A Climatological Interpretation of Precipitation δ18O across Siberia and Central Asia
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
4. Results
4.1. Seasonal Variations of δ18OP
4.2. Relationship between δ2HP and δ18OP
5. Discussion
5.1. Relationship between Temperature and δ18Op
5.2. Relationship between Precipitation Amount and δ18Op
5.3. Relationship between EZCI and δ18OP
5.4. Inter-Annual Variations of δ18OP
5.5. Relationship between NAO and δ18OW
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Site | R(TP) | n |
---|---|---|
Amderma | 0.20 * | 122 |
Bagdarin | 0.67 ** | 55 |
Barabinsk | 0.34 ** | 60 |
Enisejsk | 0.47 ** | 128 |
Khanty-Mansiysk | 0.49 ** | 60 |
Novosibirsk | 0.67 * | 12 |
Olenek | 0.62 ** | 59 |
Pechora | 0.38 ** | 129 |
Perm | 0.30 ** | 209 |
Qiqihar | 0.66 ** | 52 |
Salekhard | 0.58 ** | 191 |
Ulaanbaatar | 0.59 ** | 114 |
Wulumuqi | 0.41 ** | 152 |
References
- Cai, Y.; Chiang, J.C.H.; Breitenbach, S.F.M.; Tan, L.; Cheng, H.; Edwards, R.L.; An, Z. Holocene moisture changes in western China, Central Asia, inferred from stalagmites. Quat. Sci. Rev. 2017, 158, 15–28. [Google Scholar] [CrossRef] [Green Version]
- IAEA/WMO. Global Network of Isotopes in Precipitation. The GNIP Database. Available online: https://nucleus.iaea.org/wiser (accessed on 25 June 2020).
- Rozanski, K.; Araguas-Araguas, L.; Gonfiantini, R. Isotopic Patterns in Modern Global Precipitation. In Climate Change in Continental Isotopic Records; Geophysical Monograph 78; Swart, P.K., Lohmann, K.C., Mckenzie, J., Savin, S., Eds.; American Geophysical Union: Washington, DC, USA, 1993; pp. 1–36. [Google Scholar] [CrossRef]
- Terzer, S.; Wassenaar, L.I.; Araguás-Araguás, L.J.; Aggarwal, P.K. Global isoscapes for δ18O and δ2H in precipitation: Improved prediction using regionalized climatic regression models. Hydrol. Earth Syst. Sci. 2013, 17, 4713–4728. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate. Science 1992, 258, 981–985. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, G.; Heimann, M. Water isotope modeling in the Asian monsoon region. Quat. Int. 1997, 37, 115–128. [Google Scholar] [CrossRef]
- Araguás-Araguás, L.; Froehlich, K.; Rozanski, K. Stable isotope composition of precipitation over southeast Asia. J. Geophys. Res. Atmos. 1998, 103, 28721–28742. [Google Scholar] [CrossRef]
- Yamanaka, T.; Tsujimura, M.; Oyunbaatar, D.; Davaa, G. Isotopic variation of precipitation over eastern Mongolia and its implication for the atmospheric water cycle. J. Hydrol. 2007, 333, 21–34. [Google Scholar] [CrossRef]
- Tang, Y.; Pang, H.; Zhang, W.; Li, Y.; Wu, S.; Hou, S. Effects of changes in moisture source and the upstream rainout on stable isotopes in summer precipitation—A case study in Nanjing, East China. Hydrol. Earth Syst. Sci. 2015, 12, 3919–3944. [Google Scholar] [CrossRef] [Green Version]
- Cruz, F.W.; Karmann, I.; Viana, O., Jr.; Burns, S.J.; Ferrari, J.A.; Vuille, M.; Sial, A.N.; Moreira, M.Z. Stable isotope study of cave percolation waters in subtropical Brazil: Implications for paleoclimate inferences from speleothems. Chem. Geol. 2005, 220, 245–262. [Google Scholar] [CrossRef]
