Hydro-Economic Modelling for Water-Policy Assessment Under Climate Change at a River Basin Scale: A Review
Abstract
1. Introduction
2. Overview and Definitions
3. Classification of HEMs
4. Recent Developments
5. The Challenge of Uncertainty
6. Discussion and Concluding Remarks
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water re-sources: Vulnerability from climate change and population growth. Sci. Mag. Rep. 2000, 289, 284–288. [Google Scholar]
- Chapagain, A.K.; Hoekstra, A.Y. Water Footprints of Nations—Main Report; Value of Water Research Report Series; UNESCO-IHE: Delft, The Netherlands, 2004; Volume 1. [Google Scholar]
- Gerten, D.; Heinke, J.; Hoff, H.; Biemans, H.; Fader, M.; Waha, K. Global water availability and requirements for future food production. J. Hydrometeorol. 2011, 12, 5. [Google Scholar] [CrossRef]
- D’Odorico, P.; Carr, J.A.; Laio, F.; Ridolfi, L.; Vandoni, S. Feeding humanity through global food trade. Earth’s Future 2014, 2, 458–469. [Google Scholar] [CrossRef]
- Berbel, J.; Expósito, A.; Gutiérrez-Marín, C.; Pérez-Blanco, C.D. Water, where do we stand. In Environmental Management of Air, Water, Agriculture, and Energy; Vaselbehagh, A., Ting, D., Eds.; Taylor & Francis, CRC Press: Boca Raton, FL, USA, 2020; pp. 7–32. [Google Scholar]
- Damania, R.; Desbureaux, S.; Hyland, M.; Islam, A.; Moore, S.; Rodella, A.S.; Russ, J.; Zaveri, E. Uncharted Waters: The New Economics of Water Scarcity and Variability; World Bank: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Olmstead, S.M. Climate change adaptation and water resource management: A review of the literature. Energy Econ. 2014, 46, 500–509. [Google Scholar] [CrossRef]
- Booker, J.F. Hydrologic and economic impacts of drought under alternative policy responses. J. Am. Water Resour. Assoc. 1995, 31, 889–906. [Google Scholar] [CrossRef]
- Booker, J.F.; Howitt, R.; Michelsen, A.; Young, R.A. Economics and the modelling of water resources and policies. Nat. Resour. Model. 2012, 25, 168–218. [Google Scholar] [CrossRef]
- European Union (EU). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy as Amended by Decision 2455/2001/EC and Directives 2008/32/EC, 2008/105/EC and 2009/31/EC; EU: Luxembourg, 2000. [Google Scholar]
- Heinz, I.; Pulido-Velazquez, M.; Lund, J.R.; Andreu, J. Hydro-economic modeling in river basin management: Implications and applications for the European water framework directive. Water Resour. Manag. 2007, 21, 1103–1125. [Google Scholar] [CrossRef]
- Brouwer, R.; Hofkes, M. Integrated hydro-economic modelling: Approaches, key issues and future research directions. Ecol. Econ. 2008, 66, 16–22. [Google Scholar] [CrossRef]
- Cai, X. Implementation of holistic water resources-economic optimization models for river basin management—Reflective experiences. Environ. Model. Softw. 2008, 23, 2–18. [Google Scholar] [CrossRef]
- Harou, J.J.; Pulido-Velazquez, M.; Rosenberg, D.E.; Medellin-Azuara, J.; Lund, J.R.; Howitt, R.E. Hydro-economic models: Concepts, design, applications, and future prospects. J. Hydrol. 2009, 375, 627–643. [Google Scholar] [CrossRef]
- Ward, F.A. Economics in integrated water management. Environ. Model. Softw. 2009, 24, 948–958. [Google Scholar] [CrossRef]
- Bekchanov, M.; Sood, A.; Pinto, A.; Jeuland, M. Systematic review of water-economy modeling applications. J. Water Resour. Plan. Manag. 2017, 143. [Google Scholar] [CrossRef]
- Krutilla, J.; Eckstein, O. Multiple Purpose River Development; John Hopkins Press for Resources for the Future: Baltimore, MD, USA, 1958. [Google Scholar]
- Vaux, H.J.; Howitt, R.E. Managing water scarcity: An evaluation of interregional transfers. Water Resour. Res. 1984, 20, 785–792. [Google Scholar] [CrossRef]
