Spatial Distribution of Integrated Nitrate Reduction across the Unsaturated Zone and the Groundwater Body in Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nitrogen Input Load
- NO3-N_loadinput_uz = NO3-N input load into the unsaturated zone (kg N ha−1 a−1)
- Nsurplusa = hydrospheric N-urplus arable land (kg N ha−1 a−1) [36]
- Nsurplusu = N-surplus urban land = 18 (kg N ha−1 a−1)
- Nsurplusf = N-surplus forest = 5 (kg N ha−1 a−1)
- Nsurpluss = N-surplus special crops = Nsurplusa × 1.5 (kg N ha−1 a−1)
- wa,u,f,s = area weighting factor (-) with ∑wi = 1.
- NO3-N_loadinput_gw = NO3-N input load to the groundwater (kg N ha−1 a−1)
- NO3-N_loadinput_uz = NO3-N input load into the unsaturated zone (kg N ha−1 a−1)
- Qgw = mean annual groundwater recharge rate (mm a−1) [38]
- Qsw = mean annual seepage water rate (mm a−1) [37]
2.2. Groundwater Nitrate Nitrogen Load
2.3. Nitrate Reduction
- NO3-N_red = nitrate reduction (%)
- NO3-N_loadgw = groundwater NO3-N load (kg N ha−1 a−1)
- NO3-N_loadinput_gw = NO3-N input load to the groundwater (kg N ha−1 a−1)
2.4. Hydrogeological Conditions
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Dise, N.B.; Petrescu, A.M.R.; Leach, A.M.; de Vries, W. Consequences of human modification of the global nitrogen cycle. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2013, 368, 20130116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, S.; Bekunda, M.; Howard, C.M.; Karanja, N.; Winiwarter, W.; Yan, X.; Bleeker, A.; Sutton, M.A. Synthesis and review: Tackling the nitrogen management challenge: From global to local scales. Environ. Res. Lett. 2016, 11, 120205. [Google Scholar] [CrossRef]
- Sutton, M.A.; Bleeker, A.; Howard, C.M.; Bekunda, M.; Grizzetti, B.; de Vries, W.; van Grinsven, H.J.M.; Abro, Y.P.; Adhya, T.K.; Billen, G.; et al. Our Nutrient World-The Challenge to Produce More Food and Energy with Less Pollution; Centre for Ecology and Hydrology (CEH): Edinburgh, UK, 2013. [Google Scholar]
- EEA. European Waters–Assessment of Status and Pressures. 2018. Available online: https://www.eea.europa.eu/publications/state-of-water (accessed on 21 June 2019).
- Fuchs, S.; Scherer, U.; Wander, R.; Behrendt, H.; Venohr, M.; Opitz, D.; Hillenbrand, T.; Marscheider-Weidemann, F.; Götz, T. Berechnung von Stoffeinträgen in die Fließgewässer Deutschlands mit dem Modell MONERIS; UBA-Texte 45/2010; German Environment Agency (UBA): Dessau-Rosslau, Germany, 2010. [Google Scholar]
- Bach, M.; Häußermann, U.; Klement, L.; Knoll, L.; Breuer, L.; Weber, T.; Fuchs, S.; Heldstab, J.; Reutimann, J.; Schäppi, B. Reactive Nitrogen Flows in Germany 2010–2014 (DESTINO Report 2); UBA-Texte 65/2020; Umweltbundesamt: Dessau-Rosslau, Germany, 2020. [Google Scholar]
- Seitzinger, S.; Harrison, J.A.; Böhlke, J.K.; Bouwman, A.F.; Lowrance, R.; Peterson, B.; Tobias, C.; Drecht, G.V. Denitrification Across Landscapes and Waterscapes: A Synthesis. Ecol. Appl. 2006, 16, 2064–2090. [Google Scholar] [CrossRef] [Green Version]
- Van Egmond, K.; Bresser, T.; Bouwman, L. The European Nitrogen Case. AMBIO J. Hum. Environ. 2002, 31, 72–78. [Google Scholar] [CrossRef]
- Wendland, F.; Bergmann, S.; Eisele, M.; Gömann, H.; Herrmann, F.; Kreins, P.; Kunkel, R. Model-Based Analysis of Nitrate Concentration in the Leachate—The North Rhine-Westfalia Case Study, Germany. Water 2020, 12, 550. [Google Scholar] [CrossRef] [Green Version]
