The Prediction of Oceanic Mesoscale Eddy Properties and Propagation Trajectories Based on Machine Learning
Abstract
:1. Introduction
2. Data and Methodology
- (1)
- The characteristic factors related to eddies at the current time and the predicted target at time are combined to form a one-to-one corresponding relationship between eddy samples and labels. This information is then input into the model after preprocessing.
- (2)
- If the predicted target belongs to eddy properties, the samples from previous time series are used to learn the spatiotemporal features of the associated eddy or eddies. An LSTM network for eddy property prediction is constructed to obtain three prediction models for the eddy amplitude, radius and MCAs.
- (3)
- If the predicted value is the eddy propagation trajectory, the characteristic factors at the current time are used to learn the eddy features at the current moment, and the ET model is built to obtain two prediction models of zonal and meridional displacement for eddies.
- (4)
- When the forecasting time step is , the above steps (1), (2) and (3) are repeated. Then, the matrices of independent models for different prediction targets are obtained, and the training models are parallelized to form an integrated learning system for eddy prediction.
2.1. LSTM Network for Learning Temporal Features
2.2. The Extra Trees Algorithm
3. Experiment and Results
3.1. Model Training and Evaluation
3.2. The Prediction of Eddy Properties
3.3. Eddy Propagation Trajectory Prediction
4. Discussion
5. Conclusions and Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dong, C.; McWilliams, J.C.; Liu, Y.; Chen, D. Global heat and salt transports by eddy movement. Nat. Commun. 2014, 5, 3294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Wang, W.; Qiu, B. Oceanic mass transport by mesoscale eddies. Science 2014, 345, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, G.; Zhai, X. Observed cold filaments associated with mesoscale eddies in the South China Sea. J. Geophys. Res. Oceans 2017, 122, 762–770. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, S.; Xie, S.-P.; Norris, J.R.; Sun, J.-X.; Jiang, Y.-X. Observed Variations of the Atmospheric Boundary Layer and Stratocumulus over a Warm Eddy in the Kuroshio Extension. Mon. Weather Rev. 2019, 147, 1581–1591. [Google Scholar] [CrossRef]
- Gaube, P.; Barceló, C.; McGillicuddy, D., Jr.; Domingo, A.; Miller, P.; Giffoni, B.; Marcovaldi, N.; Swimmer, Y. The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic. PLoS ONE 2017, 12, e0172839. [Google Scholar] [CrossRef] [PubMed]
- Gaube, P.; Chelton, D.B.; Samelson, R.M.; Schlax, M.G.; O’Neill, L.W. Satellite Observations of Mesoscale Eddy-Induced Ekman Pumping. J. Phys. Oceanogr. 2015, 45, 104–132. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Xue, H.; Wang, H. A simple predictive model for the eddy propagation trajectory in the northern South China Sea. Ocean Sci. 2019, 15, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Li, S.; Wang, A.; Yang, J.; Chen, G. Altimeter Observation-Based Eddy Nowcasting Using an Improved Conv-LSTM Network. Remote Sens. 2019, 11, 783. [Google Scholar] [CrossRef] [Green Version]
- Robinson, A.R.; Carton, J.A.; Mooers, C.N.K.; Walstad, L.J.; Carter, E.F.; Rienecker, M.M.; Smith, J.A.; Leslie, W.G. A real-time dynamical forecast of ocean synoptic/mesoscale eddies. Nature 1984, 309, 781–783. [Google Scholar] [CrossRef]
- Masina, S.; Pinardi, N. Mesoscale data assimilation studies in the middle adriatic sea. Cont. Shelf Res. 1994, 14, 1293–1310. [Google Scholar] [CrossRef]
- Shriver, J.F.; Hurlburt, H.; Smedstad, O.; Wallcraft, A.; Rhodes, R. 1/32° real-time global ocean prediction and value-added over 1/16° resolution. J. Mar. Syst. 2007, 65, 3–26. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, T.; Chen, G.; Tan, X.; Zhu, K. Convective Clouds Extraction from Himawari–8 Satellite Images Based on Double-Stream Fully Convolutional Networks. IEEE Geosci. Remote Sens. Lett. 2020, 17, 553–557. [Google Scholar] [CrossRef]
- Lukoševičius, M.; Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 2009, 3, 127–149. [Google Scholar] [CrossRef]
- Karpathy, A.; Li, F.-F. Deep Visual-Semantic Alignments for Generating Image Descriptions. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 664–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duo, Z.; Wang, W.; Wang, H. Oceanic Mesoscale Eddy Detection Method Based on Deep Learning. Remote Sens. 2019, 11, 1921. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Tian, F.; Liu, Y.; Chen, G. An Improved Automatic Algorithm for Global Eddy Tracking Using Satellite Altimeter Data. Remote Sens. 2017, 9, 206. [Google Scholar] [CrossRef] [Green Version]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M.; De Szoeke, R.A. Global observations of large oceanic eddies. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Ashkezari, M.D.; Hill, C.N.; Follett, C.N.; Forget, G.; Follows, M.J. Oceanic eddy detection and lifetime forecast using machine learning methods. Geophys. Res. Lett. 2016, 43, 12234–12241. [Google Scholar] [CrossRef] [Green Version]
