Estimation of Surface Water Runoff for a Semi-Arid Area Using RS and GIS-Based SCS-CN Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data and Software
2.3. Methodology
2.4. Soil Texture Map
2.5. Hydrologic Soil Group Map
2.6. Land Use/Land Cover
2.7. Slope Map
2.8. The Soil Conservation Service Runoff Estimation Method
2.9. Slope-Adjusted CNII
2.10. The Soil Conservation Service Unit Hydrograph
2.11. Rainfall Data
3. Results and Discussion
3.1. Rainfall Map
3.2. Land Use/Land Cover Map
3.3. The Soil Conservation Service-Curve Number Map
3.4. Potential Maximum Retention Map
3.5. The Soil Conservation Service Runoff Map
3.6. The Soil Conservation Service Storm Hydrograph
3.7. Rainfall-Runoff Correlation Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deshmukh, D.S.; Chaube, U.C.; Hailu, A.E.; Gudeta, D.A.; Kassa, M.T. Estimation and comparision of curve numbers based on dynamic land use land cover change, observed rainfall-runoff data and land slope. J. Hydrol. 2013, 492, 89–101. [Google Scholar] [CrossRef]
- Mishra, S.K.; Chaudhary, A.; Shrestha, R.K.; Pandey, A.; Lal, M. Experimental verification of the effect of slope and land use on SCS runoff curve number. Water Resour. Manag. 2014, 28, 3407–3416. [Google Scholar] [CrossRef]
- Zade, M.; Ray, S.S.; Dutta, S.; Panigrahy, S. Analysis of runoff pattern for all major basins of India derived using remote sensing data. Curr. Sci. 2005, 88, 1301–1305. [Google Scholar]
- USDA. Hydrology. In National Engineering Handbook; United States Department of Agriculture, Soil Conservation Service, US Government Printing Office: Washington, DC, USA, 1972. [Google Scholar]
- Pradhan, R.; Pradhan, M.P.; Ghose, M.K.; Agarwal, V.S.; Agarwal, S. Estimation of RainfallRunoff using Remote Sensing and GIS in and around Singtam, East Sikkim. Int. J. Geomat. Geosci. 2010, 1, 466–476. [Google Scholar]
- Shadeed, S.; Almasri, M. Application of GIS-based SCS-CN method in West Bank catchments, Palestine. Water Sci. Eng. 2010, 3, 1–13. [Google Scholar]
- SCS. Urban Hydrology for Small Watersheds, Technical Release No. 55 (TR-55); United States Department of Agriculture, Soil Conservation Service, US Government Printing Office: Washington, DC, USA, 1986; pp. 2–6.
- Chatterjee, C.; Jha, R.; Lohani, A.K.; Kumar, R.; Singh, R. Runoff curve number estimation for a basin using remote sensing and GIS. Asian Pac. Remote Sens. GIS J. 2001, 14, 1–7. [Google Scholar]
- Bhuyan, S.J.; Mankin, K.R.; Koelliker, J.K. Watershed–scale AMC selection for hydrologic modeling. Trans. ASAE 2003, 46, 303. [Google Scholar] [CrossRef]
- Tirkey, A.S.; Pandey, A.C.; Nathawat, M.S. Use of high-resolution satellite data, GIS and NRCS-CN technique for the estimation of rainfall-induced run-off in small catchment of Jharkhand India. Geocarto. Int. 2014, 29, 778–791. [Google Scholar] [CrossRef]
- Liu, X.; Li, J. Application of SCS model in estimation of runoff from small watershed in Loess Plateau of China. Chin. Geogr. Sci. 2008, 18, 1235–1241. [Google Scholar] [CrossRef]
- Topno, A.; Singh, A.K.; Vaishya, R.C. SCS-CN Runoff estimation for Vindhyachal region using remote sensing and GIS. Int. J. Adv. Remote Sens. GIS 2015, 4, 1214–1223. [Google Scholar] [CrossRef]
- Huang, M.; Gallichand, J.; Wang, Z.; Goulet, M. A modification to the Soil Conservation Service curve number method for steep slopes in the Loess Plateau of China. Hydrol. Process. 2006, 20, 579–589. [Google Scholar] [CrossRef]
- Hawkins, R.H.; Ward, T.; Woodward, D.E.; Van Mullem, J. Curve Number Hydrology: State of the Practice Reston; ASCE: Washington, DC, USA, 2009; p. 106. [Google Scholar]
- Shi, W.; Huang, M.; Gongadze, K.; Wu, L. A modified SCS-CN method incorporating storm duration and antecedent soil moisture estimation for runoff prediction. Water Resour. Manag. 2017, 31, 1713–1727. [Google Scholar] [CrossRef]
- Fisher, P.F.; Comber, A.J.; Wadsworth, R. Land use and land cover: Contradiction or complement. In Re-Presenting GIS; Wiley: Hoboken, NJ, USA, 2005; pp. 85–98. [Google Scholar]
