Development of Pedo-Transfer Functions for the Saturated Hydraulic Conductivity of Forest Soil in South Korea Considering Forest Stand and Site Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geography of Study Sites
2.2. Soil Physical Properties and Topographic Features
2.3. Multiple Linear Regression for PTFs
2.3.1. Pedo-Transfer Functions (PTFs) in Previous Research
2.3.2. Preprocessing of Explanatory Variables
2.3.3. Detecting Multicollinearity Using the Variance Inflation Factor (VIF)
2.4. Model Assessment
2.5. Sensitivity Analysis
3. Results
3.1. Saturated Hydraulic Conductivity in Forest Soil
3.2. Explanatory Variable Selection
3.3. Categories with Statistical Analysis
3.4. Development of the Pedo-Transfer Function
3.5. Model Sensitivity
4. Discussion
4.1. Different Characteristics of KS in Forest Soil
4.2. KS Differences by Forest Stand, Geological, and Topographical Features
4.3. Relationship between KS and Soil and Topographic Features
4.4. Limitations and Suggestions for Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Araya, S.N.; Ghezzehei, T.A. Using machine learning for prediction of saturated hydraulic conductivity and its sensitivity to soil structural perturbations. Water Resour. Res. 2019, 55, 5715–5737. [Google Scholar] [CrossRef]
- Du, E.; Link, T.E.; Gravelle, J.A.; Hubbart, J.A. Validation and sensitivity test of the distributed hydrology soil-vegetation model (DHSVM) in a forested mountain watershed. Hydrol. Process. 2014, 28, 6196–6210. [Google Scholar] [CrossRef]
- Simunek, J.; Van Genuchten, M.T.; Sejna, M. HYDRUS: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1263–1274. [Google Scholar]
- Beven, K. TOPMODEL: A critique. Hydrol. Process. 1997, 11, 1069–1085. [Google Scholar] [CrossRef]
- Kabat, P.V.; Van den Broek, B.J.; Feddes, R.A. SWACROP: A water management and crop production simulation model. ICID Bull. 1992, 2, 61–83. [Google Scholar]
- Wösten, J.H.M.; Pachepsky, Y.A.; Rawls, W.J. Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 2001, 251, 123–150. [Google Scholar] [CrossRef]
- Keesstra, S.; Mol, G.; De Leeuw, J.; Okx, J.; De Cleen, M.; Visser, S. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land 2018, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerda, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; Van Der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Bouma, J. Using soil survey data for quantitative land evaluation. Adv. Soil Sci. 1989, 9, 177–213. [Google Scholar]
- Wösten, J.H.M. Pedotransfer functions to evaluate soil quality. Dev. Soil Sci. 1997, 25, 221–245. [Google Scholar]
- Jabro, J.D. Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk density data. Trans. ASAE 1992, 35, 557–560. [Google Scholar] [CrossRef]
- Puckett, W.E.; Dane, J.; Hajek, B.F. Physical and mineralogical data to determine soil hydraulic properties. Soil Sci. Soc. Am. J. 1985, 49, 831–836. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.; Romberger, J.S.; Papendick, R.I. Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Am. J. 1986, 50, 1031–1036. [Google Scholar] [CrossRef]
