Characterization of Surface Evidence of Groundwater Flow Systems in Continental Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Surface Indicators of Groundwater
2.2.1. Groundwater and Perennial Surface Water
2.2.2. Groundwater Depth
2.2.3. Groundwater and Soil
2.2.4. Groundwater and Vegetation
2.2.5. Groundwater and Topoforms
2.2.6. Groundwater and Geological Framework
2.2.7. Groundwater and Climate
2.2.8. Discharge, Throughflow, and Recharge Zones
2.3. Data Processing and Interpretation
2.3.1. Analysis of Surface Indicators
2.3.2. Natural Surface Water
2.3.3. Groundwater Depth
2.3.4. Soil Analysis
2.3.5. Vegetation and Land Use Analysis
2.3.6. Relief Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gleick, P.H. Water in Crisis: A Guide to the World’s Freshwater Resources; Copyright by Pacific Institute for Studies in Development, Environment, and Security & Stockholm Environment Institute; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Tóth, v. Gravitational Systems of Groundwater Flow. Theory, Evaluation, Utilization; University of Alberta: Edmond, AL, Canada; Eotvos Loránd University: Budapest, Hungary; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Tóth, J. A conceptual model of the groundwater regime and the hydrogeologic environment. J. Hydrol. 1970, 10, 164–176. [Google Scholar] [CrossRef]
- Tóth, J. Groundwater Discharge: A common generator of diverse geologic and morphologic phenomena. International Association of Scientific Hydrology. Bulletin 1971, 16, 7–24. [Google Scholar]
- Tóth, J. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations. Hydrogeol. J. 1999, 7, 1–14. [Google Scholar] [CrossRef]
- Tóth, J. The evolutionary concepts and practical utilization of the tóthian theory of regional groundwater flow. Int. J. Earth Envrion. Sci. 2016, 1, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrillo-Rivera, J.J. Application of the groundwater-balance equation to indicate interbasin and vertical flow in two semi-arid drainage basins. Hydrogeol. J. 2000, 8, 503–520. [Google Scholar]
- Povinec, P.P.; Aggarwal, P.K.; Kulkarni, K.M.; Groening, M.; Han, L.F. Isotopic Characterization of Groundwater—Seawater; IAEA–CN–151/131 International Atomic Energy Agency, Marine Environment Laboratories: Monaco, Monaco; International Atomic Energy Agency: Viena, Austria, 2007. [Google Scholar]
- Silva, R.; Chávez, V.; Bouma, T.J.; van Tussenbroek, B.I.; Arkema, K.K.; Martínez, M.L.; Oumeraci, H.; Heymans, J.J.; Osorio, A.F.; Mendoza, E.; et al. The incorporation of biophysical and social components in coastal management. Estuar. Coasts 2019, 42, 1695–1708. [Google Scholar] [CrossRef] [Green Version]
- Moore, W.S. The effect of submarine groundwater discharge on the ocean. Ann. Rev. Mar. Sci. 2010, 2, 59–88. [Google Scholar] [CrossRef] [Green Version]
- Tóth, J. Las aguas subterráneas como agente geológico: Causas procesos y manifestaciones. Bol. Geol. Min. Inst. Tecnol. GeoMin. Esp. 2000, 8, 9–26. [Google Scholar]
- Cartwright, I.; Wever, T.R.; Tweed, S.A. Integrating physical hydrogeology, hydrogeochemistry, and environmental isotopes to constrain regional groundwater flow. In Groundwater Flow Understanding: From Local to Regional Scale, Proceedings of the Zacatecas International Congress, Zacatecas, Mexico, 27–31 October 2008; IAH Selected Papers; Carrillo-Rivera, J.J., Ortega, A., Eds.; CRC Press: Boca Raton, FL, USA, 2008; Volume 12, pp. 86–105. [Google Scholar]
- Cloutier, V.; Lefebvre, R.S.; Martine, B.É.; Therrien, R. Hydrogeochemistry and groundwater origin of the Basses-Laurentides sedimentary rock aquifer system, St. Lawrence Lowlands, Quebec, Canada. Hydrogeol. J. 2006, 14, 573–590. [Google Scholar] [CrossRef]
- Han, D.; Liang, X.; Jin, M.; Currell, M.J.; Han, Y.; Song, X. Hydrogeochemical indicators of groundwater flow systems in the Yangwu River alluvial fan, Xinzhou Basin, Shanxi, China. Environ. Manag. 2009, 44, 243–255. [Google Scholar] [CrossRef]
- Jiang, X.W.; Wan, L.; Wang, X.S.; Ge, S.; Liu, J. Effect of exponential decay in hydraulic conductivity with depth on regional groundwater flow. Geophys. Res. Lett. 2009, 36, L24402. [Google Scholar] [CrossRef]
- Xing, L.; Yu, L.; Mengugui, J.; Xingchen, L.; Renquan, Z. Direct observation of complex Tóthian groundwagter flow systems in the laboratory. Hydrol. Process. 2010, 24, 3568–3573. [Google Scholar]