- Mason, E.; Pascual, A.; McWilliams, J.C. A New Sea Surface Height–Based Code for Oceanic Mesoscale Eddy Tracking. J. Atmos. Ocean. Technol. 2014, 31, 1181–1188. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Hou, Y.; Chu, X. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. J. Geophys. Res. Space Phys. 2011, 116, 116. [Google Scholar] [CrossRef]
- Nan, F.; Xue, H.; Yu, F. Kuroshio intrusion into the South China Sea: A review. Prog. Oceanogr. 2015, 137, 314–333. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Wu, D.; Liang, F.; Yi, J.; Mo, Y.; He, Z.; Pei, T. Major migration corridors of mesoscale ocean eddies in the South China Sea from 1992 to 2012. J. Mar. Syst. 2016, 158, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Chao, W.-L.; Sha, F.; Grauman, K. Video Summarization with Long Short-Term Memory. In Proceedings of the 14th European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016; pp. 766–782. [Google Scholar]
- Wang, D.; Su, J.; Yu, H. Feature Extraction and Analysis of Natural Language Processing for Deep Learning English Language. IEEE Access 2020, 8, 46335–46345. [Google Scholar] [CrossRef]
- Donahue, J.; Hendricks, L.A.; Rohrbach, M.; Venugopalan, S.; Guadarrama, S.; Saenko, K.; Darrell, T. Long-Term Recurrent Convolutional Networks for Visual Recognition and Description. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 677–691. [Google Scholar] [CrossRef]
- Galar, M.; Fernandez, A.; Barrenechea, E.; Bustince, H.; Herrera, F. A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. IEEE Trans. Syst. Man, Cybern. Part C 2012, 42, 463–484. [Google Scholar] [CrossRef]
- Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.; Long, X.; Wu, R.; Wang, S. Geographical and monthly variability of the first baroclinic Rossby radius of deformation in the South China Sea. J. Mar. Syst. 2008, 74, 711–720. [Google Scholar] [CrossRef]
- Pratt, L.J. Introduction to geophysical fluid dynamics (Book Review). Am. Sci. 1996, 84, 80–81. [Google Scholar]
- Morrow, R.; Birol, F.; Griffin, D.; Sudre, J. Divergent pathways of cyclonic and anti-cyclonic ocean eddies. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Li, J.; Zhang, R.; Jin, B. Eddy characteristics in the northern South China Sea as inferred from Lagrangian drifter data. Ocean Sci. 2011, 7, 661–669. [Google Scholar] [CrossRef]
- Liu, C.; Du, Y.; Zhuang, W.; Xia, H.; Xie, Q. Evolution and propagation of a mesoscale eddy in the northern South China Sea during winter. Acta Oceanol. Sin. 2013, 32, 1–7. [Google Scholar] [CrossRef]
Forecasting Days | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 14th | 21th | 28th |
---|---|---|---|---|---|---|---|---|---|---|
Amplitude (cm) | 0.6 (0.8) | 0.9 (1.2) | 1.1 (1.6) | 1.4 (1.9) | 1.6 (2.2) | 1.8 (2.4) | 2.0 (2.7) | 2.8 | 3.2 | 3.5 |
Radius (km) | 10.6 (11.4) | 14.3 (15.3) | 17.1 (18.3) | 19.2 (21.2) | 21.1 (23.2) | 22.8 (24.9) | 23.3 (26.5) | 27.2 | 28.9 | 29.8 |
MCA speed (cm/s) | 1.3 | 1.9 | 2.6 | 3.1 | 3.6 | 4.0 | 4.5 | 6.1 | 7.1 | 7.7 |
Forecasting Weeks | LSTM | Random Forest | Extra Trees | Gradient Boosting | Multiple Linear Regression [7] |
---|---|---|---|---|---|
1st | 34.8 (28.7) | 31.4 (26.7) | 28.8 (23.8) | 38.5 (33.2) | 32.7 (29.5) |
2nd | 58.1 (46.8) | 41.9 (36.8) | 36.9 (30.6) | 58.8 (49.9) | 55.1 (47.3) |
3rd | 74.5 (53.6) | 48.9 (41.6) | 41.9 (34.1) | 72.9 (60.8) | 72.5 (61.4) |
4th | 86.4 (60.9) | 56.3 (47.4) | 47.2 (37.2) | 85.4 (67.8) | 89.2 (73.5) |
Forecasting Weeks | Summer | Winter |
---|---|---|
1st | 29.2 (23.8) | 30.1 (24.2) |
2nd | 36.8 (29.8) | 40.0 (30.7) |
3rd | 40.2 (31.9) | 45.9 (32.6) |
4th | 45.1 (33.5) | 50.1 (34.6) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, H.; Liu, D.; Wang, W. The Prediction of Oceanic Mesoscale Eddy Properties and Propagation Trajectories Based on Machine Learning. Water 2020, 12, 2521. https://doi.org/10.3390/w12092521
Wang X, Wang H, Liu D, Wang W. The Prediction of Oceanic Mesoscale Eddy Properties and Propagation Trajectories Based on Machine Learning. Water. 2020; 12(9):2521. https://doi.org/10.3390/w12092521
Chicago/Turabian StyleWang, Xin, Huizan Wang, Donghan Liu, and Wenke Wang. 2020. "The Prediction of Oceanic Mesoscale Eddy Properties and Propagation Trajectories Based on Machine Learning" Water 12, no. 9: 2521. https://doi.org/10.3390/w12092521
APA StyleWang, X., Wang, H., Liu, D., & Wang, W. (2020). The Prediction of Oceanic Mesoscale Eddy Properties and Propagation Trajectories Based on Machine Learning. Water, 12(9), 2521. https://doi.org/10.3390/w12092521