Regional Isotopic Signatures of Groundwater in Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methods
3. Results and Discussion
3.1. Stable Isotope Composition of Groundwater in the Karst Area of Croatia
3.2. Stable Isotope Characteristics of Groundwater in the Pannonian Area of Croatia
3.3. Tritium Activity in Groundwater
4. Conclusions
- The composition of groundwater stable isotopes in the Pannonian area of Croatia fits well with the regional meteoric water line for the continental portion of Croatia (RMWL_continent), based on which we conclude that RMWL_continent can be accepted for all future research on the composition of stable isotopes in northern Croatia.
- Although the regional meteoric water line for the coastal part of Croatia (RMWL_coast) was developed according to stable isotopic compositions of precipitation, especially at measuring sites located on the Adriatic coast, it is evident that the line fits well with the composition of the stable isotopes of all analysed karst groundwater. Thus, we conclude that the recharge of the karst aquifers is mainly driven by precipitation introduced by winds blowing from the south of the region as shown by the d-excess, which has a strong Mediterranean influence.
- The composition of the groundwater stable isotopes in the karst part of Croatia agrees well with RMWL_coast, based on which we conclude that RMWL_coast can be used as an accurate reference for all future research on the composition of stable isotopes in the karstic part of Croatia.
- The composition of stable isotopes in the Pannonian part of Croatia forms a unique regional line of Pannonian groundwater.
- The composition of stable isotopes in the karst part of Croatia forms a unique regional line of karst groundwater.
- This article offers a unique summary of data measured over a long period of time and provides a large picture of the stable isotope data found in Croatia. Especially valuable are the insights into the correspondence between the stable isotope data of precipitation and groundwater through LMWLs and local groundwater lines over a large span of time. The fact that this correspondence is best in the karst area is perhaps not a great surprise (since karst areas are known to have the shortest mean residence time), but that the Mediterranean influence is spreading far beyond mountains of a high altitude and corresponds strongly with isotopic groundwater data are findings that will help in further research.
- According to its isotopic composition, almost all the investigated groundwater used in Croatia for various purposes, primarily as drinking water, is modern water, making such water relatively vulnerable to the potential sources of pollution found in the environment. The groundwater that is accumulated in semi-confined aquifers in eastern Croatia is in a better position, as well as the groundwater in the deep carbonate aquifers in northern Croatia, whose age can reach several decades.
- The number of geographical and temporal data points is very large (approximately 100 groundwater measurement locations and 50 precipitation measurement locations, as well as approximately 1000 measurements of the stable isotopes and tritium activity concentrations in groundwater and more than 1000 measurements of the stable isotopes in precipitation), which is significant for all conclusions made.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Atomic Energy Agency (IAEA). Global Network of Isotopes in Precipitation. The GNIP Database. Available online: https://nucleus.iaea.org/wiser (accessed on 10 July 2020).
- Maloszewski, P.; Zuber, A. Determining the turnover time of groundwater systems with the aid of environmental tracers. 1. Models and their applicability. J. Hydrol. 1982, 57, 207–231. [Google Scholar] [CrossRef]
- Maloszewski, P.; Zuber, A. Manual on lumped parameter models used for the interpretation of environmental tracer data in groundwater. In Use of Isotopes for Analysis of Flow and Transport Dynamics in Groundwater Systems; Yutsever, Y., Ed.; IAEA: Vienna, Austria, 2002; pp. 1–50. [Google Scholar]
- Maloszewski, P.; Rauert, W.; Stichler, W.; Herrmann, A. Application of flow models in an alpine catchment area using tritium and deuterium data. J. Hydrol. 1983, 66, 319–330. [Google Scholar] [CrossRef]
- Maloszewski, P.; Rauert, W.; Trimborn, P.; Herrmann, A.; Rau, R. Isotope hydrological study of mean transit times in an alpine basin (Wimbachtal, Germany). J. Hydrol. 1992, 140, 343–360. [Google Scholar] [CrossRef]
- Maloszewski, P.; Stichler, W.; Zuber, A.; Rank, D. Identifying the flow systems in a karst-fissured-porous aquifer, the Schneealpe, Austria, by modelling of environmental 18O and 2H isotopes. J. Hydrol. 2002, 256, 48–59. [Google Scholar] [CrossRef]
- McGuire, K.J.; DeWalle, D.R.; Gburek, W.J. Evaluation of mean residence time in subsurface waters using oxygen-18 fluctuations during drought conditions in the mid-Appalachians. J. Hydrol. 2002, 261, 132–149. [Google Scholar] [CrossRef]
- Rozanski, K.; Dulinski, M. A reconnaissance isotope study of waters in the karst of the Western Tatra mountains. Catena 1988, 15, 289–301. [Google Scholar] [CrossRef]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology; Lewis Publishers: London, UK, 1997; p. 328. [Google Scholar]
- Maloszewski, P.; Moser, H.; Stichler, W.; Bertleff, B.; Hedin, K. Modelling of groundwater pollution by riverbank filtration using oxigen-18 data. Ground Water Monit. Manag. 1990, 173, 153–161. [Google Scholar]
- Stichler, W.; Maloszewski, P.; Moser, H. Modelling of river water infiltration using oxigen-18 data. J. Hydrol. 1986, 83, 355–365. [Google Scholar] [CrossRef]
