Assessing Hydrological Vulnerability to Future Droughts in a Mediterranean Watershed: Combined Indices-Based and Distributed Modeling Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrological Model
2.3. Drought Indices
2.4. Datasets
2.4.1. Projected Climate Variables
2.4.2. SWAT Inputs
2.4.3. Drought Indices Inputs
2.5. Methodology
3. Results and Discussion
3.1. SWAT Performance
3.2. Future Climate
3.2.1. Temperature
3.2.2. Precipitation
3.3. Droughts Characteristics
3.3.1. Historic Drought Propagation
3.3.2. Future Droughts
3.4. Droughts Impacts
3.4.1. Temporal Distribution
3.4.2. Spatial Extent
4. Conclusions and Summary
Author Contributions
Funding
Conflicts of Interest
References
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectorial Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Pannel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; p. 1132. [Google Scholar]
- Gosling, S.N. The likelihood and potential impact of future change in the large-scale climate-earth system on ecosystem services. Environ. Sci. Policy 2013, 27, S15–S31. [Google Scholar] [CrossRef]
- Flandroy, L.; Poutahidis, T.; Berg, G.; Clarke, G.; Dao, M.-C.; Decaestecker, E.; Furman, E.; Haahtela, T.; Massart, S.; Plovier, H.; et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total Environ. 2018, 627, 1018–1038. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Pannel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- IPCC. IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- IPCC. Impacts of 1.5 °C Global Warming on Natural and Human Systems; United Nations Framework Convention on Climate Change (UNFCCC): New York, NY, USA; World Meteorological Organization (WMO): Geneva, Switzerland; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2018. [Google Scholar]
- Mearns, L.O.; Bukovsky, M.; Pryor, S.C.; Magaña, V. Downscaling of Climate Information. In Climate Modelling: Philosophical and Conceptual Issues; Lloyd, A.E., Winsberg, E., Eds.; Springer: Cham, Switzerland, 2018; pp. 199–269. [Google Scholar]
- Trenberth, K.E.; Dai, A.; van der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Chang. 2013, 4, 17–22. [Google Scholar] [CrossRef]
- Sun, F.; Mejia, A.; Zeng, P.; Che, Y. Projecting meteorological, hydrological and agricultural droughts for the Yangtze River basin. Sci. Total Environ. 2019, 696, 134076. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, Y.; Sivakumar, B.; Mu, X.; Zhao, F.; Sun, P.; Sun, Y.; Qiu, L.; Chen, J.; Meng, X.; et al. Climate change-induced drought evolution over the past 50 years in the southern Chinese Loess Plateau. Environ. Model. Softw. 2019, 122, 104519. [Google Scholar] [CrossRef]
- Li, P.; Omani, N.; Chaubey, I.; Wei, X. Evaluation of Drought Implications on Ecosystem Services: Freshwater Provisioning and Food Provisioning in the Upper Mississippi River Basin. Int. J. Environ. Res. Public Health 2017, 14, 496. [Google Scholar] [CrossRef] [Green Version]
- Jun, K.S.; Chung, E.-S.; Sung, J.-Y.; Lee, K.S. Development of spatial water resources vulnerability index considering climate change impacts. Sci. Total Environ. 2011, 409, 5228–5242. [Google Scholar] [CrossRef]
- Guttman, N.B. Comparing the Palmer Drought Index and the Standardized Precipitation Index1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 113–121. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- García-Herrera, R.; Garrido-Perez, J.M.; Barriopedro, D.; Ordóñez, C.; Vicente-Serrano, S.M.; Nieto, R.; Gimeno, L.; Sorí, R.; Yiou, P. The European 2016/17 Drought. J. Clim. 2019, 32, 3169–3187. [Google Scholar] [CrossRef]
- Kang, H.; Sridhar, V. Combined statistical and spatially distributed hydrological model for evaluating future drought indices in Virginia. J. Hydrol. Reg. Stud. 2017, 12, 253–272. [Google Scholar] [CrossRef]
