Using a Multimedia Aquivalence Model to Evaluate the Environmental Fate of Fe, Mn and Trace Metals in an Industrial City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Study Area
2.2. Collection of Road Dust and Determination of Heavy Metal Content
2.3. Model Construction
2.4. Sensitivity Analysis
2.5. Model Parameterization for Nanjing
3. Results
3.1. Model Simulation and Verification
3.2. The Transport and Fate of Fe, Mn, and Trace Metals in the Urban Multimedia Environment
3.3. Sensitivity Analysis
4. Discussion
4.1. Distribution and Migration of Heavy Metals among Multimedia in Urban Environment
4.2. Effects of Heavy Metals in Multimedia on Urban Water Quality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Angelidis, M.O.; Markantonatos, P.G.; Bacalis, N.C. Impact of human activities on the quality of river water: The case of Evrotas River catchment basin, Greece. Environ. Monit. Assess. 1995, 35, 137–153. [Google Scholar] [CrossRef]
- Sabin, L.D.; Lim, J.H.; Stolzenbach, K.D.; Schiff, K.C. Contribution of trace metals from atmospheric deposition to stormwater runoff in a small impervious urban catchment. Water Res. 2005, 39, 3929–3937. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.S.; Driscoll, C.T. Atmospheric nitrogen deposition to estuaries in the mid–Atlantic and northeastern United States. Environ. Sci. Technol. 2002, 36, 3242–3249. [Google Scholar] [CrossRef] [PubMed]
- Palani, S. Estimation of the Contribution of Atmospheric Deposition to Coastal Water Eutrophication. Ph.D Thesis, National University of Singapore, Singapore, July 2009. [Google Scholar]
- Sthiannopkao, S.; Takizawa, S.; Wirojanagud, W. Effects of soil erosion on water quality and water uses in the upper Phong watershed. Water Sci. Technol. 2006, 53, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Soms, J. Modelling Soil Erosion and Associated Sediment Yield for Small Headwater Catchments of the Daugava Spillway Valley, Latvia. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 12–17 April 2015. [Google Scholar]
- Guan, Y.; Sui, M.; Qiu, C.; Hu, J.L.; Jihong, H. Analysis on the Characteristics of Dissolved Organic Matter in Receiving River Water in Wastewater Treatment Plant. In Proceedings of the IOP Conference Series, Earth and Environmental Science, Xi’an, China, July 2019; p. 042119. [Google Scholar]
- Lu, W.; Wu, J.; Li, Z. Water quality assessment of an urban river receiving tail water using the single-factor index and principle component analysis. Water. Sci. Tech. Water Supply 2018, 7. [Google Scholar] [CrossRef]
- Lei, Z. Analysis on pollution factors of urban river. GEP 2015, 3, 9–16. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Li, Z.; Jian, P. Impervious surface impact on water quality in the process of rapid urbanization in Shenzhen, China. Environ. Earth Sci. 2012, 68, 2365–2373. [Google Scholar] [CrossRef]
- Kim, H.; Jeong, H.; Jeon, J.; Bae, S. The impact of impervious surface on water quality and its threshold in Korea. Water 2016, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Zhao, Y.; Yang, K.; Chen, K.; Pan, M.; Zhou, X. Dianchi Lake watershed impervious surface area dynamics and their impact on lake water quality from 1988 to 2017. Environ. Sci. Pollut. Res. 2018, 25, 29643–29653. [Google Scholar] [CrossRef]
- Jayarathne, A.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Intrinsic and extrinsic factors which influence metal adsorption to road dust. Sci. Total Environ. 2018, 618, 236–242. [Google Scholar] [CrossRef]