- Mádl-Szőnyi, J.; Tóth, Á. Basin-scale conceptual groundwater flow model for an unconfined and confined thick carbonate region. Hydrogeol. J. 2015, 23, 1359–1380. [Google Scholar] [CrossRef]
- Erőss, A.; Mádl-Szőnyi, J.; Surbeck, H.; Horváth, Á.; Goldscheider, N.; Csoma, A.É. Radionuclides as natural tracers for the characterization of fluids in regional discharge areas, Buda Thermal Karst, Hungary. J. Hydrol. 2012, 426, 124–137. [Google Scholar] [CrossRef]
- Ono, M.; Machida, I.; Ikawa, R.; Kamitani, T.; Oyama, K.; Muranaka, Y.; Marui, A. Regional groundwater flow system in a stratovolcano adjacent to a coastal area: A case study of Mt. Fuji and Suruga Bay, Japan. Hydrogeol. J. 2018, 27, 717–730. [Google Scholar] [CrossRef]
- Carrillo-Rivera, J.J.; Cardona, A.; Edmunds, W.M. Use of abstraction regime and knowledge of hydrogeological conditions to control high fluoride concentration in abstracted groundwater: Basin of San Luis Potosi, Mexico. J. Hydrol. 2002, 261, 24–47. [Google Scholar] [CrossRef]
- Carrillo-Rivera, J.J.; Cardona, A.; Huizar-Alvarez, R.; Graniel, E. Response of the interaction between groundwater and other components of the environment in Mexico. Environ. Geol. 2008, 2, 303–319. [Google Scholar] [CrossRef]
- Huizar-Alvarez, R.; Carrillo-Rivera, J.J.; Angeles-Serrano, G.; Hergt, T.; Cardona, A. Chemical response to groundwater extraction southeast of México City. Hydrogeol. J. 2004, 12, 436–450. [Google Scholar] [CrossRef]
- Huizar-Alvarez, R.; Ouysse, S.; Espinoza, M.M.; Carrillo-Rivera, J.J.; Mendoza-Archundia, E. The effects of water use on Tothian flow systems in the Mexico City conurbation determined from the geochemical and isotopic characteristics of groundwater. Environ. Earth Sci. 2016, 75, 1060. [Google Scholar] [CrossRef]
- Carrillo-Rivera, J.J.; Cardona, A. Groundwater flow system response in thick aquifer units, theory and practice in Mexico. In Groundwater Flow Understanding: From Local to Regional Scale, Proceedings of the IAH Selected Papers of the Zacatecas International Congress, Zacatecas, Mexico, 27–31 October 2008; Carrillo-Rivera, J.J., Ortega, A., Eds.; Taylor & Francis Group: Abingdon, UK, 2008; Volume 12, pp. 25–46. [Google Scholar]
- Carrillo-Rivera, J.J.; Ouysse, S. Enhancement in salinity of extracted groundwater due to urban growth. In Encyclopaedia of Sustainability Science and Technology; Geoenvironmental Section of the upcoming 10-volume; Springer International: New York, NY, USA, 2011. [Google Scholar]
- Carrillo-Rivera, J.J.; Cardona, A. Groundwater flow systems and their response to climate change: A need for a water-system view approach. Am. J. Environ. Sci. 2012, 8, 220–235. [Google Scholar]
- Cardona, A.; Banning, A.; Carrillo-Rivera, J.J.; Aguillón-Robles, A.; Rüde, T.; Aceves de Alba, J. Natural controls validation for handling elevated fluoride concentrations in extraction activated Tothian groundwater flow systems: San Luis Potosí, Mexico. Environ. Earth Sci. 2018, 77, 121. [Google Scholar] [CrossRef]
- Ouysse, S.; Wehncke, E.V.; Carrillo-Rivera, J.J. Investigating regional groundwater flow systems in Baja California central desert region. J. Hydrol. Reg. Stud. 2018, 2, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Peñuela-Arévalo, L.A.; Carrillo-Rivera, J.J. Definición de zonas de recarga y descarga de agua subterránea a partir de indicadores superficiales: Centro-sur de la Mesa Central, México. Investig. Geogr. Bol. Inst. Geogr. UNAM 2013, 81, 18–32. [Google Scholar] [CrossRef] [Green Version]
- National Commission for the Knowledge and Use of Biodiversity (CONABIO). Capital Natural de México, Vol. I: Conocimiento Actual de la Biodiversidad; National Commission for the Knowledge and Use of Biodiversity: Mexico City, Mexico, 2008. [Google Scholar]
- National Water Commission (CONAGUA). Estadísticas del Agua en México; National Water Commission: Coyoacan, Mexico, 2018. [Google Scholar]
- US Geological Survey, US Department of the Interior, Office of Water Data Coordination. August 1989. The Federal Glossary of Selected Terms: Subsurface-Water Flow and Solute Transport. Available online: https://or.water.usgs.gov/projs_dir/willgw/glossary.html (accessed on 15 May 2020).