- Tsakiris, G.; Loukas, A.; Pangalou, D.; Vangelis, H.; Tigkas, D.; Rossi, G.; Cancelliere, A. Drought characterization [Part1. Components of drought planning. 1.3. Methodological component]. In Drought Management Guidelines Technical Annex; Iglesias, A., Moneo, M., López-Francos, A., Eds.; CIHEAM/EC MEDA Water: Zaragoza, Spain, 2007; Volume 58, pp. 85–102. [Google Scholar]
- Pathak, A.A.; Dodamani, B.M. Comparison of two hydrological drought indices. Perspect. Sci. 2016, 8, 626–628. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, S.; Edwards, D.R.; Yu, Y.; Hamidisepehr, A. An Assessment of Climate Change Impacts on Future Water Availability and Droughts in the Kentucky River Basin. Environ. Process. 2017, 4, 477–507. [Google Scholar] [CrossRef]
- Lakshmi, V.; Piechota, T.; Narayan, U.; Tang, C. Soil moisture as an indicator of weather extremes. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hejazi, M.; Cai, X.; Valocchi, A.J. Climate change impact on meteorological, agricultural, and hydrological drought in central Illinois. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Hoerling, M.; Eischeid, J. Past peak water in the Southwest. Southwest Hydrol. 2007, 6, 5. [Google Scholar]
- Leng, G.; Tang, Q.; Rayburg, S. Climate change impacts on meteorological, agricultural and hydrological droughts in China. Glob. Planet. Chang. 2015, 126, 23–34. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment-PartI. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Seneviratne, S.I. Anthropogenic climate change affects meteorological drought risk in Europe. Environ. Res. Lett. 2016, 11, 044005. [Google Scholar] [CrossRef]
- WB. Adaptation au Changement Climatique et aux Désastres Naturels des Villes d’Afrique du Nord. Phase 1: Evaluation des Risques en Situation Actuelle et À l’Horizon 2030 Pour la Vallée du Bouregreg; World Bank: Washington, DC, USA, 2011. [Google Scholar]
- IRES. Anticipation et Gestion des Risques D’evenements Climatiques Extremes et de Catastrophes Naturelles au Maroc; Royal Institute for Strategic Studies (IRES): Hay Riad Rabat, Morocco, 2014. [Google Scholar]
- El Khatri, S.; El Hairech, T. Drought Conditions and Management Strategies in Morocco; WMO: Geneva, Switzerland, 2014. [Google Scholar]
- Balaghi, R.; Badjeck, M.C.; Bakari, D.; De Pauw, E.; De Wit, A.; Defourny, P.; Donato, S.; Gommes, R.; Jlibene, M.; Ravelo, A.C.; et al. Managing Climatic Risks for Enhanced Food Security: Key Information Capabilities. Procedia Environ. Sci. 2010, 1, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Gommes, R.; ElHairech, T.; Rosillon, D.; Balaghi, R.; Kanamaru, H. Les Futurs Possibles. Available online: https://sites.google.com/site/aridoculture/home/climat/changement-climatique/ (accessed on 12 March 2020).
- Schilling, J.; Hertig, E.; Tramblay, Y.; Scheffran, J. Climate change vulnerability, water resources and social implications in North Africa. Reg. Environ. Chang. 2020, 20, 15. [Google Scholar] [CrossRef] [Green Version]
- Balaghi, R. Le Changement Climatique dans la Region de Fes-Meknes-MAPM; Agence pour le Développement Agricole: Rabat, Marocco, 2017. [Google Scholar]
- ABHBC. Le Plan Directeur d’Amenagement Integré des Ressources en eau du Bassin Hydraulique du Bouregreg et de la Chaouia; Agence du Bassin Hydraulique du Bouregreg et de la Chaouia: Benslimane, Morocco, 2011. [Google Scholar]
- Khattabi, A. The Proposal of IWRM in the Bouregreg Basin and How it Fits with the UNESCO/HELP Policy Program. In Integrated Water Management; Meire, P., Coenen, M., Lombardo, C., Robba, M., Sacile, R., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 179–187. [Google Scholar]
- Rahdou, M. Modelisation Hydrologique du Bassin Versant de Bouregreg (S.S) et Evaluation de Taux d’Envasement du Barrage Sidi Mohamed Ben Abdellah (Maroc) par la Methode Bathymetrique. Master’s Thesis, Faculty of Sciences and Techniques Fes, Fez, Morocco, 2010. [Google Scholar]