- Kuo, N.-W.; Chen, Y.-T.; Lee, T.-Y.; Jien, S.-H.; Hong, N.-M. Contribution of urban runoff in Taipei metropolitan area to dissolved inorganic nitrogen export in the Danshui River, Taiwan. Environ. Sci. Pollut. Res. 2017, 24, 578–590. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-H.; Lee, Y.K.; Derrien, M.; Choi, K.; Shin, K.H.; Jang, K.-S.; Hur, J. Evaluating the contributions of different organic matter sources to urban river water during a storm event via optical indices and molecular composition. Water Res. 2019, 165, 115006. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Chao, X.; Zhou, Z.; Huang, T. Impact Of Contaminated Sediment on the Water Quality of Typical Reservoirs; Water Pollution and Water Quality Control of Selected Chinese Reservoir Basins; Springer International Publishing: Cham, Switzerland, 2016; pp. 229–262. [Google Scholar]
- Germinario, L.; Siegesmund, S.; Maritan, L.; Simon, K.; Mazzoli, C. Trachyte weathering in the urban built environment related to air quality. Herit. Sci. 2017, 5, 44. [Google Scholar] [CrossRef]
- Ermakov, V.V.; Korobova, E.M.; Degtyarev, A.P.; Tyutikov, S.F.; Karpova, E.A.; Petrunina, N.S. Impact of natural and man-made factors on migration of heavy metals in the Ardon River basin (North Ossetia). J. Soils Sediment. 2016, 16, 1253–1266. [Google Scholar] [CrossRef]
- Shruti, V.C.; Jonathan, M.P.; Rodriguez-Espinosa, P.F.; Nagarajan, R.; Escobedo-Urias, D.C.; Morales-Garcia, S.S.; Martinez-Tavera, E. Geochemical characteristics of stream sediments from an urban-volcanic zone, Central Mexico: Natural and man-made inputs. Chem. Erde-Geochem. 2017, 77, 303–321. [Google Scholar] [CrossRef]
- Theodosi, C.; Stavrakakis, S.; Koulaki, F.; Stavrakaki, I.; Moncheva, S.; Papathanasiou, E.; Sanchez-Vidal, A.; Koçak, M.; Mihalopoulos, N. The significance of atmospheric inputs of major and trace metals to the Black Sea. J. Mar. Syst. 2013, 109–110, 94–102. [Google Scholar] [CrossRef]
- Liang, Z.; Siegert, M.; Fang, W.; Sun, Y.; Jiang, F.; Lu, H.; Chen, G.; Wang, S. Blackening and odorization of urban rivers: A Bio-geochemical process. FEMS Microbiol. Ecol. 2018, 94, (fix180). [Google Scholar] [CrossRef] [Green Version]
- Ibe, F.C.; Opara, A.I.; Ibe, B.O.; Amaobi, C.E. Application of assessment models for pollution and health risk from effluent discharge into a tropical stream: Case study of Inyishi River, Southeastern Nigeria. Environ. Monit. Assess. 2019, 753, 3–15. [Google Scholar] [CrossRef]
- Kondo, A.; Yamamoto, M.; Inoue, Y.; Ariyadasa, B.H.A.K. Evaluation of lead concentration by one-box type multimedia model in Lake Biwa-Yodo River basin of Japan. Chemosphere 2013, 92, 497–503. [Google Scholar] [CrossRef]
- Sommerfreund, J.K.; Gandhi, N.; Diamond, M.L.; Mugnai, C.; Frignani, M.; Capodaglio, G.; Gerino, M.; Bellucci, L.G.; Giuliani, S. Contaminant fate and transport in the Venice Lagoon: Results from a multi-segment multimedia model. Ecotox. Environ. Safe 2010, 73, 222–230. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, D.; Li, Y. Environmental behaviors and potential ecological risks of heavy metals (Cd, Cr, Cu, Pb, and Zn) in multimedia in an oilfield in China. Environ. Sci. Pollut. Res. 2016, 23, 13964–13972. [Google Scholar] [CrossRef] [PubMed]
- Hollander, A.; Schoorl, M.; van de Meent, D. SimpleBox 4.0: Improving the model while keeping it simple. Chemosphere 2016, 148, 99–107. [Google Scholar] [CrossRef]
- Wegener Sleeswijk, A.; Heijungs, R. GLOBOX: A spatially differentiated global fate, intake and effect model for toxicity assessment in LCA. Sci. Total Environ. 2010, 408, 2817–2832. [Google Scholar] [CrossRef]