- Krklec, K.; Domínguez-Villar, D.; Lojen, S. The impact of moisture sources on the oxygen isotope composition of precipitation at a continental site in central Europe. J. Hydrol. 2018, 561, 810–821. [Google Scholar] [CrossRef]
- Aizen, V.B.; Aizen, E.; Fujita, K.; Nikitin, S.A.; Kreutz, K.J.; Takeuchi, L.N. Stable-isotope time series and precipitation origin from firn-core and snow samples, Altai glaciers, Siberia. J. Glaciol. 2005, 51, 637–654. [Google Scholar] [CrossRef] [Green Version]
- Blyakharchuk, T.A.; Wright, H.E.; Borodavko, P.S.; Knaap, W.O.V.D.; Ammann, B. Late Glacial and Holocene vegetational history of the Altai Mountains (southwestern Tuva Republic, Siberia). Palaeogeogr. Palaeocl. 2007, 245, 518–534. [Google Scholar] [CrossRef]
- Opel, T.; Dereviagin, A.Y.; Meyer, H.; Schirrmeister, L.; Wetterich, S. Palaeoclimatic Information from Stable Water Isotopes of Holocene Ice Wedges on the Dmitrii Laptev Strait, Northeast Siberia, Russia. Permafr. Periglac. Process. 2010. [Google Scholar] [CrossRef] [Green Version]
- Butzin, M.; Werner, M.; Masson-Delmotte, V.; Risi, C.; Frankenberg, C.; Gribanov, K.; Jouzel, J.; Zakharov, V.I. Variations of oxygen-18 in West Siberian precipitation during the last 50 years. Atmos. Chem. Phys. 2014, 14, 5853–5869. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.L.; Lachniet, M.S.; Chervyatsova, O.; Asmerom, Y.; Polyak, V.J. Holocene warming in western continental Eurasia driven by glacial retreat and greenhouse forcing. Nat. Geosci. 2017, 10, 430–435. [Google Scholar] [CrossRef]
- Meyer, H.; Opel, T.; Laepple, T.; Dereviagin, A.Y.; Hoffmann, K.; Werner, M. Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene. Nat. Geosci. 2015, 8, 122. [Google Scholar] [CrossRef] [Green Version]
- Aizen, E.M.; Aizen, V.B.; Takeuchi, N.; Mayewski, P.A.; Grigholm, B.; Joswiak, D.R.; Nikitin, S.A.; Fujita, K.; Nakawo, M.; Zapf, A.; et al. Abrupt and moderate climate changes in the mid-latitudes of Asia during the Holocene. J. Glaciol. 2016, 62, 411–439. [Google Scholar] [CrossRef] [Green Version]
- Rao, Z.G.; Huang, C.; Xie, L.; Shi, F.; Zhao, Y.; Cao, J.; Gou, X.; Chen, J.; Chen, F. Long-term summer warming trend during the Holocene in central Asia indicated by alpine peat α-cellulose δ13C record. Quat. Sci. Rev. 2019, 203, 56–67. [Google Scholar] [CrossRef]
- Wolff, C.; Plessen, B.; Dudashvilli, A.S.; Breitenbach, S.F.M.; Cheng, H.; Edwards, L.R.; Strecker, M.R. Precipitation evolution of Central Asia during the last 5000 years. Holocene 2016, 27, 142–154. [Google Scholar] [CrossRef]
- Cheng, H.; Spotl, C.; Breitenbach, S.F.; Sinha, A.; Wassenburg, J.A.; Jochum, K.P.; Scholz, D.; Li, X.; Yi, L.; Peng, Y.; et al. Climate variations of Central Asia on orbital to millennial timescales. Sci. Rep. 2016, 5, 36975. [Google Scholar] [CrossRef] [Green Version]
- Rao, Z.G.; Wu, D.D.; Shi, F.X.; Guo, H.C.; Cao, J.T.; Chen, F.H. Reconciling the ‘westerlies’ and ‘monsoon’ models: A new hypothesis for the Holocene moisture evolution of the Xinjiang region, NW China. Earth Sci. Rev. 2019, 191, 263–272. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Li, H.-C.; Yin, J.-J.; Mii, H.-S.; Blyakharchuk, T.A.; Shen, C.-C. The Holocence Climate in South Siberia and Its Linkage to Siberia High, Russia; EGU: Munich, Germany, 2019. [Google Scholar]