- Julià, M.F.; Monreal, T.E.; del Corral Jiménez, A.S.; Meléndez, E.G. Constructing a saturated hydraulic conductivity map of Spain using pedotransfer functions and spatial prediction. Geoderma 2004, 123, 257–277. [Google Scholar] [CrossRef]
- Wösten, J.H.M.; Lilly, A.; Nemes, A.; Le Bas, C. Development and use of a database of hydraulic properties of European soils. Geoderma 1999, 90, 169–185. [Google Scholar] [CrossRef]
- Yang, H.; Choi, H.T.; Lim, H. Effects of forest thinning on the long-term runoff changes of coniferous forest plantation. Water 2019, 11, 2301. [Google Scholar] [CrossRef] [Green Version]
- Dane, J.H.; Puckett, W. Field soil hydraulic properties based on physical and mineralogical information. In International Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils; University of California: Riverside, CA, USA, 1994; pp. 389–403. [Google Scholar]
- Chirico, G.B.; Medina, H.; Romano, N. Functional evaluation of PTF prediction uncertainty: An application at hillslope scale. Geoderma 2010, 155, 193–202. [Google Scholar] [CrossRef]
- Young, M.H.; Caldwell, T.G.; Meadows, D.G.; Fenstermaker, L.F. Variability of soil physical and hydraulic properties at the Mojave Global Change Facility, Nevada: Implications for water budget and evapotranspiration. J. Arid Environ. 2009, 73, 733–744. [Google Scholar] [CrossRef]
- Sorensen, R.; Zinko, U.; Seibert, J. On the calculation of the topographic wetness index: Evaluation of different methods based on field observation. Hydrol. Earth. Syst. Sci. 2006, 10, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Campbell, G.S.; Shiozawa, S. Prediction of hydraulic properties of soils using particle-size distribution and bulk density data. In International Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils; University of California: Riverside, CA, USA, 1992; pp. 317–328. [Google Scholar]
- Perie, C.; Ouimet, R. Organic carbon, organic matter and bulk density relationships in boreal forest soils. Can. J. Soil Sci. 2008, 88, 315–325. [Google Scholar] [CrossRef]
- Prévost, M. Predicting soil properties from organic matter content following mechanical site preparation of forest soils. Soil Sci. Soc. Am. J. 2004, 68, 943–949. [Google Scholar] [CrossRef]
- Burch, W.H.; Jones, R.H.; Mou, P.; Mitchell, R.J. Root system development of single and mixed plant functional type communities following harvest in a pine-hardwood forest. Can. J. Soil Sci. 1997, 27, 1753–1764. [Google Scholar] [CrossRef]
- Cerda, A.; Borja, M.E.L.; Ubeda, X.; Matinez-Murillo, J.F.; Keesstra, S. Pinus halepensis M. versus Quercus ilex subsp. Rotundifolia L. runoff and soil erosion at pedon scale under natural rainfall in Eastern Spain three decades after a forest fire. Forest Ecol. Manag. 2017, 400, 447–456. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.D.; Van Dam, O.; Verstraeten, G.V.; Van Huissteden, J. Changing sediment dynamics due to natural reforestation in the Dragonja catchment, SW Slovenia. Catena 2009, 78, 60–71. [Google Scholar] [CrossRef]