- Queguiner, S.; Ciffroy, P.; Roustan, Y.; Musson-Genon, L. Multimedia Modelling of the Exposure to Cadmium and Lead Released in the Atmosphere—Application to Industrial Releases in a Mediterranean Region and Uncertainty/Sensitivity Analysis. Water Air Soil Pollut. 2009, 198, 199–217. [Google Scholar] [CrossRef]
- Mackay, D.; Diamond, M. Application of the QWASI (Quantitative Water Air Sediment Interaction) fugacity model to the dynamics of organic and inorganic chemicals in lakes. Chemosphere 1989, 18, 1343–1365. [Google Scholar] [CrossRef]
- Khpalwak, W.; Jadoon, W.A.; Abdel-dayem, S.M.; Sakugawa, H. Polycyclic aromatic hydrocarbons in urban road dust, Afghanistan: Implications for human health. Chemosphere 2019, 218, 517–526. [Google Scholar] [CrossRef]
- Chen, H.; Jing, L.; Teng, Y. Multimedia fate modeling and risk assessment of antibiotics in a water-scarce megacity. J. Hazard. Mater. 2018, 348, 75–83. [Google Scholar] [CrossRef]
- Kim, J.; Powell, D.E.; Hughes, L.; Mackay, D. Uncertainty analysis using a fugacity-based multimedia mass-balance model: Application of the updated EQC model to decamethylcyclopentasiloxane (D5). Chemosphere 2013, 93, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Kim, M.; Liu, Y. Quantitative assessment of human health risks induced by vehicle exhaust polycyclic aromatic hydrocarbons at Zhengzhou via multimedia fugacity models with cancer risk assessment. Sci. Total Environ. 2018, 618, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Mackay, D.; Paterson, S. Evaluating the multimedia fate of organic chemicals: A level III fugacity model. Environ. Sci. Technol. 1991, 25, 427–436. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, X.; Liu, M.; Zhu, J.; Yang, J.; Du, W.; Zhang, X.; Gao, D.; Qadeer, A.; Xie, Y.; et al. A multimedia fugacity model to estimate the fate and transport of polycyclic aromatic hydrocarbons (PAHs) in a largely urbanized area, Shanghai, China. Chemosphere 2019, 217, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Jeon, W.; Shin, C.B.; Kim, J.H.; Kwak, B.K.; Yi, J.; Lee, J.H.; Lee, W.G.; Lee, S.W.; Park, H.S. Analysis of the distribution of lead concentration under steady state conditions in urban multimedia environment. Korean J. Chem. Eng. 2008, 25, 1401–1406. [Google Scholar] [CrossRef]
- Priemer, D.A.; Diamond, M.L. Application of the multimedia urban model to compare the fate of SOCs in an urban and forested watershed. Environ. Sci. Technol. 2002, 1004–1013. [Google Scholar] [CrossRef] [PubMed]
- Diamond, M.L.; Priemer, D.A.; Law, N.L. Developing a multimedia model of chemical dynamics in an urban area. Chemosphere 2001, 44, 1655–1667. [Google Scholar] [CrossRef]
- Zhao, H.; Li, X.; Wang, X. Heavy metal contents of road-deposited sediment along the urban-rural gradient around Beijing and its potential contribution to runoff pollution. Environ. Sci. Technol. 2011, 7120–7127. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, J.; Yin, C.; Li, X. Index models to evaluate the potential metal pollution contribution from washoff of road-deposited sediment. Water Res. 2014, 59, 71–79. [Google Scholar] [CrossRef]
- Kong, S.F.; Li, L.; Li, X.X.; Yin, Y.; Chen, K.; Liu, D.T.; Yuan, L.; Zhang, Y.J.; Shan, Y.P.; Ji, Y.Q. The impacts of firework burning at the Chinese Spring Festival on air quality: Insights of tracers, source evolution and aging processes. Atmos. Chem. Phys. 2015, 2167–2184. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, Q.g.; Yang, M.; Li, F.; Wang, J.; Sun, Y.; Wang, C.; Wu, H.; Qian, X. Chemical characterization and source apportionment of PM2.5 aerosols in a megacity of Southeast China. Atmos. Res. 2016, 181, 288–299. [Google Scholar] [CrossRef]