- Ye, Y.-S.; Li, H.-C.; Mii, H.-S.; Blyakharchuk, T.A.; Shen, C.-C.; Tsai, H.-S. High Resolution Climate Record in South Siberia during MIS3 from a Stalagmite in the Altai Mountain Area, Russia; EGU: Munich, Germany, 2019. [Google Scholar]
- Kurita, N.; Yoshida, N.; Inoue, G.; Chayanova, E.A. Modern isotope climatology of Russia: A first assessment. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Yu, W.S.; Tian, L.D.; Risi, C.; Yao, T.D.; Ma, Y.M.; Zhao, H.B.; Zhu, H.F.; He, Y.; Xu, B.Q.; Zhang, H.B.; et al. δ18O records in water vapor and an ice core from the eastern Pamir Plateau: Implications for paleoclimate reconstructions. Earth Planet. Sci. Lett. 2016, 456, 146–156. [Google Scholar] [CrossRef]
- Aizen, V.; Aizen, E.; Melack, J.; Martma, T. Isotopic measurements of precipitation on central Asian glaciers (Southeastern Tibet, northern Himalayas, central Tien Shan). J. Geophys. Res. Atmos. 1996, 101, 9185–9196. [Google Scholar] [CrossRef] [Green Version]
- Numaguti, A. Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res. Atmos. 1999, 104, 1957–1972. [Google Scholar] [CrossRef]
- Henderson, K.; Laube, A.; Gäggeler, H.W.; Olivier, S.; Papina, T.; Schwikowski, M. Temporal variations of accumulation and temperature during the past two centuries from Belukha ice core, Siberian Altai. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Kurita, N. Relationship between the variation of isotopic ratios and the source of summer precipitation in eastern Siberia. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Li, J.P.; Wang, J.X.L. A modified zonal index and its physical sense. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Peng, S.; Mysak, L.A. A teleconnection study of interannual sea surface temperature fluctuations in the northern North Atlantic and precipitation and runoff over Western Siberia. J. Clim. 1993, 6, 876–885. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.B.; Xu, B.Q.; Yao, T.D.; Wu, G.J.; Lin, S.B.; Gao, J.; Wang, M. Deuterium excess record in a southern Tibetan ice core and its potential climatic implications. Clim. Dyn. 2011, 38, 1791–1803. [Google Scholar] [CrossRef]
- Casado, M.; Ortega, P.; Masson-Delmotte, V.; Risi, C.; Swingedouw, D.; Daux, V.; Genty, D.; Maignan, F.; Solomina, O.; Vinther, B.; et al. Impact of precipitation intermittency on NAO-temperature signals in proxy records. Clim. Past. 2013, 9, 871–886. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. An overview of the North Atlantic Oscillation. In The North Atlantic Oscillation: Climatic Significance and Environmental Impact; Geophysical Monograph 134; American Geophysical Union: Washington, DC, USA, 2003. [Google Scholar] [CrossRef] [Green Version]
- Baldini, L.M.; McDermott, F.; Foley, A.M.; Baldini, J.U.L. Spatial variability in the European winter precipitation δ18O-NAO relationship: Implications for reconstructing NAO-mode climate variability in the Holocene. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Field, R.D. Observed and modeled controls on precipitation δ18O over Europe: From local temperature to the Northern Annular Mode. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Sidorova, O.V.; Siegwolf, R.T.W.; Saurer, M.; Naurzbaev, M.M.; Shashkin, A.V.; Vaganov, E.A. Spatial patterns of climatic changes in the Eurasian north reflected in Siberian larch tree-ring parameters and stable isotopes. Glob. Chang. Biol. 2010, 16, 1003–1018. [Google Scholar] [CrossRef] [Green Version]