- Kuhr, P.; Haider, J.; Kreins, P.; Kunkel, R.; Tetzlaff, B.; Vereecken, H.; Wendland, F. Model Based Assessment of Nitrate Pollution of Water Resources on a Federal State Level for the Dimensioning of Agro-environmental Reduction Strategies. Water Resour. Manag. 2013, 27, 885–909. [Google Scholar] [CrossRef]
- McAleer, E.B.; Coxon, C.E.; Richards, K.G.; Jahangir, M.M.R.; Grant, J.; Mellander, P.E. Groundwater nitrate reduction versus dissolved gas production: A tale of two catchments. Sci. Total Environ. 2017, 586, 372–389. [Google Scholar] [CrossRef] [Green Version]
- Højberg, A.L.; Hansen, A.L.; Wachniew, P.; Żurek, A.J.; Virtanen, S.; Arustiene, J.; Strömqvist, J.; Rankinen, K.; Refsgaard, J.C. Review and assessment of nitrate reduction in groundwater in the Baltic Sea Basin. J. Hydrol. Reg. Stud. 2017, 12, 50–68. [Google Scholar] [CrossRef]
- Kunkel, R.; Herrmann, F.; Kape, H.E.; Keller, L.; Koch, F.; Tetzlaff, B.; Wendland, F. Simulation of terrestrial nitrogen fluxes in Mecklenburg-Vorpommern and scenario analyses how to reach N-quality targets for groundwater and the coastal waters. Environ. Earth Sci. 2017, 76, 146. [Google Scholar] [CrossRef]
- Wriedt, G.; Rode, M. Modelling nitrate transport and turnover in a lowland catchment system. J. Hydrol. 2006, 328, 157–176. [Google Scholar] [CrossRef]
- Hirt, U.; Kreins, P.; Kuhn, U.; Mahnkopf, J.; Venohr, M.; Wendland, F. Management options to reduce future nitrogen emissions into rivers: A case study of the Weser river basin, Germany. Agric. Water Manag. 2012, 115, 118–131. [Google Scholar] [CrossRef]
- Zhou, W.; Ma, Y.; Well, R.; Wang, H.; Yan, X. Denitrification in Shallow Groundwater below Different Arable Land Systems in a High Nitrogen-Loading Region. J. Geophys. Res. Biogeosci. 2018, 123, 991–1004. [Google Scholar] [CrossRef]
- Knowles, R. Denitrification. Microbiol. Rev. 1982, 46, 43–70. [Google Scholar] [CrossRef] [PubMed]
- Rivett, M.O.; Buss, S.R.; Morgan, P.; Smith, J.W.N.; Bemment, C.D. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Res. 2008, 42, 4215–4232. [Google Scholar] [CrossRef]
- Durand, P.; Breuer, L.; Johnes, P.J.; Billen, G.; de Klein, J.J.M. Nitrogen processes in aquatic ecosystems. In European Nitrogen Assessment; Sutton, M.A., Howard, C.M., Erisman, J.W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H., Grizzetti, B., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 126–146. [Google Scholar]
- Korom, S.F. Natural denitrification in the saturated zone: A review. Water Resour. Res. 1992, 28, 1657–1668. [Google Scholar] [CrossRef]
- Kludt, C.; Weber, F.A.; Bergmann, A.; Knöller, K.; Berthold, G.; Schüth, C. Identifizierung der Nitratabbauprozesse und Prognose des Nitratabbaupotenzials in den Sedimenten des Hessischen Rieds. Grundwasser 2016, 21, 227–241. [Google Scholar] [CrossRef]
- Schwientek, M.; Einsiedl, F.; Stichler, W.; Stögbauer, A.; Strauss, H.; Maloszewski, P. Evidence for denitrification regulated by pyrite oxidation in a heterogeneous porous groundwater system. Chem. Geol. 2008, 255, 60–67. [Google Scholar] [CrossRef]
- Wisotzky, F.; Wohnlich, S.; Böddeker, M. Nitratreduktion in einem quartären Grundwasserleiter in Ostwestfalen, NRW. Grundwasser 2018, 23, 167–176. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Slomp, C.P.; Broers, H.P.; Bostick, B.; Passier, H.F.; Böttcher, M.E.; Omoregie, E.O.; Lloyd, J.R.; Polya, D.A.; Van Cappellen, P. Isotopic and microbiological signatures of pyrite-driven denitrification in a sandy aquifer. Chem. Geol. 2012, 300–301, 123–132. [Google Scholar] [CrossRef]