- Zellou, B.; Rahali, H. Evaluation de la Pertinence d’Un Modele d’Evolution du Paysage a Eveluer l’Hydraulique des Inondations; Cas d’Etude: La Vallée de Bouregreg. In Proceedings of the 3éme Edition du Colloque International des Utilisateurs du SIG, Oujda, Marocco, 22–23 November 2016. [Google Scholar]
- Khomsi, K.; Mahe, G.; Sinan, M.; Snoussi, M. Evolution des Evenements Chauds Rares dans les Bassins Versants de Tensift et Bouregreg (Maroc) et Identification des Types de Temps Synoptiques Associés. In Reunion Multi-Acteurs, Sur le Bassin du Bouregreg; CERGéo: Rabat, Marocco, 2013. [Google Scholar]
- Belmatrik, S. Dispositif de Prevision des Risques de Crues; ABHBC: Benslimane, Morocco, 2010. [Google Scholar]
- Goussot, E.; BrouYao, T.; Laouina, A. Dynamique de l’occupation du sol et statitistiques agricoles sur le bassin versant du Bouregreg au Maroc. Eur. J. Sci. Res. 2014, 126, 191–205. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, Calibration, and Validation. Am. Soc. Agric. Biol. Eng. 2012, 55, 1491–1508. [Google Scholar]
- Valdivieso, F.R.O. Modelamiento Semi Distribuido con Informacion Escasa, de Una Cuenca Hidrografica Para su Planificacion Territorial. Ph.D. Thesis, University of Alcala-Spain, Madrid, Spain, 2009. [Google Scholar]
- Moriasi, D.N.; Wilson, B.N.; Douglas-Mankin, K.R.; Arnold, J.G.; Gowda, P.H. Hydrologic and water quality models: Use, calibration, and validation. Trans. Asabe 2012, 55, 1147–1241. [Google Scholar] [CrossRef]
- Gassman, P.; Reyes, M.; Green, C.; Arnold, J. The Soil and Water Assessment Tool: Historical development, applications, and future research directions. Am. Soc. Agric. Biol. Eng. 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- USDA-SCS. National Engineering Handbook, V.4; United States Department of Agriculture (USDA): Washington, DC, USA, 1972. [Google Scholar]
- Abbaspour, K.C.; Vejdani, M.; Haghighat, S. SWAT CUP calibration and uncertainty programs for SWAT. In Proceedings of the MODSIM 2007 International Congress on Modelling and Simulation Land, Water and Environmental Management: Integrated Systems for Sustainability, Christchurch, New Zealand, 10–13 December 2007; pp. 1603–1609. [Google Scholar]
- Krause, P.D.; Boyle, O.; Base, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, G.J.; VanLiew, W.M.; Bingner, L.R.; Harmel, D.R.; Veith, L.T. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Dracup, J.A.; Lee, K.S.; Paulson, E.G. On the definition of droughts. Water Resour. Res. 1980, 16, 297–302. [Google Scholar] [CrossRef]
- WMO; GWP. Handbook of Drought Indicators and Indices; Integrated Drought Management Tools and Guidelines; Series 2; WMO: Geneva, Switzerland, 2016. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Hayes, M.J. Drought Indices. In Van Nostrand’s Scientific Encyclopedia; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Palmer, W.C. Meteorological Drought. In Research Paper No.45; US Department of Commerce, Weather Bureau: Washington, DC, USA, 1965. [Google Scholar]
- Institute of Hydrology. Low Flow Studies Report; Institute of Hydrology: Wallingford, UK, 1980. [Google Scholar]
- Nalbantis, I. Evaluation of a Hydrological Drought Index. Eur. Water 2008, 23, 67–77. [Google Scholar]
- Kamali, B.; Houshmand Kouchi, D.; Yang, H.; Abbaspour, K.C. Multilevel Drought Hazard Assessment under Climate Change Scenarios in Semi-Arid Regions—A Case Study of the Karkheh River Basin in Iran. Water 2017, 9, 241. [Google Scholar] [CrossRef]
- Iglesias, L.; Garrote, L.; Cancelliere, A.; Cubillo, F.; Whilhite, D. (Eds.) Coping with Drought Risk in Agriculture and Water Supply Systems; Springer: Dordecht, The Netherlands, 2009; Volume 26, p. 320. [Google Scholar]
- Heim, R.R. A review of tweentieth-century drought indices in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1165. [Google Scholar] [CrossRef] [Green Version]