- Mischel, S.A.; Scholz, D.; Spötl, C. δ18O values of cave drip water: A promising proxy for the reconstruction of the North Atlantic Oscillation? Clim. Dyn. 2015, 45, 3035–3050. [Google Scholar] [CrossRef]
- Wassenburg, J.A.; Dietrich, S.; Fietzke, J.; Fohlmeister, J.; Jochum, K.P.; Scholz, D.; Richter, D.K.; Sabaoui, A.; Spötl, C.; Lohmann, G.; et al. Reorganization of the North Atlantic Oscillation during early Holocene deglaciation. Nat. Geosci. 2016, 9, 602–605. [Google Scholar] [CrossRef]
- Wang, S.J.; Zhang, M.J.; Crawford, J.; Hughes, C.E.; Du, M.X.; Liu, X.M. The effect of moisture source and synoptic conditions on precipitation isotopes in arid central Asia. J. Geophys. Res. Atmos. 2017, 122, 2667–2682. [Google Scholar] [CrossRef]
- Crawford, J.; Hughes, C.E.; Lykoudis, S. Alternative least squares methods for determining the meteoric water line, demonstrated using GNIP data. J. Hydrol. 2014, 519, 2331–2340. [Google Scholar] [CrossRef]
- Brittingham, A.; Petrosyan, Z.; Hepburn, J.C.; Richards, M.P.; Hren, M.T.; Hartman, G. Influence of the north atlantic oscillation on δD and δ18O in meteoric water in the armenian highland. J. Hydrol. 2019, 575, 513–522. [Google Scholar] [CrossRef]
- Zhang, X.-W. Vertical Distribution of the Transported Quantity of Material and Energy by Airflow. Desert Oasis Meteorol. 2009, 3, 1–5, (In Chinese with English Abstract and Figures). [Google Scholar]
- Bershaw, J.; Penny, S.M.; Garzione, C.N. Stable isotopes of modern water across the Himalaya and eastern Tibetan Plateau: Implications for estimates of paleoelevation and paleoclimate. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Krklec, K.; Domínguez-Villar, D. Quantification of the impact of moisture source regions on the oxygen isotope composition of precipitation over Eagle Cave, central Spain. Geochim. Cosmochim. Acta 2014, 134, 39–54. [Google Scholar] [CrossRef]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133(3465), 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.K. Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: Applications to atmospheric processes and evaporation of lakes. J. Geophys. Res. 1975, 80, 1133–1146. [Google Scholar] [CrossRef]
- Peng, H.-D.; Mayer, B.; Norman, A.-L.; Krouse, H.R. Modelling of hydrogen and oxygen isotope compositions for local precipitation. Tellus B 2005, 57, 273–282. [Google Scholar] [CrossRef]
- Pang, Z.H.; Kong, Y.L.; Froehlich, K.; Huang, T.M.; Yuan, L.J.; Li, Z.Q.; Wang, F.T. Processes affecting isotopes in precipitation of an arid region. Tellus B 2011, 63, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.L.; Zhang, M.J.; Wang, S.J.; Ma, Q.; Zhu, X.F.; Dong, L. Relationship between sub-cloud secondary evaporation and stable isotopes in precipitation of Lanzhou and surrounding area. Quat. Int. 2015, 380–381, 68–74. [Google Scholar] [CrossRef]