- NRCS. Hydrologic Soil Groups. In National Engineering Handbook; United States Department of Agriculture, Natural Resources Conservation Science, US Government Printing Office: Washington, DC, USA, 2009. [Google Scholar]
- Chaplot, V.A.; Le Bissonnais, Y. Runoff features for interrill erosion at different rainfall intensities, slope lengths, and gradients in an agricultural loessial hillslope. Soil. Sci. Soc. Am. J. 2003, 67, 844–851. [Google Scholar] [CrossRef]
- Philip, J.R. Hillslope infiltration: Planar slopes. Water Resour. Res. 1991, 27, 109–117. [Google Scholar] [CrossRef]
- Evett, S.R.; Dutt, G.R. Length and slope effects on runoff from sodium dispersed, compacted earth microcatchments. Soil. Sci. Soc. Am. J. 1985, 49, 734–738. [Google Scholar] [CrossRef]
- Fang, H.Y.; Cai, Q.G.; Chen, H.; Li, Q.Y. Effect of rainfall regime and slope on runoff in a gullied loess region on the Loess Plateau in China. Environ. Manag. 2008, 42, 402–411. [Google Scholar] [CrossRef]
- Chaudhary, A.; Mishra, S.K.; Pandey, A. Experimental verification of effect of slope on runoff and curve numbers. J. Indian Water Res. Soc. 2013, 33, 40–46. [Google Scholar]
- Jha, R.K.; Mishra, S.K.; Pandey, A. Experimental verification of effect of slope, soil, and AMC of a fallow land on runoff curve number. J. Indian Water Res. Soc. 2014, 34, 40–47. [Google Scholar]
- Cheng, Q.; Ko, C.; Yuan, Y.; Ge, Y.; Zhang, S. GIS modeling for predicting river runoff volume in ungauged drainages in the Greater Toronto Area, Canada. Comput. Geosci. 2006, 32, 1108–1119. [Google Scholar] [CrossRef]
- Zhan, X.; Huang, M.L. ArcCN-Runoff: An ArcGIS tool for generating curve number and runoff maps. Environ. Modell. Softw. 2004, 19, 875–879. [Google Scholar] [CrossRef]
- Nayak, T.R.; Jaiswal, R.K. Rainfall-runoff modelling using satellite data and GIS for Bebas river in Madhya Pradesh. J. Inst. Eng. India 2003, 84, 47–50. [Google Scholar]
- Geena, G.B.; Ballukraya, P.N. Estimation of runoff for Red hills watershed using SCS method and GIS. Indian J. Sci. Technol. 2011, 4, 899–902. [Google Scholar]
- Gitika, T.; Ranjan, S. Estimation of surface runoff using NRCS curve number procedure in Buriganga Watershed, Assam, India-a geospatial approach. Int. Res. J. Earth Sci. 2014, 2, 1–7. [Google Scholar]
- Al Saud, M. Morphometric analysis of Wadi Aurnah drainage system, western Arabian Peninsula. Open Hydrol. J. 2009, 3, 1–10. [Google Scholar]
- Dawod, G.M.; Mirza, M.N.; Al-Ghamdi, K.A. GIS-based estimation of flood hazard impacts on road network in Makkah city, Saudi Arabia. Environ. Earth Sci. 2012, 67, 2205–2215. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.; Romberger, J.S.; Papendick, R.I. Estimating generalized soil-water characteristics from texture. Soil. Sci. Soc. Am. J. 1986, 50, 1031–1036. [Google Scholar] [CrossRef]
- Cosby, B.J.; Hornberger, G.M.; Clapp, R.B.; Ginn, T. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 1984, 20, 682–690. [Google Scholar] [CrossRef]
- Wang, X.; Liu, T.; Yang, W. Development of a robust runoff-prediction model by fusing the rational equation and a modified SCS-CN method. Hydrolog. Sci. J. 2012, 57, 1118–1140. [Google Scholar] [CrossRef]
- Mishra, S.K.; Singh, V.P. Another look at SCS-CN method. J. Hydrol. Eng. 1999, 4, 257–264. [Google Scholar] [CrossRef]
- NRCS. Estimation of Direct Runoff from Storm Rainfall. In National Engineering Handbook; United States Department of Agriculture, Natural Resources Conservation Science, US Government Printing Office: Washington, DC, USA, 2004. [Google Scholar]
- Hawkins, R.H.; Hjelmfelt, A.T., Jr.; Zevenbergen, A.W. Runoff probability, storm depth, and curve numbers. J. Irrig. Drain. E ASCE 1985, 111, 330–340. [Google Scholar] [CrossRef]
- McCuen, R.H. A Guide to Hydrologic Analysis Using SCS Methods; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1982; p. 145. [Google Scholar]
- Sherman, L.K. Streamflow from rainfall by the unit-graph method. Eng. News Rec. 1932, 108, 501–505. [Google Scholar]
- SCS. Use of Storm and Watershed Characteristics in Synthetic Hydrograph Analysis and Application; United States Department of Agriculture, Soil Conservation Service, US Government Printing Office: Washington, DC, USA, 1957.