- Piaszczyk, W.; Lasota, J.; Błońska, E. Effect of organic matter released from deadwood at different decomposition stages on physical properties of forest soil. Forests 2020, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Yue, C.; Huang, Y.; Wenjuan, S.U.N. Using organic matter and pH to estimate the bulk density of afforested/reforested soils in northwest and northeast China. Pedosphere 2017, 27, 890–900. [Google Scholar]
- Jonsson, B.G.; Ekström, M.; Esseen, P.A.; Grafström, A.; Ståhl, G.; Westerlund, B. Dead wood availability in managed Swedish forests-Policy outcomes and implications for biodiversity. Forest Ecol. Manag. 2016, 376, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Plaster, R.W.; Sherwood, W.C. Bedrock weathering and residual soil formation in Central Virginia. Geol. Soc. Am. Bull. 1971, 82, 2813–2826. [Google Scholar] [CrossRef]
- Martin, W.K.E.; Timmer, V.R. Capturing spatial variability of soil and litter properties in a forest stand by landform segmentation procedures. Geoderma 2006, 132, 169–181. [Google Scholar] [CrossRef]
- Meinert, D.; Nigh, T.; Kabrick, J. Landforms, geology and soils of the MOFEP study sites. In Missouri Pzark Forest Ecosystem Project Symposium: An Experimental Approach to Landscape Research; General Technical Report NC-193; U.S. Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 1997; pp. 56–68. [Google Scholar]
- Nemes, A.; Rawls, W.J.; Pachepsky, Y.A. Influence of organic matter on the estimation of saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 2005, 69, 1330–1337. [Google Scholar] [CrossRef]
- Jin, X.; Wang, S.; Yu, N.; Zou, H.; An, J.; Zhang, Y.; Wnag, J.; Zhang, Y. Spatial predictions of the permanent wilting point in arid and semi-arid regions of Northeast China. J. Hydrol. 2018, 564, 367–375. [Google Scholar] [CrossRef]
Soil Properties | Abb. | Unit | Min | Mean | Max | Std. | Skew. | Kurt. |
---|---|---|---|---|---|---|---|---|
Logarithmized Saturated Hydraulic Conductivity | Ln() | cm day−1 | 0.37 | 6.57 | 8.98 | 1.21 | −1.12 | 4.60 |
Bulk density | g cm−3 | 0.45 | 1.03 | 1.59 | 0.19 | 0.12 | 2.78 | |
Sand fraction | Sand | % | 6.24 | 43.64 | 90.96 | 15.39 | 0.22 | 2.62 |
Silt fraction | Silt | % | 1.46 | 33.01 | 81.36 | 12.66 | 0.07 | 2.39 |
Clay fraction | Clay | % | 3.21 | 23.35 | 86.72 | 9.96 | 1.47 | 7.56 |
Organic matter | OM | % | 2.08 | 9.16 | 29.71 | 3.53 | 1.09 | 4.94 |
Classification | Definition |
---|---|
Flat | A flat area with a slope of less than 5 degrees |
Gentle slope | A hill with a slope of less than 300 m |
Lower concave segment | The lower part of the mountain with a concave shape |
Cliff face | The middle part of the mountain with a slope |
Upper convex segment | The upper part of the mountaintop |
Reference | Required Soil Properties for Estimation | Land Use Types | |
---|---|---|---|
Puckett et al. [12] | mm h−1 | Clay | The lower coastal plain |
Campbell and Shiozawa [21] | mm h−1 | Sand, Clay | na |
Jarbro [11] | cm day−1 | Silt, Clay, | na |
Dane and Puckett [17] | mm h−1 | Clay | The lower coastal plain |
Wosten et al. [15] | cm day−1 | Silt, Clay, Organic matter, | na |
Julia et al. [14] | mm h−1 | Sand, Clay, Organic matter | na |
Soil Properties | Puckett et al. | Campbell and Shiozawa | Jarbro | Dane and Puckett | Woesten et al. | Julia et al. | This Study | |