- Ming, L.; Jin, L.; Li, J.; Fu, P.; Yang, W.; Liu, D.; Zhang, G.; Wang, Z.; Li, X. PM2.5 in the Yangtze River Delta, China: Chemical compositions, seasonal variations, and regional pollution events. Environ. Pollut. 2017, 223, 200–212. [Google Scholar] [CrossRef]
- Zheng, H.; Kong, S.; Yan, Q.; Wu, F.; Cheng, Y.; Zheng, S.; Wu, J.; Yang, G.; Zheng, M.; Tang, L.; et al. The impacts of pollution control measures on PM2.5 reduction: Insights of chemical composition, source variation and health risk. Atmos. Environ. 2019, 197, 103–117. [Google Scholar] [CrossRef]
- Wu, B.; Zhao, D.Y.; Jia, H.Y.; Zhang, Y.; Zhang, X.X.; Cheng, S.P. Preliminary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing Section, China. Bull. Environ. Contam. Toxicol. 2009, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Li, Y.; Wang, P.; Niu, L.; Zhang, W.; Wang, C. Revealing the relationship between microbial community structure in natural biofilms and the pollution level in urban rivers: A case study in the Qinhuai River basin, Yangtze River Delta. Water Sci. Technol. 2016, 1163–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, B.; Shi, X.; Yu, D.; Öborn, I.; Blombäck, K.; Pagella, T.F.; Wang, H.; Sun, W.; Sinclair, F.L. Environmental assessment of small-scale vegetable farming systems in peri-urban areas of the Yangtze River Delta Region, China. Agric. Ecosyst. Environ. 2006, 391–402. [Google Scholar] [CrossRef]
- Ma, H.; Hua, L.; Ji, J. Speciation and phytoavailability of heavy metals in sediments in Nanjing section of Changjiang River. Environ. Earth Sci. 2011, 185–192. [Google Scholar] [CrossRef]
- Song, Y.; Ji, J.; Yang, Z.; Yuan, X.; Mao, C.; Frost, R.; Ayoko, G. Geochemical behavior assessment and apportionment of heavy metal contaminants in the bottom sediments of lower reach of Changjiang River. CATENA 2011, 73–81. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, Q.; Zhang, K.; Fang, Y. Risk Assessment of Heavy Metal Pollution by Three Plants at Zihu River in Nanjing, China. Energy Eng. Environ. Eng 2014, 403–408. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, L.; Li, J.; Wang, C.; Ji, J. Sediment properties and heavy metal pollution assessment in the river, estuary and lake environments of a fluvial plain, China. CATENA 2014, 52–60. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Chen, Y.; Fu, Y. Sediment characteristics, floods, and heavy metal pollution recorded in an overbank core from the lower reaches of the Yangtze River. Environ. Earth Sci. 2015, 7451–7465. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Q.; Hu, W.; Huang, B.; Dong, L.; Liu, G. Using multi-medium factors analysis to assess heavy metal health risks along the Yangtze River in Nanjing, Southeast China. Environ. Pollut. 2018, 1047–1056. [Google Scholar] [CrossRef]
- Hua, L.; Ma, H.; Ji, J. Concentration and distribution characteristic of main toxic metals in suspended particle material in Nanjing reach, Changjiang River. Environ. Monit. Assess. 2011, 361–370. [Google Scholar] [CrossRef]
- Yuan, X.; Li, J.; Li, Y.; Xiao, J. Comparative Researches on Major and Trace Elements of Suspended Particulate from Typical Sources in Nanjing Section, Yangtze River. In Proceedings of the Conference On Environmental Pollution And Public Health, Wuhan, China, 10–11 September 2010; Volumes 1–2, pp. 1294–1298. [Google Scholar]
- Lu, Y.; Gong, Z.; Zhang, G.; Burghardt, W. Concentrations and chemical speciations of Cu, Zn, Pb and Cr of urban soils in Nanjing, China. Geoderma 2003, 101–111. [Google Scholar] [CrossRef]