- Booker, J.F.; Young, R.A. Modeling intrastate and interstate markets for Colorado river water-resources. J. Environ. Econ. Manag. 1994, 26, 66–87. [Google Scholar] [CrossRef]
- Kahil, M.T.; Ward, F.A.; Albiac, J.; Eggleston, J.; Sanz, D. Hydro-economic modeling with aquifer-river interactions to guide sustainable basin management. J. Hydrol. 2016, 539, 510–524. [Google Scholar] [CrossRef]
- Hurd, B.H.; Callaway, J.M.; Smith, J.B.; Kirshen, P. Economic effects of climate change on U.S. water resources. In The Impact of Climate Change on the United States Economy; Mendelsohn, R., Neumann, J., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 133–177. [Google Scholar]
- Hurd, B.H.; Callaway, M.; Smith, J.; Kirshen, P. Climatic change and U.S. water resources: From modelled water-shed impacts to national estimates. J. Am. Water Resour. Assoc. 2004, 40, 129–148. [Google Scholar] [CrossRef]
- Hurd, B.H.; Harrod, M. Water resources: Economic analysis. In Global Warming and the American Economy: A Regional Assessment of Climate Change Impacts; Mendelsohn, R., Ed.; Edward Elgar Publishing: Northampton, MA, USA, 2001; pp. 106–131. [Google Scholar]
- Ward, F.A.; Young, R.; Lacewell, R.; King, J.P.; Frasier, M.; McGuckin, J.T. Institutional Adjustments for Coping with Prolonged and Severe Drought in the Rio Grande Basin; New Mexico Water Resources Research Institute: Las Cruces, NM, USA, 2001. [Google Scholar]
- Ward, F.A.; Booker, J.F.; Michelsen, A.M. Integrated economic, hydrologic, and institutional analysis of policy responses to mitigate drought impacts in Rio Grande basin. J. Water Resour. Plan. Manag. 2006, 132, 488–502. [Google Scholar] [CrossRef]
- Harou, J.J.; Lund, J.R. Ending groundwater overdraft in hydrologic-economic systems. Hydrogeol. J. 2008, 16, 1039–1055. [Google Scholar] [CrossRef]
- Hurd, B.H.; Coonrod, J. Hydro-economic consequences of climate change in the upper Rio Grande. Clim. Res. 2012, 53, 103–118. [Google Scholar] [CrossRef]
- Jeuland, M. Economic implications of climate change for infrastructure planning in transboundary water systems: An example from the Blue Nile. Water Resour. Res. 2010, 46, w11556. [Google Scholar] [CrossRef]
- Tilmant, A.; Arjoon, D.; Fernandes Marques, G. Economic value of storage in multireservoir systems. J. Water Resour. Plan. Manag. 2014, 140, 375–383. [Google Scholar] [CrossRef]
- Amin, A.; Iqbal, J.; Asghar, A.; Ribbe, L. Analysis of current and future water demands in the upper Indus basin under IPCC climate and socio-economic scenarios using a hydro-economic WEAP model. Water 2018, 10, 537. [Google Scholar] [CrossRef]
- Gisser, M.; Mercado, A. Integration of the agricultural demand function for water and the hydrologic model of the Pecos basin. Water Resour. Res. 1972, 8, 1373–1384. [Google Scholar] [CrossRef]
- Lefkoff, J.; Gorelick, S.M. Simulating physical processes and economic behavior in saline, irrigated agriculture: Model development. Water Resour. Res. 1990, 26, 1359–1369. [Google Scholar] [CrossRef]
- McKinney, D.; Cai, X.; Rosegrant, M.W.; Ringler, C.; Scott, C.A. Modeling Water Resources Management at the Basin Level: Review and Future Directions; SWIM Paper 6; International Water Management Institute: Colombo, Sri Lanka, 1999. [Google Scholar]
- Rosegrant, M.W.; Ringler, C.; McKinney, D.C.; Cai, X.; Keller, A.; Donoso, G. Integrated economic-hydrologic water modeling at the basin scale: The Maipo river basin. Agric. Econ. 2000, 24, 33–46. [Google Scholar] [CrossRef]
- Cai, X.; Wang, D. Calibrating holistic water resources—Economic models. J. Water Resour. Plan. Manag. 2006, 132, 414–423. [Google Scholar] [CrossRef]
- Noel, J.E.; Howitt, R.E. Conjunctive multi-basin management—An optimal- control approach. Water Resour. Res. 1982, 18, 753–763. [Google Scholar] [CrossRef]
