forage-livestock balance analysis in alpine grasslands on the Northern Tibetan Plateau. J. Environ. Manag. 2019, 238, 352–359. [Google Scholar] [CrossRef]
- Fang, J.; Bai, Y.; Li, L.; Jiang, G.; Huang, J.; Huang, Z.; Zhang, W.; Gao, S. Scientific basis and practical ways for sustainable development of Chinas pasture regions. Chin. Sci. Bull. 2016, 61, 155–164. [Google Scholar]
- Tian, Y.H.; Liu, Y.Q.; Jin, J.J. Effect of Irrigation Schemes on Forage Yield, Water Use Efficiency, and Nutrients in Artificial Grassland under Arid Conditions. Sustainability 2017, 9, 2035. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Li, H.; Wang, J.; Zheng, H.; Cao, X.; Tong, C. Optimal water and land resource allocation in pastoral areas based on a water-land forage-livestock balance: A case study of Otog Front Banner, Inner Mongolia, China. Environ. Sci. Pollut. Res. 2020, 27, 10328–10341. [Google Scholar] [CrossRef]
- Chen, Y.N.; Li, B.F.; Li, Z.; Li, W.H. Water resource formation and conversion and water security in arid region of Northwest China. J. Geogr. Sci. 2016, 26, 939–952. [Google Scholar] [CrossRef] [Green Version]
- Xu, M. A review of grassland carrying capacity: Perspective and dilemma for research in China on “forage-livestock balance”. Acta Prataculturae Sin. 2014, 23, 321–329. [Google Scholar]
- Gu, X.Y.; Jia, Z.R.; Yang, Y.Y.; Wu, D.S.; Li, J.P. Research on Dynamic Rotational Grazing Assignment Model based on Grass Resource Leveling. In Proceedings of the 7th International Conference on Information Technology and Quantitative Management, Granada, Spain, 5–6 November 2019; HerreraViedma, E., Shi, Y., Berg, D., Tien, J., Cabrerizo, F.J., Li, J., Eds.; Elsevier Science Bv: Amsterdam, The Netherlands, 2019; Volume 162, pp. 696–703. [Google Scholar]
- Ebong, G.A.; Ettesam, E.S.; Dan, E.U. Impact of Abattoir Wastes on Trace Metal Accumulation, Speciation, and Human Health–Related Problems in Soils within Southern Nigeria. Air Soil Water Res. 2020, 13. [Google Scholar] [CrossRef] [Green Version]
- Meshesha, D.T.; Moahmmed, M.; Yosuf, D. Estimating carrying capacity and stocking rates of rangelands in Harshin District, Eastern Somali Region, Ethiopia. Ecol. Evol. 2019, 9, 13309–13319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohmann, D.; Tietjen, B.; Blaum, N.; Joubert, D.F.; Jeltsch, F. Shifting thresholds and changing degradation patterns: Climate change effects on the simulated long-term response of a semi-arid savanna to grazing. J. Appl. Ecol. 2012, 49, 814–823. [Google Scholar] [CrossRef]
- Derry, J.F.; Boone, R.B. Grazing systems are a result of equilibrium and non-equilibrium dynamics. J. Arid. Environ. 2010, 74, 307–309. [Google Scholar] [CrossRef]
- Godde, C.; Dizyee, K.; Ash, A.; Thornton, P.; Sloat, L.; Roura, E.; Henderson, B.; Herrero, M. Climate change and variability impacts on grazing herds: Insights from a system dynamics approach for semi-arid Australian rangelands. Glob. Chang. Biol. 2019, 25, 3091–3109. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.R.; Li, Z.H.; Yuan, Y.W.; Li, Z.H.; Yin, F. Analyses on the Changes of Grazing Capacity in the Three-River Headwaters Region of China under Various Climate Change Scenarios. Adv. Meteorol. 2013, 2013, 951261. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Yu, Z.; Yang, Q.; Wan, H.; Huang, J.; Ji, B.; Li, A. Mechanisms regulating the productivity and stability of artificial grasslands in China: Issues, progress, and prospects. Chin. Sci. Bull. 2018, 63, 511–520. [Google Scholar]
- Wang, H.; Tian, Y.; Huang, W.; Xiao, S. Analyzing the impact of irrigation quantity on biomass and water use efficiency of main grasses in artificial grassland in Inner Mongolia. Acta Ecol. Sin. 2015, 35, 3225–3232. [Google Scholar]