- Brkić, Ž.; Kuhta, M.; Hunjak, T. Groundwater flow mechanism in the well-developed karst aquifer system in the western Croatia: Insights from spring discharge and water isotopes. Catena 2018, 161, 14–26. [Google Scholar] [CrossRef]
- Lauber, U.; Goldscheider, N. Use of artificial and natural tracers to assess groundwater transit-time distribution and flow systems in a high-alpine karts system (Wetterstein Mountains, Germany). Hydrogeol. J. 2014, 22, 1807–1824. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic pattern in modern global precipitation. In Climate Change in Continental Isotopic Record; Swart, P.K., Lohwan, K.L., Mckenzie, J., Savin, S., Eds.; American Geophysical Union: Washington, DC, USA, 1993; pp. 1–36. [Google Scholar]
- Rozanski, K.; Araguás-Araguás, L. Spatial and temporal variability of stable isotope composition of precipitation over the South American continent. Bull. Inst. Fr. Études Andin. 1995, 24, 379–390. [Google Scholar]
- Aggarwal, P.K.; Alduchov, O.A.; Froehlich, K.O.; Araguás-Araguás, L.J.; Sturchio, N.C.; Kurita, N. Stable isotopes in global precipitation: A unified interpretation based on atmospheric moisture residence time. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Sánchez-Murillo, R.; Birkel, C. Groundwater recharge mechanisms inferred from isoscapes in a complex tropical mountainous region. Geophys. Res. Lett. 2016, 4343, 5060–5069. [Google Scholar] [CrossRef]
- Crawford, J.; Hughes, C.E.; Parkes, S.D. Is the isotopic composition of event-based precipitation driven by moisture source or synoptic scale weather in the Sydney Basin, Australia? J. Hydrol. 2013, 507, 213–226. [Google Scholar] [CrossRef]
- Jouzel, J.; Delaygue, G.; Landais, A.; Masson-Delmotte, V.; Risi, C.; Vimeux, F. Water isotopes as tools to document oceanic sources of precipitation. Water Resour. Res. 2013, 49, 7469–7486. [Google Scholar] [CrossRef]
- Paar, D.; Mance, D.; Stroj, A.; Pavić, M. Northern Velebit (Croatia) karst hydrological system: Results of a preliminary 2H and 18O stable isotope study. Geol. Croat. 2019, 72, 205–213. [Google Scholar] [CrossRef]
- Kapelj, S.; Kapelj, J.; Švonja, M. Hydrogeological characteristics of the Jadro and Žrnovnica catchment. Tusculum 2011, 5, 205–216. [Google Scholar]
- Biondić, B.; Biondić, R.; Kapelj, S. Karst groundwater protection in the Kupa River catchment area and sustainable development. Environ. Geol. 2006, 49, 828–839. [Google Scholar] [CrossRef]
- Mandić, M.; Bojić, D.; Roller-Lutz, Z.; Lutz, H.O.; Krajcar Bronić, I. Note on the spring region of Gacka River (Croatia). Isot. Environ. Health Stud. 2008, 44, 201–208. [Google Scholar] [CrossRef]
- Frančišković-Bilinski, S.; Cuculić, V.; Bilinski, H.; Häusler, H.; Stadler, P. Geochemical and stable isotopic variability within two rivers rising under the same mountain but belonging to two distant watersheds. Chem. Erde–Geochem. 2013, 73, 293–308. [Google Scholar] [CrossRef]
- Mance, D.; Hunjak, T.; Lenac, D.; Rubinić, J.; Roller-Lutz, Z. Stable isotope analysis of the karst hydrological systems in the Bay of Kvarner (Croatia). Appl. Rad. Isot. 2014, 90, 23–34. [Google Scholar] [CrossRef]
- Ozyurt, N.N.; Lutz, O.H.; Hunjak, T.; Mance, D.; Roller-Lutz, Z. Characterization of the Gacka River basin karst aquifer (Croatia): Hydrochemistry, stable isotopes and tritium -based mean residence time. Sci. Total Environ. 2014, 487, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Horvatinčić, N.; Barešić, J.; Krajcar Bronić, I.; Karman, K.; Forisz, I.; Obelić, B. Study of the bank filtered groundwater system of the Sava River at Zagreb (Croatia) using isotope analyses. Cent. Eur. Geol. 2011, 54, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Marković, T.; Brkić, Ž.; Larva, O. Using hydrochemical data and modelling to enhance the knowledge of groundwater flow and quality in an alluvial aquifer of Zagreb, Croatia. Sci. Total Environ. 2013, 458–460, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Brkić, Ž.; Briški, M.; Marković, T. Use of hydrochemistry and isotopes for improving the knowledge of groundwater flow in a semiconfined aquifer system of the Eastern Slavonia (Croatia). Catena 2016, 142, 153–165. [Google Scholar] [CrossRef]
- Parlov, J.; Kovač, Z.; Nakić, Z.; Barešić, J. Using water stable isotopes for identifying groundwater recharge sources of the unconfined alluvial Zagreb Aquifer (Croatia). Water 2019, 11, 2177. [Google Scholar] [CrossRef] [Green Version]
- Marković, T.; Karlović, I.; Perčec Tadić, M.; Larva, O. Application of stable water isotopes to improve conceptual model of alluvial aquifer in the Varaždin Area. Water 2020, 12, 379. [Google Scholar] [CrossRef] [Green Version]
- Mezga, K.; Urbanc, J.; Cerar, S. The isotope altitude effect reflected in groundwater: A case study from Slovenia. Isot. Environ. Health. S 2014, 50, 33–51. [Google Scholar] [CrossRef]
- Nikolov, J.; Krajcar Bronić, I.; Todorović, N.; Barešić, J.; Petrović Pantić, T.; Marković, T.; Bikit-Schroeder, K.; Stojković, I.; Tomić, M. A survey of isotopic composition (2H, 3H, 18O) of groundwater from Vojvodina. J. Radioanal. Nucl. Chem. 2019, 320, 385–394. [Google Scholar] [CrossRef]
- Lucas, L.L.; Unterweger, M.P. Comprehensive review and critical evaluation of the half-life of tritium. J. Res. Natl. Inst. Stan. 2000, 105, 541. [Google Scholar] [CrossRef]
- Ingraham, N.L. Isotopic variations in precipitation. In Isotope Tracers in Catchment Hydrology; Kendall, C., McDonnell, J.J., Eds.; Elsevier: London, UK, 1998; pp. 87–118. [Google Scholar]