- Ransom, K.M.; Nolan, B.T.; Traum, A.J.; Faunt, C.C.; Bell, A.M.; Gronberg, J.A.M.; Wheeler, D.C.; Rosecrans, Z.C.; Jurgens, B.; Schwarz, G.E.; et al. A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA. Sci. Total Environ. 2017, 601–602, 1160–1172. [Google Scholar] [CrossRef]
- Knoll, L.; Breuer, L.; Bach, M. Nation-wide estimation of groundwater redox conditions and nitrate concentrations through machine learning. Environ. Res. Lett. 2020, 15, 064004. [Google Scholar] [CrossRef]
- Boyer, E.W.; Alexander, R.B.; Parton, W.J.; Li, C.; Butterbach-Bahl, K.; Donner, S.D.; Skaggs, R.W.; Grosso, S.J.D. Modeling Denitrification in Terrestrial and Aquatic Ecosystems at Regional Scales. Ecol. Appl. 2006, 16, 2123–2142. [Google Scholar] [CrossRef]
- Durand, P.; Moreau, P.; Salmon-Monviola, J.; Ruiz, L.; Vertes, F.; Gascuel-Odoux, C. Modelling the interplay between nitrogen cycling processes and mitigation options in farming catchments. J. Agric. Sci. 2015, 153, 959–974. [Google Scholar] [CrossRef]
- Green, C.T.; Jurgens, B.C.; Zhang, Y.; Starn, J.J.; Singleton, M.J.; Esser, B.K. Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA. J. Hydrol. 2016, 543, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Oehler, F.; Durand, P.; Bordenave, P.; Saadi, Z.; Salmon-Monviola, J. Modelling denitrification at the catchment scale. Sci. Total Environ. 2009, 407, 1726–1737. [Google Scholar] [CrossRef]
- Rivas, A.; Singh, R.; Horne, D.; Roygard, J.; Matthews, A.; Hedley, M.J. Denitrification potential in the subsurface environment in the Manawatu River catchment, New Zealand: Indications from oxidation-reduction conditions, hydrogeological factors, and implications for nutrient management. J. Environ. Manag. 2017, 197, 476–489. [Google Scholar] [CrossRef]
- Whelan, M.J.; Gandolfi, C. Modelling of spatial controls on denitrification at the landscape scale. Hydrol. Process. 2002, 16, 1437–1450. [Google Scholar] [CrossRef]
- Fuchs, S.; Kaiser, M.; Kiemle, L.; Kittlaus, S.; Rothvoß, S.; Toshovski, S.; Wagner, A.; Wander, R.; Weber, T.; Ziegler, S. Modeling of Regionalized Emissions (MoRE) into Water Bodies: An Open-Source River Basin Management System. Water 2017, 9, 239. [Google Scholar] [CrossRef]
- Venohr, M.; Hirt, U.; Hofmann, J.; Opitz, D.; Gericke, A.; Wetzig, A.; Natho, S.; Neumann, F.; Hürdler, J.; Matranga, M.; et al. Modelling of Nutrient Emissions in River Systems—MONERIS—Methods and Background. Int. Rev. Hydrobiol. 2011, 96, 435–483. [Google Scholar] [CrossRef]
- BKG. Geographische Gitter für Deutschland in UTM-Projektion (GeoGitter national)-DE_Grid_ETRS89-UTM32_1km, Frankfurt a.M. 2018. Available online: https://gdz.bkg.bund.de/index.php/default/geographische-gitter-fur-deutschland-in-utm-projektion-geogitter-national.html (accessed on 28 February 2020).
- Häußermann, U.; Bach, M.; Klement, L.; Breuer, L. Stickstoff-Flächenbilanzen für Deutschland mit Regionalgliederung Bundesländer und Kreise—Jahre 1995 bis 2017; Umweltbundesamt: Dessau-Roßlau, Germany, 2019. [Google Scholar]
- BGR. Mean Annual Rate of Percolation from the Soil in Germany (SWR1000); Hydrogeologischer Atlas von Deutschland; Federal Institute for Geosciences and Natural Resources (BGR): Hannover, Germany, 2003; Available online: https://www.bgr.bund.de/DE/Themen/Boden/Bilder/Bod_Themenkarten_HAD_4-5_g.html (accessed on 2 November 2018).