- Villarruel-Sahagun, L.; Troyo-Dieguez, E.; Gutierrez-Ruacho, O.G.; Nieto-Garibay, A.; Esqueda, M.; Ffolliot, P.; Murillo-Amador, B.; Solis-Garza, G. Hydro-environmental assesment and grazing capacity valoration by thermo-pluviometrics indicators. Rev. Mex. Cienc. Pecu. 2014, 5, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Halik, U.; Xinhua, G.O.U.; Shuzheng, L.U.O. Environmental Problems Caused by Excessive Exploitation of Groundwater at Chaiwopu Source in Xinjiang. Res. Soil Water Conserv. 2008, 15, 132–135. [Google Scholar]
- Xu, D.P.; Liu, Y.H.; Li, T.S.; Wu, P.; Chen, Y.S.; Runa, A. Pattern of agricultural and pastoral development under water resource constraints in semi-arid areas: A case study of Tongliao, Inner Mongolia. In Proceedings of the 4th International Conference on Water Resource and Environment, Kaohsiung City, Taiwan, 17–21 July 2018; Li, P., Ed.; Iop Publishing Ltd.: Bristol, UK, 2018; Volume 191. [Google Scholar]
- Peukert, S.; Griffith, B.A.; Murray, P.J.; Macleod, C.J.A.; Brazier, R.E. Intensive Management in Grasslands Causes Diffuse Water Pollution at the Farm Scale. J. Environ. Qual. 2014, 43, 2009–2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.F.; Wang, S.X.; Zhou, Y.; Wang, F.T.; Li, W.J.; Liu, W.L. Regionalization and Spatiotemporal Variation of Drought in China Based on Standardized Precipitation Evapotranspiration Index (1961–2013). Adv. Meteorol. 2015, 2015, 950262. [Google Scholar] [CrossRef] [Green Version]
- Godde, C.M.; Garnett, T.; Thornton, P.K.; Ash, A.J.; Herrero, M. Grazing systems expansion and intensification: Drivers, dynamics, and trade-offs. Glob. Food Secur.-Agric.Policy 2018, 16, 93–105. [Google Scholar] [CrossRef]
- Dong, S.; Yang, M.; Ren, J.; Shang, Z.; Zhao, X.; Dong, Q.; Liu, W.; Renqin, D.Z.; Dou, S.; Zhou, X.; et al. Sustainable grassland management based on grazing system unit: Concepts and models. Pratacultural Sci. 2020, 37, 403–412. [Google Scholar]
- Qin, L.; Song, X.; Feng, X. Forage-livestock dynamic balance of pasturing area based on rotational grazing theory in northern slope of Qilian Mountains. Trans. Chin. Soc. Agric. Eng. 2019, 35, 256–264. [Google Scholar]
- Chen, Q. Key pasture, seasonal grazing and sustainable development of grassland animal husbandry production in China. Acta Pratacult. Sin. 2005, 14, 29–34. [Google Scholar]
- Habuer; Chang, J.; Xi, L. League grassland production monitoring results analysis-take sunitezuo banner as the example. J. Inn. Mong. Agric. Univ. 2018, 39, 37–43. [Google Scholar]
- Swift, E.D.M. Stability of African Pastoral Ecosystems: Alternate Paradigms and Implications for Development. J. Range Manag. 1988, 41, 450–459. [Google Scholar]
- Vetter, S. Rangelands at equilibrium and non-equilibrium: Recent developments in the debate. J. Arid. Environ. 2005, 62, 321–341. [Google Scholar] [CrossRef]
- Quaas, M.F.; Baumgartner, S. Optimal grazing management rules in semi-arid rangelands with uncertain rainfall. Nat. Resour. Model. 2012, 25, 364–387. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, X. Contrastive Analysis of Optimum Utilization of Grassland Resources in Xinyuan County. Xinjiang Agric. Sci. 2015, 52, 366–370. [Google Scholar]
- Hou, X. Priority Approaches, Techniques and Models to Sustainably Tap the Grassland Productivity Potential. Sci. Agric. Sin. 2016, 49, 3229–3238. [Google Scholar]
Water Resource Regionalization | Available Surface Water | Available Ground Water | Available Reclaimed Water | Available Water Supply | ||||
---|---|---|---|---|---|---|---|---|
25% | 50% | 75% | 25% | 50% | 75% | |||
I | 60.004 | 59.950 | 59.904 | 11.410 | 14.753 | 86.167 | 86.113 | 86.068 |
II | 11.271 | 9.229 | 7.503 | 40.468 | 1.924 | 53.663 | 51.620 | 49.894 |