- Svoboda, M.D.; Hayes, M.J.; Wood, D. Standardized Precipitation Index User Guide; Organization WMO, Ed.; WMO: Geneva, Switzerland, 2012. [Google Scholar]
- Taylor, K.E.; Ronald, J.S.; Gerald, A.M. Overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Brouziyne, Y.; Abouabdillah, A.; Hirich, A.; Zaaboul, R.; Benaabidate, L. Modeling sustainable adaptation strategies toward a climate-smart agriculture in a Mediterranean watershed under projected climate change. Agric. Syst. 2018, 162, 154–163. [Google Scholar] [CrossRef]
- Hadour, A.; Mahé, G.; Meddi, M. Watershed based hydrological evolution under climate change effect: An example from North Western Algeria. J. Hydrol. Reg. Stud. 2020, 28, 100671. [Google Scholar] [CrossRef]
- Wood, A.W.; Leung, L.R.; Srindhar, V.; Lettenmaier, D.P. Hydrologic implications of dynamical and statistical appraoches to downscaling climate model outputs. Clim. Chang. 2004, 62, 189–216. [Google Scholar] [CrossRef]
- Nahar, J.; Johnson, F.; Sharma, A. A rank-based approach for correcting systematic biases in spatial disaggregation of coarse-scale climate simulations. J. Hydrol. 2017, 550, 716–725. [Google Scholar] [CrossRef]
- Fu, J.; Niu, J.; Kang, S.; Adeloye, A.J.; Du, T. Crop production in the Hexi Corridor challenged by future climate change. J. Hydrol. 2019, 579, 124197. [Google Scholar] [CrossRef]
- Ullah, A.; Salehnia, N.; Kolsoumi, S.; Ahmad, A.; Khaliq, T. Prediction of effective climate change indicators using statistical downscaling approach and impact assessment on pearl millet (Pennisetum glaucum L.) yield through Genetic Algorithm in Punjab, Pakistan. Ecol. Indic. 2012, 90, 569–576. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Q.; Yu, H.; Shen, Z.; Sun, P. Double increase in precipitation extremes across China in a 1.5 °C/2.0 °C warmer climate. Sci. Total Environ. 2020, 2020, 140807. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, J. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Du, E.; Vittorio, A.D.; Collins, W.D. Evaluation of hydrologic components of community land model and bias identification. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Fan, K.; Singh, V.P.; Song, C.; Xu, C.-Y.; Sun, P. Is Himalayan-Tibetan Plateau "dying"? Historical estimations and future trends of surface soil moisture. Sci. Total Environ. 2019, 658, 374–384. [Google Scholar] [CrossRef] [PubMed]
- FAO. Harmonized World Soil Database; Version 1.21; FAO: Rome, Italy; IIASA: Luxenburg, Austria; ISRIC: Wageningen, The Netherlands; ISSCAS: Nanjing, China; JRC: Ispra, Italy, 2013. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Er-Raki, S.; Chehbouni, A.; Khabba, S.; Simonneaux, V.; Jarlan, L.; Ouldbba, A.; Rodriguez, J.C.; Allen, R. Assessment of reference evapotranspiration methods in semi-arid regions:Can weather forecast data be used as alternate of ground meteorological parameters. J. Arid Environ. 2010, 74, 1587–1596. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil and Water Assessment Tool Input/Output File Documentation-Version 2009. Texas Water Resources Institute Technical Report No.365; Texas A&M University System: College Station, TX, USA, 2011. [Google Scholar]
- Brouziyne, Y.; Abouabdillah, A.; Bouabid, R.; Benaabidate, L.; Oueslati, O. SWAT manual calibration and parameters sensetivity analysis in semi-arid watershed in North-western Morocco. Arab. J. Geosci. 2017, 10, 427. [Google Scholar] [CrossRef]
- Chaponnière, A.; Boulet, G.; Chehbouni, A.; Aresmouk, M. Understanding hydrological processes with scarce data in a mountain environment. Hydrol. Process. 2008, 22, 1908–1921. [Google Scholar] [CrossRef] [Green Version]
- Fadil, A.; Rhinane, H.; Kaoukaya, A.; Kharchaf, Y.; Alami Bachir, O. Hydrologic Modeling of Bouregreg Watershed (Morocco) Using GIS and SWAT Model. J. Geogr. Inf. Syst. 2011, 3, 279–289. [Google Scholar] [CrossRef] [Green Version]