- Porta, J.; López-Acevedo, M.; Roquero, C. Edafología para la Agricultura y el Medio Ambiente; Editorial Mundi Prensa: Madrid, Spain, 1994; p. 804. [Google Scholar]
- Jenny, H. Factors of Soil Formation; McGrawll-Hill: New York, NY, USA; London, UK, 1941. [Google Scholar]
- Ortiz Solorio, C.A.; Gutiérrez Castorena, M.C.; Gutiérrez Castorena, E.V. Claves para la Taxonomía de suelos. USDA. In Soil Survey Staff, 12th ed.; Traducción; Departamento de Agricultura USA: Washington, DC, USA, 2014; p. 410. [Google Scholar]
- Alconada-Magliano, M.M.; Fagundo-Castillo, J.R.; Carrillo-Rivera, J.J.; Hernández, P.G. Origin of flooding water through hydrogeochemical identification, the Buenos Aires plain, Argentina. Environ. Earth Sci. 2011, 64, 57–71. [Google Scholar] [CrossRef]
- Alconada-Magliano, M.M.; Damiano, F.; Carrillo-Rivera, J.J.; Fagundo-Castillo, J.R. Arsenic & fluoride in water in Northwestern Buenos Aires: Their association with natural landscape elements. J. Geogr. Reg. Plann. 2017, 10, 8–27. [Google Scholar]
- Alconada-Magliano, M.M.; Damiano, F.; Fagundo-Castillo, J.R. Estudio del suelo en el paisaje regional como base para definir su manejo agropecuario–Forestal. In Proceedings of the Actas XXV Congreso Argentino de la Ciencia del Suelo, Rio Cuarto, Argentina, 27 June–1 July 2016. [Google Scholar]
- Alconada-Magliano, M.M.; Lanfranco, J.W.; Pellegrini, A.E. Suelo en el Paisaje, Parte I. Condiciones de Dotación; Edulp: Buenos Aires, Argentina, 2018. [Google Scholar]
- Alconada-Magliano, M.M.; Lanfranco, J.W. Suelo en el Paisaje, Parte II. Condiciones de Abastecimiento; Edulp: Buenos Aires, Argentina, 2020. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2006. First Update 2007; World Soil Resources Reports No. 103; FAO: Rome, Italy, 2007. [Google Scholar]
- Jiang, X.-W.; Wan, L.; Wang, J.-Z.; Yin, B.-X.; Fu, W.-X.; Lin, C.-H. Field identification of groundwater flow systems and hydraulic traps in drainage basins using a geophysical method. Geophys. Res. Lett. 2014, 41, 2812–2819. [Google Scholar] [CrossRef]
- Meinzer, O.E. 1927. Plants as Indicators of Groundwater. Water Supply Paper 577. USA. Geologycal Survey. Available online: https://pubs.usgs.gov/wsp/0577/report.pdf (accessed on 30 March 2020).