III | 1.054 | 0.863 | 0.702 | 70.080 | 0.0 | 71.134 | 70.943 | 70.782 |
OtogBanner | 72.329 | 70.042 | 68.109 | 121.958 | 16.677 | 210.964 | 208.677 | 206.744 |
Water Resources Regionalization | Rangeland | Tame Grassland | |||||
---|---|---|---|---|---|---|---|
Temperate Steppe Type | Temperate Desert Steppe Type | Temperate Steppe Desert Type | Temperate Desert Type | Azonal Lowland MeadowType | Corn | Alfalfa | |
I | 0.0 | 38.4 | 30.3 | 3.7 | 1.8 | 4.5 | 1.4 |
II | 2.1 | 492.8 | 48.8 | 3.8 | 26.0 | 8.8 | 4.6 |
III | 10.1 | 391.9 | 48.7 | 2.7 | 26.5 | 5.0 | 0.7 |
OtogBanner | 12.2 | 923.1 | 127.8 | 10.2 | 54.4 | 18.4 | 6.7 |
Type of Rangeland | Productivity in the Warm Season (kg/hm2) | Productivity in the Cold Season (kg/hm2) | Utilization Rate of Rangeland |
---|---|---|---|
Temperate steppe type | 475.88 | 285.56 | 0.80 |
Temperate desert-steppe type | 440.00 | 263.96 | 0.72 |
Temperate steppe desert type | 400.08 | 240.00 | 0.64 |
Temperate desert type | 327.05 | 196.07 | 0.56 |
Azonal lowland meadow type | 436.52 | 283.79 | 0.99 |
Water Resources Regionalization | LCCbased on the Dynamic FLB Model (103 SU) | ||
---|---|---|---|
Rangeland Utilization Period | Tame Grassland Utilization Period | Theoretical Value | |
I | 99.2 | 321.6 | 99.2 |
II | 842.1 | 645.5 | 645.5 |
III | 708.1 | 345.0 | 345.0 |
OtogBanner | 1649.4 | 1312.1 | 1089.8 |
Water Resources Regionalization | LCC Based on the Dynamic WFLBmodel | |||
---|---|---|---|---|
Precipitation Frequency (%) | Developing Area of Tame Grassland (103 hm2) | Theoretical Livestock Carrying Capacity (103 SU) | Current Livestock Carrying Capacity (103 SU) | |
I | 25 | 4.2 | 136.9 | 136.9 |
50 | 3.7 | 99.2 | 99.2 | |
75 | 3.1 | 57.5 | 57.5 | |
II | 25 | 8.1 | 540.6 | 540.6 |
50 | 7.4 | 496.3 | 496.3 | |
75 | 6.7 | 447.2 | 447.2 | |
III | 25 | 14.2 | 954.5 | 345.0 |
50 | 14.7 | 708.2 | 345.0 | |
75 | 12.6 | 410.9 | 345.0 | |
OtogBanner | 25 | 26.5 | 1632.0 | 1022.5 |
50 | 25.9 | 1303.7 | 940.5 | |
75 | 22.4 | 915.5 | 849.7 |
Water Resource Regionalization | Stocking Rate (103 SU) | Theoretical LCC (103 SU) | Overload Rate (%) |
---|---|---|---|
I | 161.1 | 99.2 | 62.4 |
II | 677.3 | 645.5 | 4.9 |
III | 701.1 | 345.0 | 103.2 |
OtogBanner | 1539.5 | 1089.8 | 41.3 |
Water Resources Regionalization | Stocking Rate 103 SU) | Current LCC (103 SU) | Overload Rate of Livestock (%) | Overload Rate of Water Resource (%) | Overload Rate of Rangeland (%) | Overload Rate of Tame Grassland (%) |
---|---|---|---|---|---|---|
I | 161.1 | 136.9 | 17.7 | 24.8 | 7.6 | −49.9 |
II | 677.3 | 540.6 | 25.3 | 39.3 | −46.7 | 4.9 |
III | 701.1 | 345.0 | 103.2 | −60.7 | −34.4 | 103.2 |
OtogBanner | 1539.5 | 1022.5 | 50.6 | −16.8 | −38.2 | 17.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, L.; Song, X.; Wen, W.; Liu, X.; Liu, H. Research on Livestock Carrying Capacity of Arid Pastoral Areas Based on Dynamic Water–Forage–Livestock Balance in OtogBanner, China. Water 2020, 12, 2539. https://doi.org/10.3390/w12092539
Qin L, Song X, Wen W, Liu X, Liu H. Research on Livestock Carrying Capacity of Arid Pastoral Areas Based on Dynamic Water–Forage–Livestock Balance in OtogBanner, China. Water. 2020; 12(9):2539. https://doi.org/10.3390/w12092539
Chicago/Turabian StyleQin, Lin, Xiaoyu Song, Wang Wen, Xiaodi Liu, and Hui Liu. 2020. "Research on Livestock Carrying Capacity of Arid Pastoral Areas Based on Dynamic Water–Forage–Livestock Balance in OtogBanner, China" Water 12, no. 9: 2539. https://doi.org/10.3390/w12092539
APA StyleQin, L., Song, X., Wen, W., Liu, X., & Liu, H. (2020). Research on Livestock Carrying Capacity of Arid Pastoral Areas Based on Dynamic Water–Forage–Livestock Balance in OtogBanner, China. Water, 12(9), 2539. https://doi.org/10.3390/w12092539