- Zhang, J.; Li, T.-Y. “Amount effect” vs. “Circulation effect”: The climate significance of precipitation and stalagmit δ18O in the Asian-Australian monsoon region over the past 1 ka. Quat. Sci. 2018, 38, 1532–1544, (In Chinese with English Abstract and Figures). [Google Scholar] [CrossRef]
- Hoy, A.; Sepp, M.; Matschullat, J. Large-scale atmospheric circulation forms and their impact on air temperature in Europe and northern Asia. Theor. Appl. Climatol. 2012, 113, 643–658. [Google Scholar] [CrossRef]
- Nowosad, M. Variability of the zonal circulation index over Central Europe according to the Lityński method. Geogr. Pol. 2017, 90, 417–430. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.-F.; Zhang, M.-J.; Ma, Q.; Li, Y.-J.; Wang, S.-J.; Wang, B.-L. Characteristics of Stable Isotopes in Precipitation over Northeast China and Its Water Vapor Sources. Environ. Sci. 2012, 33, 2924–2931, (In Chinese with English Abstract and Figures). [Google Scholar] [CrossRef]
- Liu, X.K.; Rao, Z.G.; Zhang, X.J.; Huang, W.; Chen, J.H.; Chen, F.H. Variations in the oxygen isotopic composition of precipitation in the Tianshan Mountains region and their significance for the Westerly circulation. J. Geogr. Sci. 2015, 25, 801–816. [Google Scholar] [CrossRef]
- Johnson, K.R.; Ingram, B.L. Spatial and temporal variability in the stable isotope systematics of modern precipitation in China: Implications for paleoclimate reconstructions. Earth Planet. Sci. Lett. 2004, 220, 365–377. [Google Scholar] [CrossRef] [Green Version]
- Tan, M. Circulation effect: Response of precipitation δ18O to the ENSO cycle in monsoon regions of China. Clim. Dyn. 2014, 42, 1067–1077. [Google Scholar] [CrossRef]
- Li, T.-Y. False amounte effect—A discussion on issue of isotopic climatology. Quat. Sci. 2018, 38, 1545–1548, (In Chinese with English Figures). [Google Scholar] [CrossRef]
- Clarke, M.; Rendell, H.M. Effects of storminess, sand supply and the North Atlantic Oscillation on sand invasion and coastal dune accretion in Western Portugal. Holocene 2006, 16, 341–355. [Google Scholar] [CrossRef]
- Hatvani, I.G.; Erdelyi, D.; Vreca, P.; Kern, Z. Analysis of the Spatial Distribution of Stable Oxygen and Hydrogen Isotopes in Precipitation across the Iberian Peninsula. Water 2020, 12, 481. [Google Scholar] [CrossRef] [Green Version]
- Langebroek, P.M.; Werner, M.; Lohmann, G. Climate information imprinted in oxygen-isotopic composition of precipitation in Europe. Earth Planet. Sci. Lett. 2011, 311, 144–154. [Google Scholar] [CrossRef]
Site | Latitude (°N) | Longitude (°E) | Altitude (m) | Annual Precipitation (mm) | δ18Ow (‰, V-SMOW) | Annual Average Temperature (°C) | Monitoring Period (A.D) | n |
---|---|---|---|---|---|---|---|---|
Amderma | 69.77 | 61.68 | 53 | 443 | −15.5 | −7 | 1980–1990 | 74 |
Murmansk | 68.97 | 33.05 | 46 | 489 | −12.5 | 0.2 | 1980–1990 | 71 |
Olenek | 68.5 | 112.43 | 220 | 300 | −18.7 | −11.8 | 1996–2000 | 36 |
Salekhard | 66.53 | 66.67 | 16 | 446 | −16.5 | −6.2 | 1996–2000 | 58 |
Rovaniemi | 66.5 | 25.76 | 107 | 517 | −13.2 | 2.3 | 2004–2014 | 128 |
Pechora | 65.12 | 57.1 | 56 | 578 | −15 | −1.8 | 1980–1990 | 79 |
Arkhangelsk | 64.58 | 40.5 | 13 | 548 | −12.9 | 1 | 1980–1986 | 78 |