- Dinar, A. Economy-Wide Implications of Direct and Indirect Policy Interventions in the Water Sector: Lessons from Recent Work and Future Research Needs; Policy Research Working Papers; World Bank: Washington, DC, USA, 2012. [Google Scholar] [CrossRef]
- Cai, X.; McKinney, D.; Lasdon, L. Integrated hydrologic-agronomic economic model for river basin management. J. Water Resour. Plan. Manag. 2003, 129, 4–17. [Google Scholar] [CrossRef]
- Jenkins, M.W.; Lund, J.R. Integrating yield and shortage management under multiple uncertainties. J. Water Resour. Plan. Manag. 2000, 126, 288–297. [Google Scholar] [CrossRef]
- Jeuland, M.; Whittington, D. Water resources planning under climate change: Assessing the robustness of real options for the Blue Nile. Water Resour. Res. 2014, 50, 2086–2107. [Google Scholar] [CrossRef]
- Herman, J.D.; Fefer, M.; Dogan, M.; Jenkins, M.; Medellín-Azuara, J.; Lund, J. Advancing Hydro-Economic Optimization to Identify Vulnerabilities and Adaptation Opportunities in California’s Water System; Report for California’s Fourth Climate Change Assessment; California Natural Resources Agency: Sacramento, CA, USA, 2018.
- Souza da Silva, G.N.; Alcoforado de Moraes, M.M. Economic water management decisions: Trade-offs between conflicting objectives in the sub-middle region of the São Francisco watershed. Reg. Environ. Chang. 2018, 18, 1957–1967. [Google Scholar] [CrossRef]
- D’Agostino, D.R.; Scardigno, A.; Lamaddalena, N.; El Chami, D. Sensitivity Analysis of Coupled Hydro-economic Models: Quantifying Climate Change Uncertainty for Decision-Making. Water Resour. Manag. 2014, 28, 4303–4318. [Google Scholar] [CrossRef]
- Hanemann, W.M. The economic conception of water. In Water Crisis: Myth or Reality? Rogers, P.P., Llamas, M.R., Martinez-Cortina, L., Eds.; Taylor & Francis: New York, NY, USA, 2006; pp. 61–91. [Google Scholar]
- Medellín-Azuara, J.; Mendoza-Espinosa, L.G.; Lund, J.R.; Harou, J.J.; Howitt, R.E. Virtues of simple hydro-economic optimization: Baja California, Mexico. J. Environ. Manag. 2009, 90, 3470–3478. [Google Scholar] [CrossRef]
- Pulido-Velazquez, M.; Andreu, J.; Sahuquillo, A.; Pulido-Velazquez, D. Hydro-economic river basin modelling: The application of a holistic surface-groundwater model to assess opportunity costs of water use in Spain. Ecol. Econ. 2008, 66, 51–65. [Google Scholar] [CrossRef]
- World Bank-OECD. Facilitating Policy Change towards Sustainable Water Use in Agriculture (Summary); World Bank-OECD: Washington, DC, USA, 2018. [Google Scholar]
- Yang, W.; Rousseau, A.N.; Boxall, P. An integrated economic-hydrologic modeling framework for the watershed evaluation of beneficial management practices. J. Soil Water Conserv. 2007, 62, 423–432. [Google Scholar]
- Qureshi, M.; Qureshi, S.; Bajracharya, K.; Kirby, M. Integrated biophysical and economic modelling framework to assess impacts of alternative groundwater management options. Water Resour. Manag. 2008, 22, 321–341. [Google Scholar] [CrossRef]
- Volk, M.; Hirschfeld, J.; Dehnhardt, A.; Schmidt, G.; Bohn, C.; Liersch, S.; Gassman, P.W. Integrated ecological-economic modelling of water pollution abatement management options in the Upper Ems River Basin. Ecol. Econ. 2008, 66, 66–76. [Google Scholar] [CrossRef]
- Peña-Haro, S.; Pulido-Velazquez, M.; Sahuquillo, A. A hydro-economic modelling framework for optimal management of groundwater nitrate pollution from agriculture. J. Hydrol. 2009, 373, 193–203. [Google Scholar] [CrossRef]
- Becker, N.; Friedler, E. Integrated hydro-economic assessment of restoration of the Alexander-Zeimar River (Israel-Palestinian Authority). Reg. Environ. Chang. 2013, 13, 103–114. [Google Scholar] [CrossRef]
- Gohar, A.A.; Ward, F.A. Gains from expanded irrigation water trading in Egypt: An integrated basin approach. Ecol. Econ. 2010, 69, 2535–2548. [Google Scholar] [CrossRef]