- Eamus, D.; Fu, B.; Springer, A.E.; Stevens, L.E. Groundwater Dependent Ecosystems: Classification, Identification Techniques and Threats. In Integrated Groundwater Management; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.D., Ross, A., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- National Institute for Statistics and Geography (INEGI). Conjunto de Datos Vectoriales de Uso de Suelo y Vegetación, Escala 1:250,000; Continuo Nacional, Serie I; National Institute for Statistics and Geography: Mexico City, Mexico, 1980. [Google Scholar]
- National Institute for Statistics and Geography (INEGI). Conjunto de Datos Vectoriales Edafológico, Escala 1:250,000; Continuo Nacional, Serie II; National Institute for Statistics and Geography: Mexico City, Mexico, 1991. [Google Scholar]
- National Institute for Statistics and Geography (INEGI). Continuo Nacional de Topografía, Escala 1:250,000; Serie II; National Institute for Statistics and Geography: Mexico City, Mexico, 1992. [Google Scholar]
- National Institute for Statistics and Geography (INEGI). Conjunto de Datos Vectoriales de Vegetación Primaria Escala 1:1,000,000; Nivel I y II (1993-09); National Institute for Statistics and Geography: Mexico City, Mexico, 1993. [Google Scholar]
- National Institute for Statistics and Geography (INEGI). Conjunto de Datos Vectoriales Topográficos. Escala 1:250,000; Serie II; National Institute for Statistics and Geography: Mexico City, Mexico, 1995. [Google Scholar]
- National Institute for Statistics and Geography (INEGI). Conjunto de Datos Vectoriales Topográficos. Escala 1:1,000,000; Corrientes y Cuerpos de agua; National Institute for Statistics and Geography: Mexico City, Mexico, 2000. [Google Scholar]
- National Institute for Statistics and Geography (INEGI). Conjunto de Datos Vectoriales Fisiográficos. Continuo Nacional; Serie I; Sistema topoformas; National Institute for Statistics and Geography: Mexico City, Mexico, 2001. [Google Scholar]
- National Institute for Statistics and Geography (INEGI). Conjunto de Datos Vectoriales Climatológicos Escala 1:1,000,000; Humedad de Suelo; National Institute for Statistics and Geography: Mexico City, Mexico, 2005. [Google Scholar]
- National Institute for Statistics and Geography (INEGI). Red Hidrográfica Digital de México. Serie I. Escala 1:250,000; shape; National Institute for Statistics and Geography: Mexico City, Mexico, 2006. [Google Scholar]
- National Institute for Statistics and Geography (INEGI). Conjunto de Datos Vectoriales Escala 1:1,000,000; Unidades climáticas; National Institute for Statistics and Geography: Mexico City, Mexico, 2008. [Google Scholar]
- National Institute for Statistics and Geography (INEGI). Cuerpos de Agua Escala 1:50,000; National Institute for Statistics and Geography: Mexico City, Mexico, 2009. [Google Scholar]
- National Institute for Statistics and Geography (INEGI). Continuo Nacional de Aguas Subterráneas Escala 1:250,000; Serie II; National Institute for Statistics and Geography: Mexico City, Mexico, 2010. [Google Scholar]
- National Institute for Statistics and Geography (INEGI). Continuo Nacional Humedales Potenciales. Escala 1:250,000; Serie I, shape; National Institute for Statistics and Geography: Mexico City, Mexico, 2012. [Google Scholar]
- National Commission for the Knowledge and Use of Biodiversity (CONABIO). Distribution of Mangroves in Mexico in 1970–1981; National Commission for the Knowledge and Use of Biodiversity (CONABIO): Mexico City, Mexico, 2013. [Google Scholar]
- National Water Commission (CONAGUA). Wetlands of the Mexican Republic—National Inventory of Wetlands; National Water Commission (CONAGUA): Mexico City, Mexico, 2016. [Google Scholar]
- National Water Commission (CONAGUA). Registro Público de Derechos de Agua; National Water Commission (CONAGUA): Mexico City, Mexico, 2019. [Google Scholar]
- National Institute for Statistics and Geography (INEGI). Diccionario de Datos Climáticos (Vectorial) Escala 1:1,000,000; Unidades climáticas; National Institute for Statistics and Geography: Mexico City, Mexico, 2000. [Google Scholar]
- National Institute for Statistics and Geography (INEGI). Diccionario de Datos Fisiográficos (Vectorial) Escala 1:1,000,000; Sistema Nacional de Información Geográfica; National Institute for Statistics and Geography: Mexico City, Mexico, 2001. [Google Scholar]