Kuopio | 62.89 | 27.63 | 116 | 670 | −12.8 | 7.8 | 2005–2015 | 132 |
Khanty-Mansiysk | 60.97 | 69.07 | 40 | 563 | −11.6 | −1.3 | 1996–1997 | 13 |
Espoo | 60.18 | 24.83 | 30 | 706 | −11.4 | 6.6 | 2001–2015 | 182 |
St. Petersburg | 59.97 | 30.3 | 4 | 664 | −11.5 | 5.6 | 1980–1989 | 107 |
Kirov | 58.65 | 49.62 | 164 | 653 | −13.4 | 7.1 | 1980–2000 | 102 |
Enisejsk | 58.45 | 92.15 | 78 | 491 | −13.3 | −1.5 | 1990 | 12 |
Perm | 58.01 | 56.18 | 161 | 616 | −12.5 | 2.1 | 1980–1991 | 79 |
Riga | 56.97 | 24.07 | 3 | 661 | −9.7 | 5.6 | 1980–1988 | 98 |
Kalinin | 56.9 | 35.9 | 31 | 649 | −11.8 | 8 | 1881–1988 | 94 |
Moscow | 55.75 | 37.57 | 157 | 695 | −11.1 | 5.4 | 1970–1979 | 64 |
Barabinsk | 55.33 | 78.37 | 120 | 371 | −12.4 | 1.1 | 1996–2000 | 28 |
Novosibirsk | 55.03 | 82.9 | 162 | 422 | −14.6 | 0.9 | 1990 | 12 |
Omsk | 55.01 | 73.38 | 94 | 401 | −13.5 | 1.6 | 1990 | 8 |
Arkona | 54.68 | 13.43 | 42 | 564 | −8.9 | 9 | 1998–2007 | 134 |
Bagdarin | 54.47 | 113.58 | 903 | 438 | −13.7 | −5.3 | 1996–2000 | 34 |
Greifswald | 54.1 | 13.41 | 2 | 635 | −8.6 | 9.2 | 2003–2013 | 132 |
Berlin | 52.47 | 13.4 | 48 | 574 | −8 | 10 | 1978–2012 | 419 |
Irkutsk | 52.27 | 104.35 | 485 | 445 | −12.4 | 0 | 1971–1990 | 14 |
Krakow | 50.06 | 19.85 | 205 | 647 | −9.1 | 8.4 | 1975–2016 | 489 |
Ulaanbaatar | 47.93 | 106.98 | 1338 | 249 | −8.5 | −0.3 | 1998–2001 | 44 |
Qiqihar | 47.38 | 123.92 | 147 | 581 | −10.6 | 4.3 | 1988–1992 | 50 |
Wulumuqi | 43.78 | 87.62 | 918 | 303 | −10.6 | 7.5 | 1986–2003 | 131 |
Site | LMWL | n |
---|---|---|
Amderma | δ2H = 7.62 δ18O + 6.86 | 31 |
Bagdarin | δ2H = 7.84 δ18O − 0.18 | 34 |
Olenek | δ2H = 7.77 δ18O − 2.94 | 36 |
Pechora | δ2H = 7.89 δ18O + 8.14 | 36 |
Perm | δ2H = 8.00 δ18O + 13.43 | 38 |
Qiqihar | δ2H = 7.59 δ18O − 0.14 | 50 |
Salekhard | δ2H = 7.86 δ18O + 1.21 | 58 |
Ulaanbaatar | δ2H = 7.82 δ18O + 1.52 | 44 |
Wulumuqi | δ2H = 6.98 δ18O + 0.43 | 131 |
Site | DJF | MAM | JJA | SON | ALL | n |
---|---|---|---|---|---|---|
Amderma | 0.32 | 0.49 * | 0.08 | 0.62 ** | 0.75 ** | 72 |
Bagdarin | —— | 0.82 * | 0.17 | 0.92 ** | 0.90 ** | 34 |
Barabinsk | 0.49 | 0.96 ** | 0.70 | 0.97 ** | 0.96 ** | 28 |
Enisejsk | —— | —— | —— | —— | 0.88 ** | 12 |
Khanty-Mansiysk | —— | —— | —— | —— | 0.94 ** | 13 |
Novosibirsk | —— | —— | —— | —— | 0.88 ** | 12 |
Olenek | 0.69 * | 0.91 ** | 0.12 | 0.77 | 0.94 ** | 35 |
Pechora | 0.50 * | 0.57 ** | 0.55 * | 0.64 ** | 0.85 ** | 79 |
Perm | 0.49 * | 0.79 ** | 0.31 | 0.42 | 0.79 ** | 79 |
Qiqihar | 0.51 | 0.75 ** | 0.17 | 0.46 | 0.76 ** | 50 |
Salekhard | 0.04 | 0.72 ** | 0.54 * | 0.90 ** | 0.88 ** | 58 |
Ulaanbaatar | 0.41 | 0.89 * | 0.10 | 0.93 ** | 0.84 ** | 44 |
Wulumuqi | —— | 0.71 ** | 0.08 | 0.67 ** | 0.86 ** | 123 |
Site | DJF | MAM | JJA | SON | ALL | n |
---|---|---|---|---|---|---|
Amderma | 0.13 | −0.30 | −0.16 | −0.05 | −0.01 | 72 |
Bagdarin | —— | 0.42 | −0.33 | 0.38 | 0.48 ** | 34 |
Barabinsk | −0.20 | 0.23 | 0.02 | 0.41 | 0.35 | 28 |
Enisejsk | —— | —— | —— | —— | 0.59 * | 12 |
Khanty-Mansiysk | —— | —— | —— | —— | 0.88 ** | 13 |
Novosibirsk | —— | —— | —— | —— | 0.40 | 12 |
Olenek | −0.19 | 0.54 | 0.02 | 0.14 | 0.60 ** | 36 |
Pechora | −0.21 | 0.13 | −0.13 | −0.37 | 0.19 | 79 |
Perm | −0.09 | −0.15 | −0.35 | 0.55 * | 0.15 | 79 |