- George, B.A.; Malano, H.M.; Davidson, B.; Hellegers, P.J.G.J.; Bharati, L.; Sylvian, M. An integrated hydro-economic modelling framework to evaluate water allocation strategies I: Model development. Agric. Water Manag. 2011, 98, 733–746. [Google Scholar] [CrossRef]
- George, B.A.; Malano, H.M.; Davidson, B.; Hellegers, P.J.G.J.; Bharati, L.; Sylvian, M. An integrated hydro-economic modelling framework to evaluate water allocation strategies II: Scenario assessment. Agric. Water Manag. 2011, 98, 747–758. [Google Scholar] [CrossRef]
- Blanco-Gutiérrez, I.; Varela-Ortega, C.; Purkey, D.R. Integrated assessment of policy interventions for promoting sustainable irrigation in semi-arid environments: A hydro-economic modeling approach. J. Environ. Manag. 2013, 128, 144–160. [Google Scholar] [CrossRef] [PubMed]
- Ward, F.A.; Pulido-Velázquez, M. Incentive pricing and cost recovery at the basin scale. J. Environ. Manag. 2009, 90, 293–313. [Google Scholar] [CrossRef]
- Riegels, N.; Jensen, R.; Bensasson, L.; Banou, S.; Møller, F.; Bauer-Gottwein, P. Estimating resource costs of compliance with EU WFD ecological status requirements at the river basin scale. J. Hydrol. 2011, 396, 197–214. [Google Scholar] [CrossRef]
- Varela-Ortega, C.; Blanco-Gutiérrez, I.; Swartz, H.S.; Downing, T.E. Balancing groundwater conservation and rural livelihoods under water and climate uncertainties: A hydro-economic modeling framework. Glob. Environ. Chang. 2011, 21, 604–619. [Google Scholar] [CrossRef]
- Ahrends, H.; Mast, M.; Rodgers, C.; Kunstmann, H. Coupled hydrological-economic modelling for optimised irrigated cultivation in a semi-arid catchment of West Africa. Environ. Model. Softw. 2008, 23, 385–395. [Google Scholar] [CrossRef]
- Tanaka, S.K.; Zhu, T.; Lund, J.R.; Howitt, R.E.; Jenkins, M.W.; Pulido, M.A.; Tauber, M.; Ritzema, R.S.; Ferreira, I.C. Climate warming and water management adaptation for California. Clim. Chang. 2006, 76, 361–387. [Google Scholar] [CrossRef]
- Rodríguez-Flores, J.M.; Medellín-Azuara, J.; Valdivia-Alcalá, R.; Arana-Coronado, O.A.; García-Sánchez, R.C. Insights from a Calibrated Optimization Model for Irrigated Agriculture under Drought in an Irrigation District on the Central Mexican High Plains. Water 2019, 11, 858. [Google Scholar] [CrossRef]
- Medellín-Azuara, J.; Howitt, R.E.; MacEwan, D.J.; Lund, J.R. Economic impacts of climate-related changes to California agriculture. Clim. Chang. 2011, 109, 387–405. [Google Scholar] [CrossRef]
- Papas, M. Supporting Sustainable Water Management: Insights from Australia’s Reform Journey and Future Directions for the Murray-Darling Basin. Water 2018, 10, 1649. [Google Scholar] [CrossRef]
- Yang, Y.C.E.; Brown, C.M.; Yu, W.; Savitsky, A. An introduction to the IBMR, a hydro-economic model for climate change impact assessment in Pakistan’s Indus river basin. Water Int. 2013, 38, 632–650. [Google Scholar] [CrossRef]
- Graveline, N.; Majone, B.; Van Duinen, R.; Ansink, E. Hydro-economic modeling of water scarcity under global change: An application to the Gállego river basin (Spain). Reg. Environ. Chang. 2014, 14, 119–132. [Google Scholar] [CrossRef]
- Esteve, P.; Varela-Ortega, C.; Blanco-Gutierrez, I.; Downing, T.E. A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture. Ecol. Econ. 2015, 120, 49–58. [Google Scholar] [CrossRef]
- Escriva-Bou, A.; Pulido-Velazquez, M.; Pulido-Velazquez, D. Economic value of climate change adaptation strategies for water management in Spain’s Jucar basin. J. Water Resour. Plan. Manag. 2017, 143, 04017005. [Google Scholar] [CrossRef]
- Yang, Y.C.E.; Brown, C.; Yu, W.; Wescoat, J.; Ringler, C. Water governance and adaptation to climate change in the Indus River basin. J. Hydrol. 2014, 519, 2527–2537. [Google Scholar] [CrossRef]