- Yin, Y.L.; Song, J.; Luo, Y.M.; Zhang, T.L.; He, J.F.; Xu, J.H. Assessment on variation of heavy metals in the greenbelt soils alongside urban-rural roadways in Nanjing City. Acta Ped. Sin. 2005, 20, 206–210. (In Chinese) [Google Scholar]
- Lu, D. Study on Heavy Metals Pollution of the Roadside Plant-Soil System in Nanjing; Nanjing Agricultural University: Nanjing, China, 2006. (In Chinese) [Google Scholar]
- Wang, X. The Character and Distribution of the Greenbelt Soil of Nanjing; Nanjing Forestry University: Nanjing, China, 2006. (In Chinese) [Google Scholar]
- Han, L.; Zhuang, G.; Cheng, S.; Wang, Y.; Li, J. Characteristics of re-suspended road dust and its impact on the atmospheric environment in Beijing. Atmos. Environ. 2007, 41, 7485–7499. [Google Scholar] [CrossRef]
- Ontario Ministry of the Environment (OME). Metropolitan Toronto Waterfront Wet Weather Outfall Study–Phase I; Queen’s Printer: Toronto, ON, Canada, 1995. [Google Scholar]
- Mackay, D. Multimedia Environmental Models: The Fugacity Approach; Lewis Publishers: Boca Raton, FL, USA, 2001. [Google Scholar]
- Paterson, S.; Mackay, D. Interpreting Chemical Partitioning in Soil-Plant-Air Systems with a Fugacity Model Plant Contamination, Modelling and Simulation of Organic Chemical Processes; Trapp, S., Mc Farlane, J.C., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1995. [Google Scholar]
- Fang, L.J.; Liu, M.; Li, X.Y.; Gao, H. Simulating the transfer and fate of DDTs in Nanjing. China Environ. Sci. 2011, 31, 307–315. (In Chinese) [Google Scholar]
- Zhang, L.C. Study on Chemical Elements in Water Environment; China Environmental Science Press: Beijing, China, 1996. (In Chinese) [Google Scholar]
- China National Environmental Monitoring Centre (CNEMC). Background Values of Chinese Soil Elements; China Environmental Science Press: Beijing, China, 1990. (In Chinese) [Google Scholar]
- Taylor, S.R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Wang, D.Z. Multimedia Environmental Ecological Risk Assessment of Heavy Metals in a Typical Oilfield. Master’s Thesis, North China Electric Power University, Beijing, China, March 2014. (In Chinese). [Google Scholar]
- Gao, J.M.; Zhang, K.; Zhou, B.; Jin, F.; Guo, J.S.; Ouyang, W.C.; Zhao, C. Simulation of multi-media transfer and fate of TBT in the aquatic environment of the Three Gorges Reservoir. Acta Sci. Circe. 2015, 1350–1357. (In Chinese) [Google Scholar]
- Csiszar, S.A.; Diamond, M.L.; Thibodeaux, L.J. Modeling urban films using a dynamic multimedia fugacity model. Chemosphere 2012, 87, 1024–1031. [Google Scholar] [CrossRef]
- Das, A.; Krishna, K.V.S.S.; Kumar, R. Lead isotopic ratios in source apportionment of heavy metals in the street dust of Kolkata, India. Int. J. Environ. Sci. Technol. 2018, 159–172. [Google Scholar] [CrossRef]
- Gabarrón, M.; Faz, A.; Acosta, J.A. Use of multivariable and redundancy analysis to assess the behavior of metals and arsenic in urban soil and road dust affected by metallic mining as a base for risk assessment. J. Environ. Manag. 2018, 206, 192–201. [Google Scholar] [CrossRef]
- Anagnostopoulou, M.A.; Day, J.P. Lead concentrations and isotope ratios in street dust in major cities in Greece in relation to the use of lead in petrol. Sci. Total Environ. 2006, 367, 791–799. [Google Scholar] [CrossRef]