- BGR. Mean Annual Groundwater Recharge of Germany at the Scale of 1:1,000,000 (HAD 5.5); Hydrogeologischer Atlas von Deutschland; Federal Institute for Geosciences and Natural Resources (BGR): Hannover, Germany, 2003; Available online: https://produktcenter.bgr.de/terraCatalog/OpenSearch.do?search=5a75335e-ba46-452f-8792-ac7e9b49da88&type=/Query/OpenSearch.do (accessed on 2 November 2018).
- BKG. Digitales Landbedeckungsmodell für Deutschland (LBM-DE2012); Federal Agency for Cartography and Geodesy (BKG): Frankfurt, Germany, 2016; Available online: https://www.bkg.bund.de/DE/Ueber-das-BKG/Geoinformation/Fernerkundung/Landbedeckungsmodell/landbedeckungsmodell.html (accessed on 2 November 2018).
- BGR; SGD. Hydrogeologische Übersichtskarte von Deutschland 1:200.000, Oberer Grundwasserleiter (HÜK200 OGWL); Digitaler Datenbestand, Version 3.0; Federal Institute for Geosciences and Natural Resources (BGR): Hannover, Germany, 2016. [Google Scholar]
- Fuchs, S.; Weber, T.; Wander, R.; Toshovski, S.; Kittlaus, S.; Reid, L.; Bach, M.; Klement, L.; Hillenbrand, T.; Tettenborn, F. Effizienz von Maßnahmen zur Reduktion von Stoffeinträgen; UBA-Texte 05/2017; German Environment Agency (UBA): Dessau-Rosslau, Germany, 2017. [Google Scholar]
- Ascott, M.J.; Gooddy, D.C.; Wang, L.; Stuart, M.E.; Lewis, M.A.; Ward, R.S.; Binley, A.M. Global patterns of nitrate storage in the vadose zone. Nat. Commun. 2017, 8, 1416. [Google Scholar] [CrossRef]
- Rivett, M.O.; Smith, J.W.N.; Buss, S.R.; Morgan, P. Nitrate occurrence and attenuation in the major aquifers of England and Wales. Q. J. Eng. Geol. Hydrogeol. 2007, 40, 335–352. [Google Scholar] [CrossRef]
- Kreins, P.; Behrendt, H.; Gömann, H.; Hirt, U.; Kunkel, R.; Seidel, K.; Tetzlaff, B.; Wendland, F. Analyse von Agrar- und Umweltmaßnahmen im Bereich des landwirtschaftlichen Gewässerschutzes vor dem Hintergrund der EG-Wasserrahmenrichtlinie in der Flussgebietseinheit Weser—AGRUM Weser. In Landbauforschung—vTI Agriculture and Forestry Research; Johann Heinrich von Thünen-Institut: Braunschweig, Germany, 2010; p. 342. Available online: https://literatur.thuenen.de/digbib_extern/dk043299.pdf (accessed on 3 April 2020).
- Hill, A.R. Groundwater nitrate removal in riparian buffer zones: A review of research progress in the past 20 years. Biogeochemistry 2019, 143, 347–369. [Google Scholar] [CrossRef]
- Merz, C.; Steidl, J.; Dannowski, R. Parameterization and regionalization of redox based denitrification for GIS-embedded nitrate transport modeling in Pleistocene aquifer systems. Environ. Geol. 2009, 58, 1587. [Google Scholar] [CrossRef]
- Wendland, F.; Blum, A.; Coetsiers, M.; Gorova, R.; Griffioen, J.; Grima, J.; Hinsby, K.; Kunkel, R.; Marandi, A.; Melo, T.; et al. European aquifer typology: A practical framework for an overview of major groundwater composition at European scale. Environ. Geol. 2008, 55, 77–85. [Google Scholar] [CrossRef]
- Hannappel, S.; Köpp, C.; Bach, T. Charakterisierung des Nitratabbauvermögens der Grundwasserleiter in Sachsen-Anhalt. Grundwasser 2018, 23, 311–321. [Google Scholar] [CrossRef]
- GrwV. Grundwasserverordnung vom 9. In November 2010 (BGBl. I S. 1513), Zuletzt Geändert Durch Artikel 1 der Verordnung vom 4; Mai 2017, BGBl. I S. 1044; GrwV: Berlin, Germany, 2010. [Google Scholar]