- Gat, J.R.; Mook, W.G.; Meijer, H.A.J. Atmospheric water. In Environmental Isotopes in the Hydrological Cycle, Principles and Applications, IHP-V, Technical Documents in Hydrology; Mook, W.G., Ed.; UNESCO: Paris, France, 2001; pp. 63–74. [Google Scholar]
- Rózanski, K.; Gonfiantinu, R.; Araguás-Araguás, L. Tritium in the global atmosphere: Distribution patterns and recent trends. J. Phys. G Nucl. Part Phys. 1991, 17, 532–536. [Google Scholar] [CrossRef]
- Tacher, L.L. The distribution of tritium fallout in precipitation over North America. Int. Assoc. Hydrol. Bull. 1962, 77, 48. [Google Scholar] [CrossRef]
- International Atomic Energy Agency (IAEA). Environmental Isotopes in the Hydrological Cycle: Principles and Applications; Gat, J.R., Mook, W.G., Meijer, H.A.J., Eds.; IAEA: Vienna, Austria, 2001; Volume 2, p. 235. [Google Scholar]
- Dulinski, M.; Rozanski, K.; Pierchala, A.; Gorczyca, Z.; Marzec, M. Isotopic composition of precipitation in Poland: A 44-year record. Acta Geophys. 2019, 67, 1637–1648. [Google Scholar] [CrossRef] [Green Version]
- Krajcar Bronić, I.; Barešić, J.; Borković, D.; Sironić, A.; Lovrenčić Mikelić, I.; Vreča, P. Long-term isotope records of precipitation in Zagreb, Croatia. Water 2020, 12, 226. [Google Scholar] [CrossRef] [Green Version]
- Barešić, J.; Štrok, M.; Svetek, B.; Vreča, P.; Krajcar Bronić, I. Activity concentration of tritium (3H) in precipitation—Long-term investigations performed in Croatia and Slovenia. In Proceedings of the Sixth International Conference on Radiation and Applications in Various Fields of Research, Ohrid, North Macedonia, 18–22 June 2018; p. 186. [Google Scholar]
- Horvatinčić, N.; Kapelj, S.; Sironić, A.; Krajcar Bronić, I.; Kapelj, J.; Marković, T. Investigation of water resources and water protection in the karst area of Croatia using isotopic and geochemical analyses. In Proceedings of the Advances in Isotope Hydrology and its Role in Sustainable Water Resources Management (IHS-2007), Vienna, Austria, 21–25 May 2007; Volume 2, pp. 295–304. [Google Scholar]
- Krajcar Bronić, I. Environmental 14C and 3H levels in Croatia. In Proceeding of the 4th International Conference on Environmental Radioactivity: Radionuclides as Tracers of Environmental Processes (ENVIRA 2017), Vilnius, Lithuania, 29 May–2 June 2017; p. 152. [Google Scholar]
- Vreča, P.; Krajcar Bronić, I.; Horvatinčić, N.; Barešić, J. Isotopic characteristics of precipitation in Slovenia and Croatia: Comparison of continental and maritime stations. J. Hydrol. 2006, 330, 457–469. [Google Scholar]
- Vreča, P.; Krajcar Bronić, I.; Leis, A.; Brenčič, M. Isotopic composition of precipitation in Ljubljana (Slovenia). Geologija 2008, 51, 169–180. [Google Scholar] [CrossRef]
- Vreča, P.; Krajcar Bronić, I.; Leis, A.; Demšar, M. Isotopic composition of precipitation at the station Ljubljana (Reaktor), Slovenia—Period 2007–2010. Geologija 2014, 57, 217–230. [Google Scholar] [CrossRef]
- Hebert, D. Technogenic tritium in central European precipitations. Isotopenpraxis 1990, 26, 592–595. [Google Scholar] [CrossRef]
- Kazemi, G.A.; Lehr, J.H.; Perrochet, P. Groundwater Age; Wiley and Sons: London, UK, 2006; p. 325. [Google Scholar]
- Newman, B.D.; Osenbrück, K.; Aeschbach-Hertig, W.; Solomon, D.K.; Cook, P.; Rózanski, K.; Kipfer, R. Dating of “young” groundwaters using environmental trasers: Advantages, applications, and research needs. Isot. Environ. Health Stud. 2010, 46, 259–278. [Google Scholar] [CrossRef]
- Urumović, K.; Hlevnjak, B. The development of basin multilayer aquifer. In Proceedings of the XIX Conference of the Danube Countries on Hydrological Forecasting and Hydrological Bases of Water Management, Osijek, Zagreb, 15–19 June 1998; pp. 519–529. [Google Scholar]
- Brkić, Ž. The relationship of the geological framework to the Quaternary aquifer system in the Sava River valley (Croatia). Geol. Croat. 2017, 70, 201–213. Available online: http://www.geologia-croatica.hr/ojs/index.php/GC/article/view/gc.2017.12/pdf (accessed on 10 July 2020). [CrossRef]
- Biondić, B.; Biondić, R. Hidrogeologija dinarskog krša u Hrvatskoj. In Hydrogeology of the Dinaric Karst in Croatia; Mesec, J., Ed.; University of Zagreb, Faculty of Geotehnical Engineering: Varaždin, Croatia, 2014; p. 341. ISBN 978-953-96597-7-4. [Google Scholar]
- Bonacci, O. Karst Hydrology; Springer: Berlin/Heilderbelg, Germany, 1987; p. 173. [Google Scholar]
- Slišković, I. Vode u kršu slivova Neretve i Cetine. In Water in the Karst of the Neretva and Cetina River Basins; Halamić, J., Ed.; Department of Hydrogeology and Engineering Geology: Zagreb, Croatia, 2014. [Google Scholar]
- Zaninović, K.; Gajić-Čapka, M.; Perčec Tadić, M.; Vučetić, M.; Milković, J.; Bajić, A.; Cindrić, K.; Cvitan, L.; Katušin, Z.; Kaučić, D.; et al. Klimatski Atlas Hrvatske/Climate Atlas of Croatia 1961–1990, 1971–2000; State Hydrometeorological Institute: Zagreb, Croatia, 2008; Available online: https://klima.hr/razno/publikacije/klimatski_atlas_hrvatske.pdf (accessed on 10 July 2020).
- International Atomic Energy Agency (IAEA). Stable Isotope Hydrology: Deuterium and Oxygen-18 in Water Cycle; Gat, J.R., Gonfiantini, R., Eds.; Technical Reports Series 210; IAEA: Vienna, Austria, 1981; p. 339. [Google Scholar]
- Coplen, T.B. New guidelines for the reporting of stable hydrogen, carbon, and oxygen isotope ratio data. Geochim. Cosmochim. Acta 1996, 60, 3359. [Google Scholar] [CrossRef]
- Dunn, P.J.H.; Carter, J.F. Good Practice Guide for Isotope Ratio Mass Spectrometry, 2nd ed.; FIRMS: Bristol, UK, 2018; p. 84. ISBN 978-0-948926-33-4. Available online: http://www.forensic-isotopes.org/gpg.html (accessed on 10 July 2020).