- Bouignane, A. Sechresse Dans le Bassin du Sebou Etat Actuel et Perspectives; Agence du Bassin Hydraulique du Sebou: Fes, Marocco, 2010. [Google Scholar]
- Koch, M.; Cherie, N. SWAT-Modeling of impact of future climate change on the hydrology and the water resources in the upper Nile River basin, Ethiopia. In Proceedings of the 6th International Conference on Water Resources and Environment Research, Koblenz, Germany, 3–7 June 2013. [Google Scholar]
- Abouabdillah, A.; Oueslati, O.; De Girolamo, A.M.; Lo Porto, A. Modeling the impact of climate change in a Mediterranean catchment (Merguellil-Tunisia). Fresenius Environ. Bull. 2010, 19, 2334–2347. [Google Scholar]
- Trenberth, K.E.; Fasullo, J.T.; Mackaro, J. Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses. J. Clim. 2011, 24, 4907–4924. [Google Scholar] [CrossRef]
- Deshmukh, A.; Singh, R. Physio-climatic controls on vulnerability of watersheds to climate and land use change across the U.S. Water Resour. Res. 2016, 52, 8775–8793. [Google Scholar] [CrossRef]
- Stewart, I. Connecting physical watershed characteristics to climate sensitivity for California mountain streams. Clim. Chang. 2013, 116, 133–148. [Google Scholar] [CrossRef]
SPI and SDI Value | Class |
---|---|
Value ≥ 2.0 | Extremely wet |
1.5 ≤ value < 2.0 | Very wet |
1.0 ≤ value < 1.5 | Moderately wet |
−1.0 < value < 1.0 | Normal |
−1.5 < value ≤ −1.0 | Moderately dry |
−2.0 ≤ value < −1.5 | severely dry |
value ≤ −2.0 | Extremely dry |
Aguibate Ezziar | Ras Fathia | S.M.Chrif | Ain Loudah | ||
---|---|---|---|---|---|
Calibration | R2 | 0.69 | 0.73 | 0.77 | 0.71 |
NSE | 0.7 | 0.63 | 0.87 | 0.69 | |
PBIAS | 12% | 6% | −10% | −9% | |
Validation | R2 | 0.72 | 0.69 | 0.52 | 0.67 |
NSE | 0.62 | 0.51 | 0.46 | 0.5 | |
PBIAS | 8% | 15% | −8% | −11% |
Wheat | Broad Beans | Olive Trees | |
---|---|---|---|
Calibration | 0.67 | 0.64 | 0.67 |
Validation | 0.86 | 0.68 | 0.8 |
2035–2050 | 2085–2100 | |||
---|---|---|---|---|
RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | |
SPI-12 | 0.81 | 0.89 | 0.85 | 0.81 |
SDI-12 | 0.78 | 0.92 | 0.87 | 0.86 |
2035–2050 | 2085–2100 | |||
---|---|---|---|---|
RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | |
SPI-12 | 2049–2050 | 2045–2046 | 2098–2099 | 2097–2098 |
SDI-12 | 2049–2050 | 2045–2046 | 2098–2099 | 2097–2098 |
Extreme | Severe | Moderate | ||
≤−2 | −2 to −1.5 | −1.5 to −1 | ||
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brouziyne, Y.; Abouabdillah, A.; Chehbouni, A.; Hanich, L.; Bergaoui, K.; McDonnell, R.; Benaabidate, L. Assessing Hydrological Vulnerability to Future Droughts in a Mediterranean Watershed: Combined Indices-Based and Distributed Modeling Approaches. Water 2020, 12, 2333. https://doi.org/10.3390/w12092333
Brouziyne Y, Abouabdillah A, Chehbouni A, Hanich L, Bergaoui K, McDonnell R, Benaabidate L. Assessing Hydrological Vulnerability to Future Droughts in a Mediterranean Watershed: Combined Indices-Based and Distributed Modeling Approaches. Water. 2020; 12(9):2333. https://doi.org/10.3390/w12092333
Chicago/Turabian StyleBrouziyne, Youssef, Aziz Abouabdillah, Abdelghani Chehbouni, Lahoucine Hanich, Karim Bergaoui, Rachael McDonnell, and Lahcen Benaabidate. 2020. "Assessing Hydrological Vulnerability to Future Droughts in a Mediterranean Watershed: Combined Indices-Based and Distributed Modeling Approaches" Water 12, no. 9: 2333. https://doi.org/10.3390/w12092333
APA StyleBrouziyne, Y., Abouabdillah, A., Chehbouni, A., Hanich, L., Bergaoui, K., McDonnell, R., & Benaabidate, L. (2020). Assessing Hydrological Vulnerability to Future Droughts in a Mediterranean Watershed: Combined Indices-Based and Distributed Modeling Approaches. Water, 12(9), 2333. https://doi.org/10.3390/w12092333