- Kristensen, P. The DPSIR Framework; National Environmental Research Institute: Roskilde, Denmark, 2004. [Google Scholar]
- OECD (Organisation for Economic Co-operation and Development). Environmental Indicators—OECD Core Set; OECD: Paris, France, 1994. [Google Scholar]
- Mai, T.; Mushtaq, S.; Loch, A.; Reardon-Smith, K.; An-Vo, D.A. A systems thinking approach to water trade: Finding leverage for sustainable development. Land Use Policy 2019, 82, 595–608. [Google Scholar] [CrossRef]
- Blanco, M.; Ramos, F.; Van Doorslaer, B.; Martínez, P.; Fumagalli, D.; Ceglar, A.; Fernández, F.J. Climate change impacts on EU agriculture: A regionalized perspective taking into account market-driven adjustments. Agric. Syst. 2017, 156, 52–66. [Google Scholar] [CrossRef]
- EC (European Commission). A Blueprint to Safeguard Europe’s Water Resources; EC: Brussels, Belgium, 2012. [Google Scholar]
- Mubareka, S.; Maes, J.; Lavalle, C.; de Roo, A. Estimation of water requirements by livestock in Europe. Ecosyst. Serv. 2013, 4, 139–145. [Google Scholar] [CrossRef]
- Parrado, R.; Pérez-Blanco, C.D.; Gutiérrez-Martín, C.; Standardi, G. Micro-macro feedback links of agricultural water management: Insights from a coupled iterative positive multi-attribute utility programming and computable general equilibrium model in a Mediterranean basin. J. Hydrol. 2019, 569, 291–309. [Google Scholar] [CrossRef]
- Kahil, M.T.; Dinar, A.; Albiac, J. Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions. J. Hydrol. 2015, 522, 95–109. [Google Scholar] [CrossRef]
- OECD (Organisation for Economic Co-operation and Development). Strengthening the Role of Multi-Purpose Water Infrastructure: The Case of Shardara MPWI, Kazakhstan; Final report (WHAT-IF); OECD: Paris, France, 2017. [Google Scholar]
- Brouwer, F.; Avgerinopoulos, G.; Fazekas, D.; Laspidou, C.; Mercure, J.F.; Pollitt, H.; Ramos, E.P.; Howells, M. Energy modelling and the nexus concept. Energy Strategy Rev. 2018, 19, 1–6. [Google Scholar] [CrossRef]
- OECD (Organisation for Economic Co-operation and Development). Managing the Water-Energy-Land-Food Nexus in Korea: Policies and Governance Options; OECD Studies on Water; OECD: Paris, France, 2018. [Google Scholar]
- Howells, M.; Hermann, S.; Welsch, M.; Bazilian, M.; Segerström, R.; Alfstad, T.; Gielen, D.; Rogner, H.; Fischer, G.; van Velthuizen, H.; et al. Integrated analysis of climate change, land-use, energy and water strategies. Nat. Clim. Chang. 2013, 3, 621. [Google Scholar] [CrossRef]
- Escriva-Bou, A.; Lund, J.R.; Pulido-Velazquez, M.; Hui, R.; Medellín-Azuara, J. Developing a water-energy-GHG emissions modeling framework: Insights from an application to California’s water system. Environ. Model. Softw. 2018, 109, 54–65. [Google Scholar] [CrossRef]
- Closas, A.; Rap, E. Solar-based groundwater pumping for irrigation: Sustainability, policies, and limitations. Energy Policy 2017, 104, 33–37. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). IPCC Fifth Assessment Report (AR5) No. WGII; WMO (World Meteorological Organization): Geneve, Switzerland; UNEP (United Nations Environment Programme): Geneve, Switzerland, 2014. [Google Scholar]
- Ruperez-Moreno, C.; Senent-Aparicio, J.; Martinez-Vicente, D.; Garcia-Arostegui, J.L.; Calvo-Rubio, F.C.; Perez-Sanchez, J. Sustainability of irrigated agriculture with overexploited aquifers: The case of Segura basin (SE, Spain). Agric. Water Manag. 2017, 182, 67–76. [Google Scholar] [CrossRef]
- Essenfelder, A.H.; Pérez-Blanco, C.D.; Mayer, A.S. Rationalizing Systems Analysis for the Evaluation of Adaptation Strategies in Complex Human-Water Systems. Earth’s Future 2018, 6, 1181–1206. [Google Scholar] [CrossRef]
- Kreins, P.; Henseler, M.; Anter, J.; Herrmann, F.; Wendland, F. Quantification of climate change impact on regional agricultural irrigation and groundwater demand. Water Resour. Manag. 2015, 29, 3585–3600. [Google Scholar] [CrossRef]