- Shi, D.; Lu, X. Accumulation degree and source apportionment of trace metals in smaller than 63 μm road dust from the areas with different land uses: A case study of Xi’an, China. Sci. Total Environ. 2018, 636, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Lei, M.; Li, Y.; Wang, P.; Wang, C.; Gao, Y.; Wu, H.; Xu, C.; Niu, L.; Wang, L.; et al. Determination of vertical and horizontal assemblage drivers of bacterial community in a heavily polluted urban river. Water Res. 2019, 161, 98–107. [Google Scholar] [CrossRef]
- Odigiea, K.O.; Cohenb, A.S.; Swarzenskic, P.W.; Flegala, A.R. Using lead isotopes and trace element records from two contrasting Lake Tanganyika sediment cores to assess watershed—Lake exchange. Appl. Geochem. 2014, 184–190. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Men, B.; Yang, X.; Li, Y.; Xu, H.; Wang, D. Investigation of heavy metals release from sediment with bioturbation/bioirrigation. Chemosphere 2017, 184, 235–243. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, W. Experimental Study on Release of Heavy Metals in Sediment Under Hydrodynamic Conditions. In Proceeding of International Conference on Air Pollution and Environmental Engineering (APEE 2018), Hong Kong, China, 26–28 October 2018. [Google Scholar]
- Ndiba, P.; Axe, L.; Boonfueng, T. Heavy metal immobilization through phosphate and thermal treatment of dredged sediments. Environ. Sci. Technol. 2008, 42, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, M.; Chen, W.; Zhu, S.; Liu, N.; Zhu, L. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite. Environ. Pollut. 2010, 158, 514–519. [Google Scholar] [CrossRef]
- Li, X.; Dai, L.; Zhang, C.; Zeng, G.; Liu, Y.; Zhou, C.; Xu, W.; Wu, Y.; Tang, X.; Liu, W.; et al. Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient. J. Hazard. Mater. 2017, 324, 340–347. [Google Scholar] [CrossRef] [Green Version]
- Xue, W.; Huang, D.; Zeng, G. Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments. J. Hazard. Mater. 2018, 341, 381–389. [Google Scholar] [CrossRef]
- Youxian, W.; Li, Y.; Büyüksönmez, F. Evaluation of soil erosion and sediment control products for release of heavy metals. Environ. Eng. Sci. 2010, 27, 905–914. [Google Scholar] [CrossRef]
- Hwang, K.Y.; Kim, H.-S.; Hwang, I. Effect of resuspension on the release of heavy metals and water chemistry in anoxic and oxic sediments. CLEAN-Soil Air Water 2011, 39, 908–915. [Google Scholar] [CrossRef]
- Stein, E.D.; Ackerman, D. Dry weather water quality loadings in arid, urban watersheds of the Los Angeles Basin, California, USA. J. Am. Water Resour. Assoc. 2007, 43, 398–413. [Google Scholar] [CrossRef]
- Camarero, L.; Botev, I.; Muri, G.; Psenner, R.; Rose, N.; Stuchlik, E. Trace elements in alpine and arctic lake sediments as a record of diffuse atmospheric contamination across Europe. Freshwater Biol. 2009, 54, 2518–2532. [Google Scholar] [CrossRef]
- Powell, C.F.; Jickells, A.R.B.A.; Bange, H.W.; Chance, R.J.; Yodle, C. Estimation of the atmospheric flux of nutrients and trace metals to the eastern tropical North Atlantic ocean. J. Atmos. Sci. 2015, 72, 4029–4045. [Google Scholar] [CrossRef] [Green Version]
- Chien, C.-T.; Allen, B.; Dimova, N.T.; Yang, J.; Reuter, J.; Schladow, G.; Paytan, A. Evaluation of atmospheric dry deposition as a source of nutrients and trace metals to Lake Tahoe. Chem. Geol. 2019, 511, 178–189. [Google Scholar] [CrossRef]
- Ye, L.; Huang, M.; Zhong, B.; Wang, X.; Tu, Q.; Sun, H.; Wang, C.; Wu, L.; Chang, M. Wet and dry deposition fluxes of heavy metals in Pearl River Delta Region (China): Characteristics, ecological risk assessment, and source apportionment. J. Environ. Sci. 2018, 70, 106–123. [Google Scholar] [CrossRef]