Qiqihar | −0.25 | 0.16 | −0.11 | 0.48 | 0.47 ** | 50 |
Salekhard | −0.32 | −0.11 | −0.29 | 0.05 | 0.30 * | 58 |
Ulaanbaatar | 0.49 | 0.46 | −0.21 | 0.70 * | 0.63 ** | 25 |
Wulumuqi | −0.02 | 0.03 | −0.30 | 0.10 | 0.34 ** | 123 |
Site | DJF | MAM | JJA | SON | ALL | n |
---|---|---|---|---|---|---|
Amderma | 0.09 | −0.55 * | 0.27 | −0.43 | −0.37 ** | 74 |
Bagdarin | —— | 0.07 | 0.19 | −0.04 | −0.50 ** | 34 |
Barabinsk | 0.74 * | −0.33 | −0.41 | 0.87 * | −0.50 ** | 28 |
Enisejsk | —— | —— | —— | —— | −0.53 | 12 |
Khanty-Mansiysk | —— | —— | —— | —— | −0.41 | 13 |
Novosibirsk | —— | —— | —— | —— | −0.56 | 12 |
Olenek | 0.20 | −0.46 | −0.13 | −0.74 | −0.70 ** | 36 |
Pechora | −0.52 * | −0.03 | −0.55 * | −0.41 | −0.59 ** | 79 |
Perm | 0.18 | −0.43 | 0.15 | −0.40 | −0.37 ** | 79 |
Qiqihar | 0.17 | −0.13 | −0.10 | −0.62 * | −0.44 ** | 50 |
Salekhard | 0.11 | −0.36 | −0.45 | −0.34 | −0.54 ** | 58 |
Ulaanbaatar | −0.42 | 0.39 | 0.12 | 0.36 | −0.19 | 26 |
Wulumuqi | 0.06 | 0.11 | 0.12 | −0.42 * | −0.51 ** | 131 |
Site | RT | RP | RN | Years (A.D) | n |
---|---|---|---|---|---|
Amderma | 0.31 | −0.37 | −0.64 | 1980–1990 | 5 |
Arkhangelsk | 0.70 | 0.35 | 0.00 | 1980–1986 | 7 |
Arkona | −0.02 | −0.62 | −0.26 | 1998–2007 | 10 |
Berlin | 0.33 | −0.16 | −0.05 | 1978–2012 | 35 |
Espoo | 0.67 ** | 0.14 | 0.52 * | 2001–2015 | 15 |
Greifswald | 0.25 | 0.01 | 0.15 | 2003–2013 | 11 |
Kalinin | −0.03 | −0.02 | 0.56 | 1881/1988 | 7 |
Kirov | 0.50 | −0.52 | 0.05 | 1980/2000 | 9 |
Krakow | 0.43 ** | −0.12 | 0.25 | 1975–2016 | 42 |
Kuopio | 0.73 * | 0.45 | 0.62 * | 2005–2015 | 11 |
Moscow | 0.43 | −0.38 | −0.07 | 1970/1979 | 6 |
Murmansk | 0.23 | 0.47 | 0.73 * | 1980/1990 | 8 |
Pechora | 0.61 | −0.43 | −0.89 * | 1980–1990 | 6 |
Perm | −0.56 | −0.02 | −0.46 | 1980–1990 | 5 |
Qiqihar | −0.63 | −0.47 | 0.50 | 1988–1992 | 5 |
Riga | −0.05 | −0.10 | 0.06 | 1980–1988 | 8 |
Rovaniemi | 0.14 | 0.60 | 0.44 | 2004–2014 | 11 |
Salekhard | 0.95 * | −0.21 | 0.51 | 1996–2000 | 5 |
St. Petersburg | 0.27 | −0.04 | 0.13 | 1980–1989 | 9 |
Wulumuqi | −0.29 | 0.27 | −0.36 | 1986–2003 | 12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Li, T.-Y.; Zhang, J.; Wu, Y.; Chen, C.-J.; Huang, R.; Li, J.-Y.; Xiao, S.-Y.; Artemevna Blyakharchuk, T. A Climatological Interpretation of Precipitation δ18O across Siberia and Central Asia. Water 2020, 12, 2132. https://doi.org/10.3390/w12082132
Wang T, Li T-Y, Zhang J, Wu Y, Chen C-J, Huang R, Li J-Y, Xiao S-Y, Artemevna Blyakharchuk T. A Climatological Interpretation of Precipitation δ18O across Siberia and Central Asia. Water. 2020; 12(8):2132. https://doi.org/10.3390/w12082132
Chicago/Turabian StyleWang, Tao, Ting-Yong Li, Jian Zhang, Yao Wu, Chao-Jun Chen, Ran Huang, Jun-Yun Li, Si-Ya Xiao, and Tatiana Artemevna Blyakharchuk. 2020. "A Climatological Interpretation of Precipitation δ18O across Siberia and Central Asia" Water 12, no. 8: 2132. https://doi.org/10.3390/w12082132
APA StyleWang, T., Li, T.-Y., Zhang, J., Wu, Y., Chen, C.-J., Huang, R., Li, J.-Y., Xiao, S.-Y., & Artemevna Blyakharchuk, T. (2020). A Climatological Interpretation of Precipitation δ18O across Siberia and Central Asia. Water, 12(8), 2132. https://doi.org/10.3390/w12082132