---|---|---|---|---|---|---|---|---|
Sand (%) | min | 34.6 | 9.0 | 17.0 | 34.6 | 0.8 | 14.0 | 6.2 |
max | 88.5 | 89.0 | 96.0 | 88.5 | 58.0 | 94.2 | 91.0 | |
Silt (%) | min | 7.4 | na | 0.2 | 7.4 | 0 | na | 1.5 |
max | 35.8 | 52.0 | 35.8 | 23.3 | 81.4 | |||
Clay (%) | min | 1.4 | 5.0 | 1.0 | 1.4 | 0 | 2.3 | 3.2 |
max | 42.1 | 47.0 | 44.0 | 42.1 | 18.7 | 54.1 | 86.7 | |
Bulk density (g cm−3) | min | 1.52 | na | 1.26 | 1.52 | 0.95 | na | 0.45 |
max | 1.86 | 1.97 | 1.86 | 1.58 | 1.59 | |||
(cm day−1) | min | na | na | −2.90 | na | −0.76 | na | 0.37 |
max | 8.34 | 3.91 | 8.98 |
Selected Explanatory Variables | PCC | p-Value | VIF before the Removal | Multi-Collinearity | VIF after the Removal | |
---|---|---|---|---|---|---|
Soil properties | (-) | −0.46 | <0.01 | 2.25 | X | 2.25 |
ln(sand) (%) | 0.14 | <0.01 | 16.67 | O | 1.67 | |
Silt2 (%) | −0.08 | <0.01 | 12.78 | O; removed | - | |
Clay2 (%) | −0.14 | <0.01 | 7.87 | O | 1.48 | |
ln(OM) (%) | 0.26 | <0.01 | 1.89 | X | 1.87 | |
Topographic feature | Elevation (m) | −0.05 | 0.039 | 1.21 | X | 1.17 |
Slope (%) | −0.23 | <0.01 | 1.11 | X | 1.11 | |
ln(TWI) (-) | 0.09 | <0.01 | 1.46 | X | 1.46 | |
(ln(CA))2 (m2) | 0.07 | <0.01 | 1.07 | X | 1.07 | |
Plan curvature | −0.08 | <0.01 | 3.77 | X | 3.77 | |
Profile curvature | −0.08 | <0.01 | 3.84 | X | 3.83 |
Classification | N | Post Hoc Analysis | F-Value | p-Value | |||
---|---|---|---|---|---|---|---|
Forest type | Coniferous | 714 | 632.70 | 6.45 | a | 14.14 | <0.01 |
Broadleaf | 550 | 796.32 | 6.68 | b | |||
Mixed | 192 | 812.41 | 6.70 | b | |||
Bedrock | Igneous | 331 | 658.52 | 6.49 | a | 13.46 | <0.01 |
Sedimentary | 329 | 454.86 | 6.12 | a | |||
Metamorphic | 796 | 888.91 | 6.79 | b | |||
Landform | Flat | 175 | 454.86 | 6.12 | a | 20.38 | <0.01 |
Gentle slope | 209 | 550.04 | 6.31 | a | |||
LCS | 633 | 992.27 | 6.90 | b | |||
Cliff face | 237 | 658.52 | 6.49 | a | |||
UCS | 202 | 487.85 | 6.19 | a | |||
Soil layer | Topsoil | 728 | 880.07 | 6.78 | a | 20.99 | <0.01 |
Subsoil | 728 | 578.25 | 6.36 | b |
Categories | Forest Type | Bedrock | Landform | Soil Layer | Number of Soil Samples |
---|---|---|---|---|---|
1 | Coniferous | I & S | Other LF | Subsoil | 130 |
2 | Coniferous | I & S | Other LF | Topsoil | 132 |
3 | Coniferous | I & S | L.C.S. | Subsoil | 51 |
4 | Coniferous | I & S | L.C.S. | Topsoil | 51 |
5 | Coniferous | Metamorphic | Other LF | Subsoil | 84 |
6 | Coniferous | Metamorphic | Other LF | Topsoil | 84 |
7 | Coniferous | Metamorphic | L.C.S. | Subsoil | 91 |
8 | Coniferous | Metamorphic | L.C.S. | Topsoil | 91 |
9 | B & M | I & S | Other LF | Subsoil | 109 |
10 | B & M | I & S | Other LF | Topsoil | 110 |
11 | B & M | I & S | L.C.S. | Subsoil | 39 |
12 | B & M | I & S | L.C.S. | Topsoil | 38 |
13 | B & M | Metamorphic | Other LF | Subsoil | 87 |
14 | B & M | Metamorphic | Other LF | Topsoil | 87 |
15 | B & M | Metamorphic | L.C.S. | Subsoil | 137 |
16 | B & M | Metamorphic | L.C.S. | Topsoil | 135 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
−4.899 | −3.988 | −4.274 | −2.890 | −3.163 | −3.452 | −4.875 | −1.325 | −3.852 | −3.939 | −6.909 | −4.797 | −4.589 | −2.265 | −1.693 | −0.666 | |