- Horvatinčić, N. Radiocarbon and tritium measurements in water samples and application of isotopic analyses in hydrology. Fizika 1980, 12, 201–218. [Google Scholar]
- Krajcar Bronić, I.; Obelić, B.; Srdoč, D. The simultaneous measurement of tritium activity and background count rate in a proportional counter by the Povinec method: Three years’ experience at the Rudjer Bošković Institute. Nucl. Instrum. Methods Phys. Res. B 1986, 17, 498–500. [Google Scholar] [CrossRef]
- Barešić, J.; Horvatinčić, N.; Krajcar Bronić, I.; Obelić, B. Comparison of two techniques for low-level tritium measurement—Gas proportional and liquid scintillation counting. In Proceedings of the Third European IRPA Congress, Helsinki, Finland, 14–18 June 2010; pp. 1988–1992. [Google Scholar]
- Barešić, J.; Krajcar Bronić, I.; Horvatinčić, N.; Obelić, B.; Sironić, A.; Kožar-Logar, J. Tritium activity measurement of water samples using liquid scintillation counter and electrolytical enrichment. In Proceedings of the 8th Symposium of the Croatian Radiation Protection Association, Krakow, Croatia, 13–15 April 2011; pp. 461–467. [Google Scholar]
- Krajcar Bronić, I.; Barešić, J.; Sironić, A.; Horvatinčić, N. Stability analysis of systems for preparation and measurement of 3H and 14C (Analiza stabilnosti sustava za pripremu i mjerenje 3H i 14C, in Croatian with English Abstract). In Proceedings of the 9th Symposium of the Croatian Radiation Protection Association, Krakow, Croatia, 10–12 April 2013; pp. 495–501. [Google Scholar]
- Stojković, I.; Todorović, N.; Nikolov, J.; Krajcar Bronić, I.; Barešić, J.; Kozmidic Luburić, U. Methodology of tritium determination in aqueous samples by Liquid Scintillation Counting techniques. In Tritium—Advances in Research and Applications; Janković, M.M., Ed.; NOVA Science Publishers: New York, NY, USA, 2018; pp. 99–156. [Google Scholar]
- Lobby Factors. Croatian Geological Survey: HGI-CGS Database. Available online: https://lobbyfacts.eu/representative/c1243fabb99641be8382bf2a80b68d61/croatian-geological-survey (accessed on 10 July 2020).
- Brkić, Ž.; Marković, T. Jasenik—Additional Hydrogeological Investigations: Technical Report; Croatian Geological Survey: Zagreb, Croatia, 2014. (In Croatian) [Google Scholar]
- Brkić, Ž.; Marković, T.; Larva, O. A Hydrogeological Study for the Purpose of Defining Groundwater Exploitation Resources in the Area of Koprivnica—Đurđevac: Technical Report; Croatian Geological Survey: Zagreb, Croatia, 2014. (In Croatian) [Google Scholar]
- Larva, O.; Marković, T.; Mraz, V. Hydrodynamic and hydrochemical conditions at the groundwater source “Pašino vrelo”, with a focus on its development. Geol. Croat. 2010, 6363, 299–312. [Google Scholar] [CrossRef]
- IGH-IGI. Geophysical and Hydrogeological Investigations, Dubočanka Valley—Papuk: Technical Report; Croatian Geological Survey: Zagreb, Croatia, 2003. (In Croatian) [Google Scholar]
- Kuhta, M. Tisovac Spring—Water Supply Požeština (Papuk Nature Park)–Hydrogeological Studies: Technical Report; Croatian Geological Survey: Zagreb, Croatia, 2014. (In Croatian) [Google Scholar]
- Larva, O.; Marković, T.; Mraz, V. Krapina-Zagorje County—Lobor Pumping Station—Hydrogeological Investigations to Determine Exploitation Groundwater Resources: Technical Report; Croatian Geological Survey: Zagreb, Croatia, 2014. (In Croatian) [Google Scholar]
- Biondić, B.; Kapelj, S.; Kuhta, K. Water Management Plan of the Republic of Croatia. GIS of Istria: Hydrogeology: Technical Report; Croatian Geological Survey: Zagreb, Croatia, 1999. (In Croatian) [Google Scholar]
- Biondić, B.; Kapelj, S.; Rubinić, J. Transboundary Aquifers of Croatia and Slovenia between the Kvarner Bay and the Trieste Bay: Technical Report; Croatian Geological Survey: Zagreb, Croatia, 2004. (In Croatian) [Google Scholar]
- Biondić, R.; Biondić, B.; Kapelj, S. Hydrogeological Investigation of the Novljanska Žrnovnica spring: Technical Report; Croatian Geological Survey: Zagreb, Croatia, 1997. (In Croatian) [Google Scholar]
- Biondić, B.; Kapelj, S.; Biondić, D.; Biondić, R.; Novosel, A. A Vulnerability Study of the Upper Part Kupa River Basin: Technical Report; Croatian Geological Survey: Zagreb, Croatia, 2002. (In Croatian) [Google Scholar]