- Pan, Y. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China. Atmos. Chem. Phys. 2015, 14, 951–972. [Google Scholar] [CrossRef] [Green Version]
- Morselli, L.; Olivieri, P.; Brusori, B.; Passarini, F. Soluble and insoluble fractions of heavy metals in wet and dry atmospheric depositions in Bologna, Italy. Environ. Pollut. 2003, 124, 457–469. [Google Scholar] [CrossRef]
- Van Metre, P.C.; Mahler, B.J. The contribution of particles washed from rooftops to contaminant loading to urban streams. Chemosphere 2003, 52, 1727–1741. [Google Scholar] [CrossRef]
- McPherson, T.N.T.L.; Burian, S.J.; Stenstrom, M.K.; Turin, H.J.; Brown, M.J.; Suffet, I.H. Trace metal pollutant load in urban runoff from a Southern California Watershed. J. Environ. Eng. ASCE 2005, 131, 1073–1080. [Google Scholar] [CrossRef]
- Joshi, U.M.; Balasubramanian, R. Characteristics and environmental mobility of trace elements in urban runoff. Chemosphere 2010, 80, 310–318. [Google Scholar] [CrossRef]
- Carling, G.T.; Tingey, D.G.; Fernandez, D.P.; Nelson, S.T.; Aanderud, Z.T.; Goodsell, T.H.; Chapman, T.R. Evaluating natural and anthropogenic trace element inputs along an alpine to urban gradient in the Provo River, Utah, USA. Appl. Geochem. 2015, 63, 398–412. [Google Scholar] [CrossRef] [Green Version]
- Tuccillo, M.E. Size fractionation of metals in runoff from residential and highway storm sewers. Sci. Total Environ. 2006, 355, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Tiefenthaler, L.L.; Stein, E.D.; Schiff, K.C. Watershed and land use-based sources of trace metals in urban storm water. Environ. Toxicol. Chem. 2008, 27, 277–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trenouth, W.R.; Gharabaghi, B. Soil amendments for heavy metals removal from stormwater runoff discharging to environmentally sensitive areas. J. Hydrol. 2015, 529, 1478–1487. [Google Scholar] [CrossRef]
- Kuoppamäki, K.; Hagner, M.; Valtanen, M.; Setälä, H. Using biochar to purify runoff in road verges of urbanised watersheds: A large-scale field lysimeter study. WEE 2019, 1, 15–25. [Google Scholar] [CrossRef]
- Negin, A.; Marc, T.; Stephanie, S.; Gregory, H.L.; David, L.S.; Richard, G.L. Evaluation of pilot-scale biochar-amended woodchip bioreactors to remove nitrate, metals, and trace organic contaminants from urban stormwater runoff. Water Res. 2019, 154, 1–11. [Google Scholar] [CrossRef]
Metals | Fe * | Mn | Zn | Cr | Ni | Cu | Pb | Cd | Sources | |
---|---|---|---|---|---|---|---|---|---|---|
Atmosphere PM2.5 (ng/m3) | AM | 492.36 | 48.34 | 287.92 | 15.59 | 9.37 | 65.80 | 140.55 | 2.91 | [41,42,43,44] |
N | 30 | 25 | 30 | 30 | 30 | 30 | 30 | 25 | ||
Min | 0.36 | 1.30 | 1.30 | 1.30 | 1.30 | 1.30 | 1.00 | 0.22 | ||
Max | 1100.00 | 115.00 | 824.00 | 39.80 | 25.20 | 176.00 | 427.00 | 7.86 | ||
River water (μg/L) | AM | 67.25 | 6.17 | 43.15 | 5.94 | 14.43 | 20.01 | 22.00 | 0.83 | [45,46] |
N | 43 | 3 | 43 | 43 | 3 | 43 | 43 | 43 | ||
Min | 23.00 | 4.30 | 7.60 | 2.10 | 5.60 | 4.00 | 1.50 | 0.10 | ||
Max | 350.50 | 8.80 | 92.00 | 24.30 | 24.30 | 41.00 | 734.00 | 6.40 | ||
Sediment (mg/kg) | AM | 6.49 | 777.38 | 120.35 | 78.23 | 40.20 | 44.90 | 38.91 | 1.72 | [47,48,49,50,51,52,53] |
N | 14 | 4 | 41 | 41 | 25 | 41 | 41 | 37 | ||
Min | 2.11 | 301.00 | 0.24 | 0.01 | 6.40 | 0.25 | 0.35 | 0.03 | ||
Max | 20.70 | 1552.00 | 1191.79 | 161.30 | 63.70 | 139.81 | 173.20 | 16.45 | ||
SPM (mg/kg) | AM | 7.25 | 958.40 | 196.96 | 109.95 | 56.06 | 81.87 | 66.49 | 127.68 | [48,54,55] |
N | 12 | 18 | 25 | 25 | 7 | 25 | 25 | 25 | ||
Min | 5.69 | 512.00 | 91.90 | 79.70 | 50.20 | 38.10 | 27.90 | 0.57 | ||
Max | 14.70 | 1157.00 | 658.00 | 265.00 | 67.90 | 205.00 | 146.00 | 1145.00 | ||