ln(Sand) | 0.803 | 0.748 | 1.553 | 0.690 | 0.634 | 0.889 | 1.867 | 1.269 | 0.858 | 0.543 | −0.003 | −0.248 | 0.731 | 0.502 | 0.768 | −0.300 |
Clay2 * | 1.752 | 1.094 | 6.362 | 0.004 | 1.129 | 2.227 | −1.251 | −1.255 | 2.435 | 1.116 | −5.136 | −6.104 | 1.064 | 3.735 | 2.554 | −2.392 |
ln(OM) | −0.158 | 0.314 | 1.201 | −0.219 | −0.516 | −0.016 | −0.470 | 0.073 | −1.209 | −0.852 | −1.934 | −0.766 | −1.764 | −0.659 | −0.124 | −0.019 |
Intercept | 8.730 | 7.042 | 2.570 | 7.207 | 8.503 | 6.615 | 5.758 | 3.374 | 9.527 | 10.433 | 18.003 | 14.270 | 11.948 | 8.270 | 5.942 | 9.317 |
Categories | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
−3.499 | −2.753 | −3.147 | −3.531 | −2.385 | −3.157 | −3.402 | −0.991 | −4.559 | −3.945 | −4.622 | −3.496 | −3.675 | −2.469 | −1.793 | −0.774 | |
ln(Sand) | 1.018 | 1.168 | 0.955 | 0.793 | 0.524 | 0.637 | 1.159 | 1.029 | 0.930 | 0.724 | −0.865 | 0.006 | 1.323 | 0.686 | 1.233 | −0.118 |
Clay2 * | 1.266 | 2.294 | −3.235 | −2.111 | −2.267 | −0.532 | −4.992 | −1.668 | 2.473 | 3.831 | −9.888 | −3.558 | 3.744 | 7.769 | 4.963 | −1.178 |
ln(OM) | 0.978 | 1.035 | 0.215 | 0.669 | 0.002 | −0.386 | 0.186 | 0.204 | −1.055 | −1.368 | −1.402 | −0.412 | −0.675 | −0.927 | −0.205 | 0.012 |
Elevation * | −0.505 | −1.193 | 0.348 | −0.929 | 0.398 | 0.546 | −1.006 | −0.127 | −0.466 | −0.348 | 0.882 | 3.129 | −1.409 | −0.675 | −1.291 | −0.031 |
Slope | −0.031 | −0.041 | −0.051 | −0.060 | −0.030 | −0.027 | −0.014 | −0.019 | −0.034 | −0.007 | −0.104 | −0.060 | −0.002 | 0.005 | −0.017 | 0.000 |
ln(TWI) | −0.078 | −0.049 | −0.263 | −0.284 | 0.128 | 0.062 | 0.007 | −0.079 | 0.133 | 0.047 | 0.205 | −0.116 | 0.248 | 0.253 | −0.006 | 0.039 |
CA2 * | −0.208 | 0.530 | 1.136 | 1.097 | 0.354 | 1.449 | 0.754 | 1.232 | 0.021 | 0.615 | −1.471 | 0.503 | 1.227 | 2.011 | −0.418 | 0.207 |
Plan curvature | 0.903 | 0.281 | −0.001 | −1.342 | 0.921 | −0.838 | 0.312 | −0.124 | −1.077 | −2.362 | −0.021 | 0.690 | 0.360 | −0.388 | −0.089 | −0.560 |
Profile curvature | −0.448 | −0.312 | −0.392 | 0.574 | −0.433 | 0.660 | 0.049 | 0.249 | 0.725 | 1.432 | −0.642 | −1.495 | 0.145 | 0.672 | −0.170 | 0.182 |
Intercept | 5.260 | 3.769 | 7.480 | 7.714 | 7.386 | 8.366 | 6.123 | 4.108 | 10.514 | 10.847 | 19.924 | 11.621 | 5.714 | 7.264 | 5.145 | 8.404 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, H.; Yang, H.; Chun, K.W.; Choi, H.T. Development of Pedo-Transfer Functions for the Saturated Hydraulic Conductivity of Forest Soil in South Korea Considering Forest Stand and Site Characteristics. Water 2020, 12, 2217. https://doi.org/10.3390/w12082217
Lim H, Yang H, Chun KW, Choi HT. Development of Pedo-Transfer Functions for the Saturated Hydraulic Conductivity of Forest Soil in South Korea Considering Forest Stand and Site Characteristics. Water. 2020; 12(8):2217. https://doi.org/10.3390/w12082217
Chicago/Turabian StyleLim, Honggeun, Hyunje Yang, Kun Woo Chun, and Hyung Tae Choi. 2020. "Development of Pedo-Transfer Functions for the Saturated Hydraulic Conductivity of Forest Soil in South Korea Considering Forest Stand and Site Characteristics" Water 12, no. 8: 2217. https://doi.org/10.3390/w12082217