- Pavičić, A.; Prelogović, E.; Kapelj, J.; Biondić, D.; Kapelj, S.; Hinić, V. A Vulnerability Study of the Gacka River. Technical Report; Croatian Geological Survey: Zagreb, Croatia, 1997. (In Croatian) [Google Scholar]
- Pavičić, A.; Terzić, J.; Marković, T. Hydrogeological Investigation of the in the Wider Area of the Korenica Spring (Phase II): Technical Report; Croatian Geological Survey: Zagreb, Croatia, 2006. (In Croatian) [Google Scholar]
- Pavičić, A.; Terzić, J.; Marković, T.; Dukarić, A. Hydrogeological Report on the Establishment of the Lička Jasenica Regional Pumping Site: Technical Report; Croatian Geological Survey: Zagreb, Croatia, 2008. (In Croatian) [Google Scholar]
- Kuhta, M.; Božičević, S.; Kapelj, S.; Miko, S. A Study of the Protection and Use of Valuable Natural Features of the Modrič Cave and Its Surroundings: Technical Report; Croatian Geological Survey: Zagreb, Croatia, 1999. (In Croatian) [Google Scholar]
- Kapelj, S.; Kapelj, S.; Singer, D. Hydrogeological Investigation of the Jadro and Žrnovnica Catchment Areas (Phase II). Technical Report; Croatian Geological Survey: Zagreb, Croatia, 2002. (In Croatian) [Google Scholar]
- Buljan, R. Spring Lopuško vrelo—Proposal of the Sanitary Protection Zones: Technical Report; Croatian Geological Survey: Zagreb, Croatia, 2002. (In Croatian) [Google Scholar]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Craig, H. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 1961, 133, 1833–1834. [Google Scholar] [CrossRef] [PubMed]
- Dansgaard, W. The isotope composition of natural waters. Medd. Grønland 1961, 165, 120. [Google Scholar]
- Froehlich, K.; Gibson, J.; Aggarwal, P. Deuterium excess in precipitation and its climatological significance. In Proceedings of the Study of Environmental Change Using Isotope Techniques, Vienna, Austria, 23–27 April 2001; pp. 54–66. [Google Scholar]
- Crawford, J.; Hughes, C.E.; Lykoudis, S. Alternative least squares methods for determining the meteoric water line, demonstrated using GNIP data. J. Hydrol. 2014, 519, 2331–2340. [Google Scholar] [CrossRef]
- Hughes, C.E.; Crawford, J. A new precipitation weighted method for determining the meteoric water line for hydrological applications demonstrated using Australian and global GNIP data. J. Hydrol. 2012, 464, 344–351. [Google Scholar] [CrossRef]
- Hunjak, T. Spatial Distribution of Oxygen and Hydrogen Stable Isotopes from Precipitation in Croatia. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2015; 82p. (In Croatian). [Google Scholar]
- Hunjak, T.; Lutz, H.O.; Roller-Lutz, Z. Stable isotope composition of the meteoric precipitation in Croatia. Isot. Environ. Health. S 2013, 4949, 36–345. [Google Scholar] [CrossRef]
- Vreča, P.; Krajcar Bronić, I.; Leis, A. Isotopic composition of precipitation in Portorož (Slovenia). Geologija 2011, 5454, 129–138. [Google Scholar] [CrossRef]
- Vreča, P.; Krajcar Bronić, I.; Leis, A. Isotopic composition of precipitation at the station Portorož, Slovenia—Period 2007–2010. Geologija 2015, 5858, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Hunjak, T.; Roller-Lutz, Z. Interpretation of the Composition of Stable Isotopes of Precipitation in Northern Croatia: Report; SILab Stable Isotope Laboratory at the Physics Department, School of Medicine, University of Rijeka: Rijeka, Croatia, 2013. (In Croatian) [Google Scholar]
- Pfahl, S.; Sodremann, H. What controls deuterium excess in global precipitation? Clim. Past 2014, 10, 771–781. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Mayer, B.; Harris, S.; Krouse, H.R. The influence of below-cloud secondary effects on the stable isotope composition of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada. Tellus 2007, 5959, 698–704. [Google Scholar] [CrossRef]
- Vogel, J.C.; Lerman, J.C.; Mook, W.G. Natural isotopes in surface and groundwater from Argentina. Hydrol. Sci. Bull. 1975, 2020, 203–221. [Google Scholar]
- Bottyán, E.; Czuppon, G.; Weidinger, T.; Haszpra, L.; Kármán, K. Moisture source diagnostics and isotope characteristics for precipitation in east Hungary: Implications for their relationship. Hydrolog. Sci. J. 2017, 6262, 2049–2060. [Google Scholar] [CrossRef]