Soil (mg/kg) | AM | 3.51 | 646.14 | 170.42 | 79.07 | 35.57 | 67.91 | 88.51 | 0.35 | [53,56,57,58,59] |
N | 31 | 35 | 65 | 61 | 31 | 65 | 60 | 12 | ||
Min | 1.31 | 100.20 | 41.82 | 6.89 | 9.90 | 12.20 | 9.83 | 0.10 | ||
Max | 6.47 | 927.47 | 851.70 | 232.00 | 54.63 | 869.40 | 472.60 | 1.20 | ||
Road dust (mg/kg) | AM | 5.10 | 678.91 | 333.12 | 119.53 | 45.21 | 100.75 | 336.08 | 0.65 | Our study |
N | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | ||
Min | 2.85 | 416.23 | 84.87 | 54.70 | 23.22 | 19.72 | 31.99 | 0.25 | ||
Max | 10.75 | 947.36 | 788.60 | 454.96 | 90.15 | 177.65 | 2626.05 | 1.48 |
Fe | Mn | Zn | Cr | Ni | Cu | Pb | Cd |
---|---|---|---|---|---|---|---|
0.24 ± 0.01 | 0.25 ± 0.01 | 0.27 ± 0.01 | 0.25 ± 0.01 | 0.25 ± 0.01 | 0.25 ± 0.01 | 0.24 ± 0.01 | 0.26 ± 0.01 |
Element | Fe | Mn | Zn | Cr | Ni | Cu | Pb | Cd | References |
---|---|---|---|---|---|---|---|---|---|
Road dust (mg/kg) | 4.92 (%) | 678.91 | 289.68 | 104.21 | 42.65 | 100.75 | 103.65 | 0.61 | This study |
Soil (mg/kg) | 3.51 (%) | 610.02 | 131.76 | 69.98 | 35.57 | 67.91 | 63.68 | 0.263 | |
Atmospheric PM2.5 (ng/m3) | 492.36 | 48.34 | 287.92 | 12.5 | 7.13 | 65.8 | 107.5 | 2.17 | |
Surface water (μg/L) | 67.25 | 6.17 | 43.15 | 5.94 | 14.43 | 20.01 | 2.90 | 0.83 | |
Sediment (mg/kg) | 6.49 (%) | 777.38 | 120.35 | 78.23 | 40.20 | 44.90 | 38.91 | 1.72 | |
SPM (mg/kg) | 6.40 (%) | 958.40 | 172.30 | 101.00 | 56.06 | 70.90 | 61.01 | 1.32 | |
Soil background value (mg/kg) | 3.02 (%) | 585 | 62.6 | 77.8 | 26.7 | 22.3 | 26.2 | 0.126 | [66] |
Crustal abundance (mg/kg) | 5.63 (%) | 950 | 70 | 100 | 75 | 55 | 12.5 | 0.2 | [67] |
Background value in river water (μg/L) | 215.5 | 19.31 | 4.18 | 0.9 | 0.61 | 1.26 | 0.71 | 0.019 | [65] |
% | Atmospheric Deposition | Soil | Sediment | Road Dust | Tailwater | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total | Dry | Wet | Total | Soil Runoff | Soil Erosion | Total | Resuspension | Diffusion | Total | ||
Fe | 10.10 | 3.02 | 7.08 | 41.57 | 0.47 | 41.10 | 19.7 | 17.3 | 2.4 | 28.60 | 0.0012 |
Mn | 10.78 | 3.22 | 7.6 | 28.77 | 17.69 | 11.09 | 29.9 | 15.0 | 15.0 | 30.51 | 0.0011 |
Zn | 3.56 | 1.06 | 2.49 | 12.43 | 2.60 | 9.83 | 73.9 | 5.00 | 68.9 | 10.07 | 0.0007 |
Cr | 2.38 | 0.71 | 1.67 | 9.55 | 0.39 | 9.16 | 81.3 | 3.33 | 78.0 | 6.75 | 0.0000 |
Ni | 3.99 | 1.19 | 2.79 | 15.06 | 1.66 | 13.40 | 69.7 | 5.95 | 63.7 | 11.28 | 0.0000 |
Cu | 4.70 | 1.41 | 3.29 | 14.77 | 5.26 | 9.51 | 67.2 | 6.51 | 60.7 | 13.30 | 0.0005 |
Pb | 5.66 | 1.69 | 4.0 | 20.72 | 3.08 | 17.63 | 57.6 | 8.71 | 48.9 | 16.01 | 0.0008 |
Cd | 1.57 | 0.47 | 1.10 | 4.05 | 2.73 | 1.33 | 89.9 | 1.37 | 88.6 | 4.44 | 0.0000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, X.; Li, Y. Using a Multimedia Aquivalence Model to Evaluate the Environmental Fate of Fe, Mn and Trace Metals in an Industrial City, China. Water 2020, 12, 1580. https://doi.org/10.3390/w12061580
Chang X, Li Y. Using a Multimedia Aquivalence Model to Evaluate the Environmental Fate of Fe, Mn and Trace Metals in an Industrial City, China. Water. 2020; 12(6):1580. https://doi.org/10.3390/w12061580
Chicago/Turabian StyleChang, Xuan, and Yingxia Li. 2020. "Using a Multimedia Aquivalence Model to Evaluate the Environmental Fate of Fe, Mn and Trace Metals in an Industrial City, China" Water 12, no. 6: 1580. https://doi.org/10.3390/w12061580
APA StyleChang, X., & Li, Y. (2020). Using a Multimedia Aquivalence Model to Evaluate the Environmental Fate of Fe, Mn and Trace Metals in an Industrial City, China. Water, 12(6), 1580. https://doi.org/10.3390/w12061580