- Harou, J.J.; Medellín-Azuara, J.; Zhu, T.; Tanaka, S.K.; Lund, J.R.; Stine, S.; Olivares, M.A.; Jenkins, M.W. Economic consequences of optimized water management for a prolonged, severe drought in California: Economic consequences of prolonged severe drought. Water Resour. Res. 2010, 46, W05522. [Google Scholar] [CrossRef]
- Reynaud, A.; Leenhardt, D. MoGIRE: A model for integrated water management. In Proceedings of the 4th International Congress on Environmental Modelling and Software, Barcelona, Spain, 7–10 July 2008. [Google Scholar]
- Tilmant, A.; Kelman, R. A stochastic approach to analyze trade-offs and risks associated with large-scale water resources systems: Trade-offs and risks in large-scale water resources systems. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Stoll, S.; Franssen, H.J.H.; Barthel, R.; Kinzelbach, W. What can we learn from long-term groundwater data to improve climate change impact studies? Hydrol. Earth Syst. Sci. 2011, 15, 3861–3875. [Google Scholar] [CrossRef]
- Graveline, N. Economic calibrated models for water allocation in agricultural production: A review. Environ. Model. Softw. 2016, 81, 12–25. [Google Scholar] [CrossRef]
- Goderniaux, P.; Brouyère, S.; Fowler, H.J.; Blenkinsop, S.; Therrien, R.; Orban, P.; Dassargues, A. Large scale surface-subsurface hydrological model to assess climate change impacts on groundwater reserves. J. Hydrol. 2009, 373, 122–138. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, J.C. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Settre, C.; Connor, J.; Wheeler, S.A. Reviewing the treatment of uncertainty in hydro-economic modeling of the Murray Darling Basin, Australia. Water Econ. Policy 2016, 3, 1650042. [Google Scholar] [CrossRef]
- Seiller, G.; Anctil, F. Climate change impacts on the hydrologic regime of a Canadian river: Comparing uncertainties arising from climate natural variability and lumped hydrological model structures. Hydrol. Earth Syst. Sci. 2014, 18, 2033–2047. [Google Scholar] [CrossRef]
- Graveline, N.; Loubier, S.; Gleyses, G.; Rinaudo, J.D. Impact of farming on water resources: Assessing uncertainty with Monte Carlo simulations in a global change context. Agric. Syst. 2012, 108, 29–41. [Google Scholar] [CrossRef]
- Gosling, S.N.; Taylor, R.G.; Arnell, N.W.; Todd, M.C. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models. Hydrol. Earth Syst. Sci. 2011, 15, 279–294. [Google Scholar] [CrossRef]
- Wada, Y.; Wisser, D.; Eisner, S.; Flörke, M.; Gerten, D.; Haddeland, I.; Hanasaki, N. Multimodel projections and uncertainties of irrigation water demand under climate change: Irrigation demand under climate change. Geophys. Res. Lett. 2013, 40, 4626–4632. [Google Scholar] [CrossRef]
- Döll, P. Vulnerability to the Impact of Climate Change on Renewable Groundwater Resources: A Global-Scale Assessment. Environ. Res. Lett. 2009, 4, 035006. [Google Scholar] [CrossRef]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Haddeland, I.; Clark, D.B.; Franssen, W.; Ludwig, F.; Voß, F.; Arnell, N.W.; Bertrand, N. Multimodel estimate of the global terrestrial water balance: Setup and first results. J. Hydrometeorol. 2011, 12, 869–884. [Google Scholar] [CrossRef]
- Roeckner, E.; Arpe, K.; Bengtsson, L.; Christoph, M.; Claussen, M.; Dümenil, L.; Esch, M.; Giorgetta, M.; Schlese, U.; Schulzweida, U. The Atmospheric General Circulation Model ECHAM-4: Model Description and Simulation of Present-Day Climate; Report No. 218; Max-Planck Institute for Meteorology: Hamburg, Germany, 1996. [Google Scholar]
- Van der Linden, P.; Mitchell, J.F.B. ENSEMBLES: Climate Change and Its Impacts: Summary of Research and Results from the ENSEMBLES Project; Met Office Hadley Centre: Exeter, UK, 2009. [Google Scholar]