- Posavec, K. Identification and Prediction of Minimum Ground Water Levels of Zagreb Alluvial Aquifer Using Recession Curve Models. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2016; 89p. (In Croatian). [Google Scholar]
- Brkić, Ž.; Larva, O.; Urumović, K. Quantity status of groundwater in alluvial aquifers in Northern Croatia. Geol. Croat. 2010, 63, 283–298. [Google Scholar] [CrossRef]
- Barešić, J.; Parlov, J.; Kovač, Z.; Sironić, A. Use of nuclear power plant released tritium as a groundwater tracer. Rud. Geol. Naft. Zb. 2019, 3535, 25–35. Available online: https://hrcak.srce.hr/ojs/index.php/rgn/article/view/9589 (accessed on 10 July 2020). [CrossRef] [Green Version]
Sampling Location | Measurement Point Type | Longitude (°) | Latitude (°) | Z (m a.s.l.) | Screen Bottom (m a.s.l.) | Lithology | Geographical Area | Sampling Time | Number of Stable Isotope Samples | Number of 3H Samples | Data Source |
---|---|---|---|---|---|---|---|---|---|---|---|
ČDP-9/1 | OW | 16.07 | 45.76 | 107.75 | 31.8 | G | western part of the Sava basin (Zagreb area) | 2001–2003 | 7 | 7 | [28,66] |
ČDP-9/2 | OW | 16.07 | 45.76 | 107.75 | 62.8 | G | 2001–2003 | 7 | 7 | [28,66] | |
ČDP-9/3 | OW | 16.07 | 45.76 | 107.75 | 88.8 | G | 2001–2003 | 7 | 7 | [28,66] | |
ČDP-23/1 | OW | 16.13 | 45.75 | 103.79 | 18.8 | G | 2001–2003 | 7 | 7 | [28,66] | |
ČDP-23/2 | OW | 16.13 | 45.75 | 103.79 | 47.8 | G | 2001–2003 | 7 | 7 | [28,66] | |
ČDP-23/3 | OW | 16.13 | 45.75 | 103.79 | 86.2 | G | 2001–2003 | 7 | 7 | [28,66] | |
PP-18/20 | OW | 16.04 | 45.77 | 108.25 | 87.8 | G | 2001–2003 | 7 | 3 | [28,66] | |
PP-18/40 | OW | 16.04 | 45.77 | 108.25 | 67.9 | G | 2001–2003 | 7 | 3 | [28,66] | |
PP-18/90 | OW | 16.04 | 45.77 | 108.25 | 19.3 | G | 2001–2003 | 7 | 3 | [28,66] | |
JP-10 | OW | 16.04 | 45.77 | 107.88 | 70.1 | G | 2001–2003 | 7 | 4 | [28,66] | |
SPB-J | OW | 17.06 | 45.93 | 175.00 | 79.0 | G, S | Bilogora Mt. | 2013 | 1 | 2 | [66,67] |
GR-1D | OW | 16.75 | 46.21 | 143.04 | 99.1 | G | western part of the Drava basin | 2013–2014 | 7 | [66,68] | |
KP-12A | OW | 16.85 | 46.14 | 138.50 | 115.5 | G | 2013–2014 | 11 | 2 | [66,68] | |
KP-12 | OW | 16.85 | 46.14 | 138.00 | 49.0 | G | 2013–2014 | 12 | 2 | [66,68] | |
SO-1 | OW | 16.95 | 46.10 | 126.00 | 112.0 | G, S | 2013–2014 | 12 | 2 | [66,68] | |
O-6 | OW | 16.95 | 46.10 | 126.00 | 54.0 | G, S | 2013–2014 | 12 | [66,68] | ||
VIRJE | OW | 17.01 | 46.06 | 125.00 | 115.0 | G, S | 2013–2014 | 12 | [66,68] | ||
SPB-8 | OW | 17.05 | 46.06 | 117.50 | 49.5 | G, S | 2013–2014 | 11 | 2 | [66,68] | |
SPB-10 | OW | 17.03 | 46.05 | 126.50 | 62.5 | G, S | 2013–2014 | 7 | [66,68] | ||
ĐN-3 | OW | 17.08 | 45.98 | 141.00 | 92.7 | G, S | 2013–2014 | 7 | [66,68] | ||
SPB-4 | OW | 18.47 | 45.13 | 83.00 | 16.3 | G, S | Eastern Slavonia—Sava basin | 2012–2013 | 17 | [29,66] | |
SPB-7 | OW | 18.45 | 45.10 | 85.50 | 16.2 | G, S | 2012–2013 | 17 | 1 | [29,66] | |
SPB-9 | OW | 18.45 | 45.10 | 85.00 | 9.5 | G, S | 2012–2013 | 17 | 1 | [29,66] | |
V-13 | OW | 18.48 | 45.07 | 87.00 | 55.8 | G, S | 2012–2013 | 17 | 1 | [29,66] | |
SPBPv | OW | 16.44 | 45.27 | 182.70 | L | Banovina | 2006–2007 | 4 | 1 | [66,69] | |
B-1 | OW | 16.42 | 45.29 | 178.60 | L | 2006–2007 | 4 | 1 | [66,69] | ||
B-2 | OW | 16.42 | 45.29 | 178.60 | L | 2006–2007 | 4 | 1 | [66,69] | ||
B-3 | OW | 16.42 | 45.29 | 178.60 | 145.6 | L | 2006–2007 | 4 | 1 | [66,69] | |
Bojanića vrelo | S | 16.43 | 45.29 | L | 2006–2007 | 4 | 1 | [66,69] | |||
Grabovac | S | 16.41 | 45.28 | L | 2006–2007 | 4 | 1 | [66,69] | |||
Pašino vrelo | S | 16.43 | 45.29 | L | 2006–2007 | 4 | 1 | [66,69] | |||
Veličanka | S | 17,64 | 45,50 | 512.00 | D | Papuk Mt. | 2002 | 1 | 1 | [66,70] | |
Dubočanka | S | 17.68 | 45.50 | 490.00 | D | 2002 | 1 | 3 | [66,70,71] | ||
Tisovac I | S | 17.69 | 45.50 | 495.00 | D | 2002, 2013 | 1 | 3 | [66,70,71] | ||
Tisovac II | S | 17.69 | 45.50 | 487.00 | D | 2002, 2013 | 1 | 3 | [66,70,71] | ||
Tisovac III | S | 17.68 | 45.49 | 465.00 | D | 2002, 2013 | 1 | 3 | [66,70,71] | ||
Subthermal spring | S | 17.66 | 45.47 | 287.00 | D | 2013 | 2 | [66,71] | |||