- Wilde, S.; Hansen, C.; Bergmann, A. Decreasing denitrification capacity in aquifers: Scaled model-based evaluation. Grundwasser 2017, 22, 293–308. [Google Scholar] [CrossRef]
- Bergmann, A.; Dietrich, P.; van Straaten, L.; Frabko, U.; van Berk, W.; Kiefer, J. Konsequenzen Nachlassenden Nitratabbauvermögens in Grundwasserleitern; Deutscher Verein Gas- u. Wasserfach (DVGW): Bonn, Germany, 2013; p. 179. [Google Scholar]
- UBA. Quantifizierung der Landwirtschaftlich Verursachten Kosten zur Sicherung der Trinkwasserbereitstellung; UBA-Texte 43/2017; Umweltbundesamt: Dessau-Rosslau, Germany, 2017; p. 252. [Google Scholar]
Hydrogeology | NO3-N Load Reduction [%] | |
---|---|---|
Mean | Standard Deviation | |
Aquifer type 1 | ||
Fractured | 36.1 | 21.3 |
fractured/karstified | 32.9 | 21.7 |
fractured/porous | 32.8 | 18.9 |
Porous | 72.5 | 28.4 |
Consolidation 1 | ||
consolidated | 35.4 | 21.3 |
unconsolidated | 72.6 | 28.4 |
Rock type 1 | ||
magmatic | 37.6 | 16.9 |
metamorphic | 36.1 | 17.8 |
sedimentary | 58.9 | 31.9 |
Geochemical rock type 1 | ||
anthropogenic | 67.1 | 24.0 |
sulphatic | 37.9 | 23.5 |
sulphatic/halitic | 20.0 | 11.2 |
carbonatic | 35.1 | 20.2 |
silicatic/carbonatic | 42.6 | 23.2 |
silicatic | 64.6 | 32.1 |
silicatic/organic | 55.3 | 25.1 |
Conductivity 1 | ||
very high (>10−2 m s−1) | 46.5 | 22.2 |
high (10−2–10−3 m s−1) | 77.6 | 27.1 |
medium (10−3–10−4 m s−1) | 42.6 | 27.1 |
moderate (10−4–10−5 m s−1) | 39.2 | 22.9 |
low (10−5–10−7 m s−1) | 40.3 | 23.3 |
very low (10−7–10−9 m s−1) | 28.5 | 14.7 |
Overlapping classes | ||
very high to high (>10−3 m s−1) | 27.4 | 14.8 |
medium to moderate (10−3–10−5 m s-1) | 73.9 | 31.6 |
low to very low (<10−5 m s−1) | 37.4 | 21.0 |
moderate to low (10−4–10−7 m s−1) | 38.1 | 21.5 |
variable | 56.0 | 27.6 |
Redox conditions 2 | ||
aerobic (O2 > 5 mg L−1 and Fe < 0.2 mg L−1) | 32.9 | 17.2 |
intermediate (O2 > 5 mg L−1 and Fe ≥ 0.2 mg L−1 or O2 2–5 mg L−1 and Fe < 0.2 mg L−1) | 44.8 | 22.7 |
anaerobic (O2 2–5 mg L−1 and Fe ≥ 0.2 mg L−1 or O2 < 2 mg L−1 and Fe < 0.2 mg L−1) | 69.1 | 16.6 |
strongly anaerobic (O2 < 2 mg L−1 and Fe ≥ 0.2 mg L−1) | 95.8 | 5.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knoll, L.; Häußermann, U.; Breuer, L.; Bach, M. Spatial Distribution of Integrated Nitrate Reduction across the Unsaturated Zone and the Groundwater Body in Germany. Water 2020, 12, 2456. https://doi.org/10.3390/w12092456
Knoll L, Häußermann U, Breuer L, Bach M. Spatial Distribution of Integrated Nitrate Reduction across the Unsaturated Zone and the Groundwater Body in Germany. Water. 2020; 12(9):2456. https://doi.org/10.3390/w12092456
Chicago/Turabian StyleKnoll, Lukas, Uwe Häußermann, Lutz Breuer, and Martin Bach. 2020. "Spatial Distribution of Integrated Nitrate Reduction across the Unsaturated Zone and the Groundwater Body in Germany" Water 12, no. 9: 2456. https://doi.org/10.3390/w12092456
APA StyleKnoll, L., Häußermann, U., Breuer, L., & Bach, M. (2020). Spatial Distribution of Integrated Nitrate Reduction across the Unsaturated Zone and the Groundwater Body in Germany. Water, 12(9), 2456. https://doi.org/10.3390/w12092456