- National Institute for Statistics and Geography (INEGI). Guía Para la Interpretación de Cartografía Uso del Suelo y Vegetación. Escala 1:250,000; Serie III; National Institute for Statistics and Geography: Mexico City, Mexico, 2009. [Google Scholar]
- National Institute for Statistics and Geography (INEGI). Documento Técnico Descriptivo de la Red Hidrográfica Escala 1:50,000, 2nd ed.; National Institute for Statistics and Geography: Mexico City, Mexico, 2010. [Google Scholar]
- National Institute for Statistics and Geography (INEGI). Diccionario de Datos Edafológicos Escala 1:250,000; Versión III; National Institute for Statistics and Geography: Mexico City, Mexico, 2014. [Google Scholar]
- National Institute for Statistics and Geography (INEGI). Diccionario de Datos de Uso del Suelo y Vegetación. Escala 1:250,000; Versión III; National Institute for Statistics and Geography: Mexico City, Mexico, 2014. [Google Scholar]
- National Institute for Statistics and Geography (INEGI). Anexo A Catálogo de Tipos de Vegetación Natural e Inducida de México; National Institute for Statistics and Geography: Mexico City, Mexico, 2016. [Google Scholar]
- Federal Commission of Electricity (CFE). Mapa de Manantiales Termales; Federal Commission of Electricity: Mexico City, Mexico, 1988. [Google Scholar]
- National Institute for Statistics and Geography (INEGI). Continuo Nacional de Aguas Subterráneas Escala 1:250,000; Serie II; National Institute for Statistics and Geography: Mexico City, Mexico, 2008. [Google Scholar]
- Post, V.G.; Kooi, J.; Person, H.; Shemin, M.G.; Edmunds, W. Offshore fresh groundwater as a global phenomenon. Nature 2013, 504, 71–78. [Google Scholar] [CrossRef]
- Grubb, H.F.; Carrillo-Rivera, J.J. Region 23, the Gulf of Mexico coastal plain. In The Geology of North America, Hydrogeology; Geological Society of North America: Boulder, CO, USA, 1988; Volume 1–2, pp. 219–228. [Google Scholar]
- Neri-Flores, I.; Moreno-Casasola, P.; Peralta-Peláez, L.A.; Monroy, R. Groundwater and river flooding: The importance of wetlands in coastal zones. J. Coast. Res. 2019, 92, 44–54. [Google Scholar] [CrossRef]
- International Finance Corporation. Good Practice Handbook on Cumulative Impact Assessment and Management: Guidance for the Private Sector in Emerging Markets; World Bank Group: Washington, DC, USA, 2015. [Google Scholar]
Dominant Soil (≥60% of the Edaphic Polygon) | Secondary Soil (20–40% of the Edaphic Polygon) | Main Qualifier of the Dominant Soil | Groundwater Manifestation Zones |
---|---|---|---|
Discharge | Discharge | Discharge/Indistinct | Discharge |
Indistinct | Discharge | ||
Indistinct | Discharge | ||
Discharge | Indistinct | Indistinct | Discharge–throughflow |
Indistinct | Discharge/Recharge | Indistinct/Discharge | |
Discharge | Recharge | Discharge | |
Indistinct | Indistinct | Discharge | Throughflow |
Indistinct/Recharge | Recharge/Indistinct | Recharge/Indistinct | Throughflow–recharge |
Recharge | Recharge/Indistinct | Discharge | Recharge–throughflow |
Recharge | Recharge | Indistinct | Recharge |
Discharge (Major feature) | Recharge (Minor feature) | Indistinct | Major discharge with minor recharge surface |
Recharge (Major feature) | Discharge (Minor feature) | Discharge/Indistinct | Major recharge with minor discharge surface |
Indistinct | Indistinct |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kachadourian-Marras, A.; Alconada-Magliano, M.M.; Carrillo-Rivera, J.J.; Mendoza, E.; Herrerías-Azcue, F.; Silva, R. Characterization of Surface Evidence of Groundwater Flow Systems in Continental Mexico. Water 2020, 12, 2459. https://doi.org/10.3390/w12092459
Kachadourian-Marras A, Alconada-Magliano MM, Carrillo-Rivera JJ, Mendoza E, Herrerías-Azcue F, Silva R. Characterization of Surface Evidence of Groundwater Flow Systems in Continental Mexico. Water. 2020; 12(9):2459. https://doi.org/10.3390/w12092459
Chicago/Turabian StyleKachadourian-Marras, Alessia, Margarita M. Alconada-Magliano, José Joel Carrillo-Rivera, Edgar Mendoza, Felipe Herrerías-Azcue, and Rodolfo Silva. 2020. "Characterization of Surface Evidence of Groundwater Flow Systems in Continental Mexico" Water 12, no. 9: 2459. https://doi.org/10.3390/w12092459
APA StyleKachadourian-Marras, A., Alconada-Magliano, M. M., Carrillo-Rivera, J. J., Mendoza, E., Herrerías-Azcue, F., & Silva, R. (2020). Characterization of Surface Evidence of Groundwater Flow Systems in Continental Mexico. Water, 12(9), 2459. https://doi.org/10.3390/w12092459