LO-1 | OW | 16.06 | 46.17 | 322.00 | Open hole to 140 m | D | Ivanščica Mt. | 2013 | 1 | [66,72] | |
LO-4 | OW | 16.06 | 46.16 | 280.00 | D | 2013 | 1 | [66,72] | |||
LO-5 | OW | 16.06 | 46.17 | 305.00 | Open hole to 214–244 m | D | 2013 | 1 | [66,72] | ||
Škrabutnik | S | 16.08 | 46.19 | 447.00 | D | 2013 | 1 | [66,72] |
Sample ID | Measurement Point Type | Longitude (°) | Latitude (°) | Z (m a.s.l.) | Geographical Area | Sampling Time | Number of Stable Isotope Samples | Number of 3H Samples | Data Source |
---|---|---|---|---|---|---|---|---|---|
Bubić jama | S | 14.16 | 45.14 | 20.0 | 1998 | 2 | 2 | [66,73] | |
Bulaž | S | 13.89 | 45.38 | 18.0 | 1998, 2001–2003 | 9 | 7 | [66,73,74] | |
Fonte Gajo | S | 14.07 | 45.07 | 5.0 | 1998 | 2 | 2 | [66,73] | |
Gradole | S | 13.70 | 45.34 | 5.0 | 1998, 2001–2003 | 9 | 7 | [66,73,74] | |
Rakonek | S | 14.02 | 45.09 | 5.0 | 1998 | 2 | 2 | [66,73] | |
Rudničke vode | M | 14.15 | 45.08 | 2.0 | Istria | 1998 | 2 | 2 | [66,73] |
Sv. Ivan | S | 13.98 | 45.40 | 48.0 | 1998, 2001–2003 | 9 | 7 | [66,73,74] | |
Šišan | S | 13.92 | 44.86 | 49.0 | 1998 | 2 | 2 | [66,73] | |
Funtana | S | 13.61 | 45.18 | 2.0 | 1998 | 1 | 2 | [66,73] | |
Karpi | S | 13.85 | 44.93 | 50.0 | 1998 | 1 | 2 | [66,73] | |
Vela Učka | S | 14.19 | 45.30 | 926.0 | 1998 | 2 | 2 | [66,73] | |
Rječina | S | 14.42 | 45.42 | 325.0 | 1997–1998, 2001–2003, 2012–2013 | 23 | 12 | [12,66,73,74] | |
Zvir | S | 14.45 | 45.33 | 5.0 | 1997–1998, 2001–2003, 2012–2013 | 23 | 13 | [12,66,73,74] | |
Kristal | S | 14.30 | 45.33 | 0.0 | 2001–2003 | 7 | 7 | [66,74] | |
Novljanska Žrnovnica | S | 14.85 | 45.12 | 1.5 | Hrvatsko Primorje | 1997, 1999 | 6 | 4 | [66,75] |
Martinščica | OW * | 14.48 | 45.32 | 2.0 | 1999 | 5 | 4 | [66,75] | |
Perilo | OW * | 14.54 | 45.31 | 1.0 | 1999 | 4 | 4 | [66,75] | |
Čabranka | S | 14.64 | 45.60 | 552.0 | 1997–1999, 2001–2003 | 10 | 10 | [66,74,76] | |
Kupa | S | 14.69 | 45.49 | 320.0 | 1997–1999 | 5 | 5 | [66,76] | |
Kupica | S | 14.85 | 45.43 | 250.0 | 1997–1999 | 5 | 5 | [66,76] | |
Kupari | S | 14.70 | 45.50 | 310.0 | 1997–1999 | 5 | 5 | [66,76] | |
Mala Belica | S | 14.80 | 45.46 | 290.0 | 1997–1999 | 5 | 5 | [66,76] | |
Velika Belica | S | 14.76 | 45.48 | 290.0 | Gorski Kotar | 1997–1998 | 4 | 4 | [66,76] |
Zeleni vir | S | 14.90 | 45.42 | 350.0 | 1997–1999 | 5 | 5 | [66,76] | |
Gerovčica spring | S | 14.68 | 45.53 | 320.0 | 1997–1999 | 5 | 5 | [66,76] | |
Gomirje | S | 15.13 | 45.33 | 377.0 | 2002 | 1 | [66] | ||
Mala Lešnica | S | 14.85 | 45.44 | 238.0 | 2002 | 1 | [66] | ||
Vitunjčica | S | 15.14 | 45.29 | 349.0 | 2002 | 1 | [66] | ||
Kamačnik | S | 15.06 | 45.35 | 415.0 | 2002 | 1 | [66] | ||
Majerovo vrelo | S | 15.36 | 44.81 | 462.0 | 1996, 2005–2008 | 28 | 21 | [26,66,77] | |
Tonkovića vrelo | S | 15.37 | 44.79 | 457.0 | 1996, 2005–2008 | 27 | 18 | [26,66,77] | |
Pećina | S | 15.33 | 44.80 | 456.0 | 1996, 2005–2008 | 29 | 21 | [26,66,77] | |
Klanjac | S | 15.37 | 44.79 | 458.0 | Lika (Adriatic Sea basin) | 2005, 2008 | 14 | [26,66] | |
Grab | S | 15.32 | 44.85 | 454.0 | 2008 | 10 | [26,66] | ||
Jaz | S | 15.32 | 44.81 | 456.0 | 2005, 2008 | 10 | [26,66] | ||
Knjapovac | S | 15.36 | 44.79 | 459.0 | 2005–2006, 2008 | 13 | [26,66] | ||
Marusino vrelo | S | 15.32 | 44.81 | 456.0 | 2005–2006, 2008 | 14 | [26,66] | ||
Korenička Rijeka spring | S | 15.65 | 44.78 | 695.0 | 2006 | 1 | 1 | [66,78] | |
Kameniti vrelac | S | 15.66 | 44.77 | 690.0 | 2006 | 1 | 1 | [66,78] | |
Koreničko vrelo | S | 15.67 | 44.77 | 700.0 | Lika (Danube River basin) | 2006 | 1 | 1 | [66,78] |
Makarevo vrelo | S | 15.66 | 44.78 | 695.0 | 2006 | 1 | 1 | [66,78] | |
Mlinac | S | 15.66 | 44.78 | 700.0 | 2006 | 1 | 1 | [66,78] | |
Stipinovac | S | 15.46 | 44.97 | 696.0 | 2006 | 1 | 1 | [66,78] | |
Malo vrelo Ličke Jesenice | S | 15.44 | 44.97 | 481.0 | 2007–2008 | 3 | 3 | [66,79] | |
Veliko vrelo Ličke Jesenice | S | 15.46 | 44.97 | 479.0 | 2007–2008 | 3 | 3 | [66,79] | |
Vrilo Velebita | S | 15.54 | 44.26 | 0.0 | 1999 | 1 | [66,80] | ||
Vrulja Modrič | S | 15.54 | 44.26 | 0.0 | 1999 | 1 | [66,80] | ||
Jadro | S | 16.52 | 43.54 | 40.0 | 2001 | 4 | 4 | [66,81] | |
Žrnovica | S | 16.57 | 43.52 | 90.0 | 2001 | 4 | 4 | [66,81] | |