- Jones, C.G.; Willen, U.; Ullerstig, A.; Hansson, U. The Rossby Centre regional atmospheric climate model part I: Model climatology and performance for the present climate over Europe. Ambio 2004, 33, 199–210. [Google Scholar] [PubMed]
- Christensen, J.H.; Carter, T.R.; Rummukainen, C.M.; Amanatidis, G. Evaluating the performance and utility of regional climate models: The PRUDENCE project. Clim. Chang. 2007, 81, 1–6. [Google Scholar] [CrossRef]
- Jones, R.N.; Chiew, F.H.S.; Boughton, W.C.; Zhang, L. Estimating the sensitivity of mean annual runoff to climate change using selected hydrological models. Adv. Water Resour. 2006, 29, 1419–1429. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Emissions Scenarios: Summary for Policymakers: A Special Report of IPCC Working Group III; WMO (World Meteorological Organization): Geneve, Switzerland; UNEP (United Nations Environment Programme): Geneve, Switzerland, 2000. [Google Scholar]
- Fabre, J.; Ruelland, D.; Dezetter, A.; Grouillet, B. Simulating past changes in the balance between water demand and availability and assessing their main drivers at the river basin scale. Hydrol. Earth Syst. Sci. 2015, 19, 1263–1285. [Google Scholar] [CrossRef]
- European Commission (EC). Water Framework Directive and the Floods Directive: Actions Towards the ‘Good Status’ of EU Water and to Reduce Flood Risks; Report on the Progress in Implementation of the Water Framework Directive Programmes of Measures; SWD(2015) 50 Final; EC: Brussels, Belgium, 2015. [Google Scholar]
- Berbel, J.; Gutiérrez-Martín, C.; Expósito, A. Impacts of irrigation efficiency improvement on water use, water consumption and response to water price at field level. Agric. Water Manag. 2018, 203, 423–429. [Google Scholar] [CrossRef]
- Xie, Y.; Zilberman, D. Water storage capacity versus water use efficiency: Substitutes or complements? J. Assoc. Environ. Resour. Econ. 2018, 5, 265–299. [Google Scholar] [CrossRef]
Study | Models & Method | Model Type | Main Focus | Case Study (Country) | Water Type | Sectors |
---|---|---|---|---|---|---|
Amin et al. [30] | Water evaluation and planning (WEAP) model | Simulation, compartment | Water supply & climate change | Upper Indus river basin (RB) (Pakistan) | SW & GW | All sectors |
Souza da Silva and Alcoforado de Moraes [42] | Soil and water integrated model (SWIM) + Model of agricultural production and its impact on the environment (MAgPIE) /General algebraic modeling system (GAMS) + Positive mathematical programming (PMP) models | Optimisation, holistic. | Trade-offs between uses & climate change | Sao Francisco RB (Brasil) | SW | Hydropower, urban, irrigation, & environment |
Essenfelder et al. [86] | Positive multi-attribute programming (PMAUP) + Soil and water assessment tool (SWAT) models | Hybrid, holistic | Climate change & adaptation strategies | Mundo RB (Spain) | SW & GW | Irrigation |
Herman et al. [41] | CALVIN model | Optimisation, holistic | Water-supply & climate change | California (USA) | SW & GW | All sectors |
Escriva-Bou et al. [68] | AQUATOOL + (Simulation model for watershed management) SIMGES | Hybrid, holistic | Climate change & adaptation strategies | Jucar RB (Spain) | SW & GW | All sectors |
Ruperez-Moreno et al. [85] | HEM for Segura RB | Optimisation, compartment | GW management & climate change | Segura RB (Spain) | GW | Irrigation & environment |
Kahil et al. [20] | Modular finite-difference flow model (MODFLOW) + GAMS + PMP | Hybrid, holistic | Trade-offs among water policies & climate change | Jucar RB (Spain) | SW & GW | Irrigation, urban (large cities), & environment |
Esteve et al. [67] | WEAP-MABIA modelling framework + PMP | Optimisation | Climate change & adaptation strategies | Middle Guadiana basin (Spain) | SW & GW | Irrigation |