- Singh, V.P.; Corradini, C.; Melone, F. A comparison of some methods of deriving the instantaneous unit hydrograph. Hydrol. Res. 1985, 16, 1–10. [Google Scholar] [CrossRef]
- NRCS. Ponds: Planning, Design, Construction. In Agriculture Handbook No. 590; United States Department of Agriculture, Natural Resources Conservation Science, US Government Printing Office: Washington, DC, USA, 1997. [Google Scholar]
- Subyani, A.M.; Al-Amri, N.S. IDF curves and daily rainfall generation for Al-Madinah city, western Saudi Arabia. Arab. J. Geosci. 2015, 8, 11107–11119. [Google Scholar] [CrossRef]
- Viessman, W., Jr.; Lewis, G.L. Introduction to Hydrology; HarperCollins College Publishers: New York, NY, USA, 1996. [Google Scholar]
- Zhao, W.W.; Fu, B.J.; Chen, L.D.; Zhang, Q.J.; Zhang, Y.H. Effects of land-use pattern change on rainfall-runoff and runoff-sediment relations: A case study in Zichang watershed of the Loess Plateau of China. J. Environ. Sci. 2004, 16, 436–442. [Google Scholar]
- Salami, A.W.; Bilewu, S.O.; Ayanshila, A.M.; Oritola, S.F. Evaluation of synthetic unit hydrograph methods for the development of design storm hydrographs for Rivers in South-West, Nigeria. J. Am. Sci. 2009, 5, 23–32. [Google Scholar]
- Peng, D.Z.; You, J.J. Application of modified SCS model into runoff simulation. J. Water Res. Water Eng. 2006, 17, 20–24. [Google Scholar]
Satellite | Sensor | Path/Row | Acquisition Date | Spatial Resolution |
---|---|---|---|---|
Landsat 8 | ETM | 169/45 | 3 March 2020 | 30 m |
AMC | Curve Number | 5-Days Antecedent Rainfall (mm) | |
---|---|---|---|
Growing Season | Dormant Season | ||
I | CNI | <35.6 | <12.7 |
II | CNII | 35.6–53.3 | 12.7–27.9 |
III | CNIII | >53.3 | >27.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ghobari, H.; Dewidar, A.; Alataway, A. Estimation of Surface Water Runoff for a Semi-Arid Area Using RS and GIS-Based SCS-CN Method. Water 2020, 12, 1924. https://doi.org/10.3390/w12071924
Al-Ghobari H, Dewidar A, Alataway A. Estimation of Surface Water Runoff for a Semi-Arid Area Using RS and GIS-Based SCS-CN Method. Water. 2020; 12(7):1924. https://doi.org/10.3390/w12071924
Chicago/Turabian StyleAl-Ghobari, Hussein, Ahmed Dewidar, and Abed Alataway. 2020. "Estimation of Surface Water Runoff for a Semi-Arid Area Using RS and GIS-Based SCS-CN Method" Water 12, no. 7: 1924. https://doi.org/10.3390/w12071924
APA StyleAl-Ghobari, H., Dewidar, A., & Alataway, A. (2020). Estimation of Surface Water Runoff for a Semi-Arid Area Using RS and GIS-Based SCS-CN Method. Water, 12(7), 1924. https://doi.org/10.3390/w12071924