B-22A | OW | 16.71 | 43.58 | 335.0 | Dalmatia | 2001 | 4 | 4 | [66,81] |
Krka | S | 16.24 | 44.04 | 225.0 | 2001 | 1 | 1 | [66,82] | |
Lopuško vrelo | S | 16.22 | 44.02 | 230.0 | 2001 | 1 | 1 | [66,82] | |
Kosovčica spring | S | 16.25 | 43.94 | 250.0 | 2001 | 1 | 1 | [66,82] | |
Modro oko | S | 17.51 | 43.06 | 1.5 | 2005 | 2 | [66] | ||
Opačac | S | 17.18 | 43.45 | 266.2 | 2005 | 2 | [66] |
Name of RMWL/LMWL in This Paper | Station (Altitude m a.s.l.) | Observation Period | δ2H/δ18O Correlation Equation | R or rmSSE * | N | Data Source |
---|---|---|---|---|---|---|
RMWL_continent | Bilogora (202), Zagreb (158), Sirač (161), Plitvička jezera (580), Sikirevci (82), Veliki Grđevac (148), Medicinska škola Varaždin (173), Sokolovac (207), Jastrebarsko (152), Duga Resa (130), Virovitica (122), Slavonski Brod (92), Bedekovčina (160), Sošice (560), Pogana jama (980), Grdanjci (185) i Karlovac (126) | 2008–2013 | δ2H = (7.4 ± 0.005) × δ18O + (4.1 ± 0.5) | 0.99 | 524 | [89] |
RMWL_coast | Labin (263), Vežica (219), Zadar (2), Opatija (0), Kastav (333), Rijeka_Medicinski fakultet (12), Kukuljanovo (281), Ponikve (20), Ičići (1), Vrh, Pehlin (278), Jadranovo (0), Kraj (72), Mali Lošinj (1.9), Zadar GNIP (5), Komiža-Vis GNIP (6), Dubrovnik GNIP (52), Split (42) i Murter (16.6) | 2008–2013 | δ2H = (7.0 ± 0.08) × δ18O + (4.4 ± 0.5) | 0.96 | 655 | [89] |
LMWL_Portorož | Portorož—Airport (2) | 2001–2003 | δ2H = (7.7 ± 0.4) × δ18O + (7.3 ± 2.2) | 0.96 | 35 | [45] |
LMWL_Portorož_OLSR | Portorož—Airport (2) | 2000–2006 | δ2H = (7.82 ± 0.23) × δ18O + (7.84 ± 1.57) | 0.97 | 74 | [91] |
LMWL_Portorož_RMA | Portorož—Airport (2) | 2000–2006 | δ2H = (8.05 ± 0.22) × δ18O + (9.35 ± 1.55) | 0.97 | 74 | [91] |
LMWL_Portorož_PWLSR | Portorož—Airport (2) | 2007–2010 | δ2H = (7.8 ± 0.27) × δ18O + (8.52 ± 1.85) | 0.96 | 71 | [92] |
LMWL_Hrvatsko Primorje | Kukuljanovo (281), Pehlin (278), Škalnica (526), Gumance (688), Ilirska Bistrica (1043), Snežnik (1300) | 2010–2012 | δ2H = (8.2 ± 0.1) × δ18O + (14.0 ± 1) | 0.98 | 88 | [25] |
LMWL_Zavižan | Zavižan—Velebit Mt. (1594) | 2001–2003 | δ2H = (7.6 ± 0.4) × δ18O + (10.5 ± 4.0) | 0.95 | 35 | [45] |
LMWL_Gacka | Ličko Lešće (457), Gospić (656) | 2005–2006 | δ2H = 6.8 × δ18O + 1.5 | [23] | ||
LMWL_Ljubljana | Ljubljana (299) | 2001–2003 | δ2H = (8.0 ± 0.2) × δ18O + (9.2 ± 1.8) | 0.99 | 36 | [45] |
LMWL_Ljubljana (Bežigrad)_OLSR | Ljubljana (299) | 1981–2006 | δ2H = (7.95 ± 0.08) × δ18O + (8.9 ± 0.71) | 0.99 | 290 | [46] |
LMWL_Ljubljana (Bežigrad)_RMA | Ljubljana (299) | 1981–2006 | δ2H = (8.06 ± 0.08) × δ18O + (9.84 ± 0.71) | 0.99 | 290 | [46] |
LMWL_Ljubljana (Reaktor)_RMA | Ljubljana | 2007–2010 | δ2H = (8.19 ± 0.22) × δ18O + (11.52 ± 1.97) | 0.98 | 46 | [47] |
LMWL_Ljubljana (Bežigrad)_PWLSR | Ljubljana (299) | 2007–2010 | δ2H = (7.94 ± 0.21) × δ18O + (9.76 ± 1.91) | 0.99 | 46 | [47] |
LMWL_Zagreb | Zagreb (157) | 2001–2003 | δ2H = (7.3 ± 0.2) × δ18O + (2.8 ± 1.8) | 0.99 | 34 | [45] |
LMWL_Zagreb_OLSR * | Zagreb (157) | 1980–2018 | δ2H = (7.65 ± 0.06) × δ18O + (4.79 ± 0.55) | 1.0047 | 389 | [41] |
LMWL_Zagreb_RMA * | Zagreb (157) | 1980–2018 | δ2H = (7.74 ± 0.06) × δ18O + (5.57 ± 0.55) | 1.0019 | 389 | [41] |
LMWL_Zagreb_PWLSR * | Zagreb (157) | 1980–2018 | δ2H = (7.64 ± 0.06) × δ18O + (5.24 ± 0.54) | 1.00 | 389 | [41] |
LMWL_Bilogora | Bilogora (202) | 2010–2013 | δ2H = 7.75 × δ 18O + 8.11 | 0.99 | 19 | [93] |
LMWL_Sikirevci | Sikirevci (85) | 2012–2014 | δ2H = 7.69 × δ18O + 6.29 | 0.99 | 21 | [29] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brkić, Ž.; Kuhta, M.; Hunjak, T.; Larva, O. Regional Isotopic Signatures of Groundwater in Croatia. Water 2020, 12, 1983. https://doi.org/10.3390/w12071983
Brkić Ž, Kuhta M, Hunjak T, Larva O. Regional Isotopic Signatures of Groundwater in Croatia. Water. 2020; 12(7):1983. https://doi.org/10.3390/w12071983
Chicago/Turabian StyleBrkić, Željka, Mladen Kuhta, Tamara Hunjak, and Ozren Larva. 2020. "Regional Isotopic Signatures of Groundwater in Croatia" Water 12, no. 7: 1983. https://doi.org/10.3390/w12071983
APA StyleBrkić, Ž., Kuhta, M., Hunjak, T., & Larva, O. (2020). Regional Isotopic Signatures of Groundwater in Croatia. Water, 12(7), 1983. https://doi.org/10.3390/w12071983