Kahil et al. [77] | AQUATOOL + Jucar RB optimization model | Hybrid, compartment | Water scarcity, droughts & climate change adaptation | Jucar RB (Spain) | SW & GW | Irrigation, urban, & environment |
Kreins et al. [87] | Water balance model mGROWA + climate model WETTREG | Integrated model framework | Climate-change impacts on irrigation & GW management | North Rhine-Westphalia (Germany) | GW | Irrigation |
D’Agostino et al. [43] | Non-linear optimization model + hydrological GIS-based model + CLIMAWARE | Optimisation | Climate-change effects on water balance | Apulia (Italy) | SW & GW | Irrigation |
Tilmant et al. [29] | Stochastic Dual Dynamic Programming (SDDP) model | Optimisation, compartment | Water-supply & climate change | Euphrates RB (Turkey, Siria) | SW | Hydropower & irrigation |
Yang et al. [65,69] | Indus Basin Model Revised-Multiyear (IBMR-MY) | Optimisation, compartment | Allocation strategies & climate-change adaptation | Indus RB (Pakistan) | SW & GW | Irrigation |
Hurd & Coonrod [27] | Water balance (WATBAL) model + circulation models (temperature and precipitation), GAMS | Hybrid, holistic | Trade-offs between uses & climate-change adaptation | Upper Rio Grande (USA) | SW & GW | All sectors |
Harou et al. [88] | CALVIN model | Optimisation, holistic | Trade-offs between uses, drought & climate change | California water system (USA) | SW & GW | All sectors |
Jeuland [28] | Standard water resources planning model + Montecarlo methods | Simulation, compartment | Water-supply & climate change | Nile RB (Egypt) | SW | Hydropower & irrigation |
Varela-Ortega et al. [59] | WEAP model | Optimisation | Water and agricultural policies & climate change | Upper Guadiana basin (Spain) | SW & GW | Irrigation |
Reynaud and Leenhardt [89] | Model for water resources management (MoGIRE) | Optimisation holistic | Integrated water management & climate change | Neste basin (France) | SW | Irrigation, urban & environment |
Tilmant and Kelman [90] | Stochastic Dual Dynamic Programming (SDDP) model | Optimisation compartment | Water-supply & climate change | Eurphrates and Tigirs rivers (Turkey) | SW | Hydropower & irrigation |
Tanaka et al. [61] | CALVIN model | Optimisation holistic | Climate change & adaptation strategies | California water system (USA) | SW & GW | Irrigation & urban |
Type of Uncertainty | Treatment of Uncertainty | Examples |
---|---|---|
Input-parameter uncertainty (physical) | Stochastic programming | [28,29,90] |
Sensitivity analysis | [41,43] | |
Input-parameter uncertainty (economic) | Stochastic programming | [28,43,59,67,89,97] |
Sensitivity analysis | [41,43,77] | |
Climate uncertainty | Several climate-change scenarios | [20,30,41,43,61,65,68,69,77,86,88,97,106] |
Model (chain) uncertainty (Upscaling/downscaling) | Use of different (global/regional) climate models | [27,41,43,65,66,68] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Expósito, A.; Beier, F.; Berbel, J. Hydro-Economic Modelling for Water-Policy Assessment Under Climate Change at a River Basin Scale: A Review. Water 2020, 12, 1559. https://doi.org/10.3390/w12061559
Expósito A, Beier F, Berbel J. Hydro-Economic Modelling for Water-Policy Assessment Under Climate Change at a River Basin Scale: A Review. Water. 2020; 12(6):1559. https://doi.org/10.3390/w12061559
Chicago/Turabian StyleExpósito, Alfonso, Felicitas Beier, and Julio Berbel. 2020. "Hydro-Economic Modelling for Water-Policy Assessment Under Climate Change at a River Basin Scale: A Review" Water 12, no. 6: 1559. https://doi.org/10.3390/w12061559
APA StyleExpósito, A., Beier, F., & Berbel, J. (2020). Hydro-Economic Modelling for Water-Policy Assessment Under Climate Change at a River Basin Scale: A Review. Water, 12(6), 1559. https://doi.org/10.3390/w12061559