Development of a Universal Water Quality Index (UWQI) for South African River Catchments
Abstract
:1. Introduction
2. Methods
2.1. Research Data
2.2. Universal Water Quality Index (UWQI)
2.2.1. Selection of Water Quality Variables
2.2.2. Establishing Weight Coefficients
2.2.3. Formation of Sub-Indices
2.2.4. Aggregation Formula
WQI2 = (1/x2)(SI21w1 + SI22w2 + SI23w3 + … + SI2nwn)z2
…
WQIm = (1/xm)(SIm1w1 + SIm2w2 + SIm3w3 + … + SImnwn)zm
2.3. Water Classification
3. Area of Study
3.1. Background and Specific Considerations
3.2. Umgeni River Catchment
3.3. Umdloti River Catchment
3.4. Nungwane River Catchment
3.5. Umzinto/uMuziwezinto River Catchment
3.6. Sampling Locations
4. Results and Discussion
4.1. Research Dataset
4.2. Water Quality Variables and their Relative Weightage Coefficients
4.3. Formation of Parameter Sub-Index Rating Curves and Sub-Index Functions
4.4. Weighted Indexing Model (UWQI)
4.5. Scenario-Based Model Validation Analysis
4.6. Evaluation of Water Quality
4.7. Index Categorisation Schema
5. Conclusion and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tripathi, M.; Singal, S.K. Use of Principal Component Analysis for parameter selection for development of a novel Water Quality Index: A case study of river Ganga India. Ecol. Indic. 2019, 96, 430–436. [Google Scholar] [CrossRef]
- Paca, J.M.; Santos, F.M.; Pires, J.C.M.; Leitão, A.A.; Boaventura, R.A.R. Quality assessment of water intended for human consumption from Kwanza, Dande and Bengo rivers (Angola). Environ. Pollut. 2019, 254, 113037–113044. [Google Scholar] [CrossRef]
- Banda, D.T. Developing an Equitable Raw Water Pricing Model: The Vaal Case Study. Ph.D. Thesis, Tshwane University of Technology, Pretoria, Republic of South Africa, 2015. [Google Scholar]
- Carvalho, L.; Cortes, R.; Bordalo, A.A. Evaluation of the ecological status of an impaired watershed by using a multi-index approach. Environ. Monit. Assess. 2011, 174, 493–508. [Google Scholar] [CrossRef] [PubMed]
- Boyacioğlu, H. Development of a water quality index based on a European classification scheme. Water Sa 2007, 33. [Google Scholar] [CrossRef] [Green Version]
- Unda-Calvo, J.; Ruiz-Romera, E.; Martínez-Santos, M.; Vidal, M.; Antigüedad, I. Multivariate statistical analyses for water and sediment quality index development: A study of susceptibility in an urban river. Sci. Total Environ. 2019, 711, 135026. [Google Scholar] [CrossRef] [PubMed]
- Banda, D.T.; Kumarasamy, M.V. Development of Water Quality Indices (WQIs): A Review. Pol. J. Environ. Stud. 2020, 29, 2011–2021. [Google Scholar] [CrossRef]
- Poonam, T.; Tanushree, B.; Sukalyan, C. Water quality indices - important tools for water quality assessment: A review. Int. J. Adv. Chem. 2015, 1, 15–28. [Google Scholar]
- Sutadian, A.D.; Muttil, N.; Yilmaz, A.G.; Perera, B. Development of river water quality indices-A review. Environ. Monit. Assess. 2016, 188, 58–90. [Google Scholar] [CrossRef] [Green Version]
- Paun, I.; Cruceru, L.V.; Chiriac, L.F.; Niculescu, M.; Vasile, G.G.; Marin, N.M. Water Quality Indices-methods for evaluating the quality of drinking water. In Proceedings of the 19th INCD ECOIND International Symposium-SIMI 2016, “The Environment and the Industry”, Bucharest, Romania, 13–14 October 2016; pp. 395–402. [Google Scholar]
- Tyagi, S.; Sharma, B.; Singh, P.; Dobhal, R. Water quality assessment in terms of water quality index. Am. J. Water Resour. 2013, 1, 34–38. [Google Scholar] [CrossRef]
- Abbasi, T.; Abbasi, S.A. Water Quality Indices. 2012, p. 353. Available online: https://doi.org/10.1016/C2010-0-69472-7 (accessed on 14 October 2015).
- Namugize, J.N.; Jewitt, G.; Graham, M. Effects of land use and land cover changes on water quality in the uMngeni river catchment, South Africa. Phys. Chem. Earthparts A/B/C 2018, 105, 247–264. [Google Scholar] [CrossRef]
- Hughes, C.; de Winnaar, G.; Schulze, R.; Mander, M.; Jewitt, G. Mapping of water-related ecosystem services in the uMngeni catchment using a daily time-step hydrological model for prioritisation of ecological infrastructure investment–Part 1: Context and modelling approach. Water Sa 2018, 44, 577–589. [Google Scholar] [CrossRef] [Green Version]
- Shoko, C. The Effect of Spatial Resolution in Remote Sensing Estimates of Total Evaporation in the uMgeni Catchment. Ph.D. Thesis, University of KwaZulu-Natal, Pietermaritzburg, Republic of South Africa, 2014. [Google Scholar]
- Umgeni Water. Infrastructure Master Plan 2019/2020-2049/2050, Volume 2: Mgeni System; Umgeni Water: Pietermaritzburg, South Africa, 2019; p. 185. [Google Scholar]
- Umgeni Water. Infrastructure Master Plan 2019/2020-2049/2050, Volume 3: uMkhomazi System; Umgeni Water: Pietermaritzburg, South Africa, 2019; p. 35. [Google Scholar]
- Republic of South Africa. Proposed new nine (9) water management areas of South Africa. In Government Gazette No. 35517, Notice No. 547; Department of Water and Environmental Affairs, Ed.; Republic of South Africa: Pretoria, South Africa, 2012; Volume 565, p. 72. [Google Scholar]
- Chiluwe, Q.W. Assessing the Role of Property Rights in Managing Water Demand: The Case of uMgeni River Catchment. Ph.D. Thesis, Monash South Africa, Johannesburg, Republic of South Africa, 2014. [Google Scholar]
- Sutadian, A.D.; Muttil, N.; Yilmaz, A.G.; Perera, B.J.C. Development of a water quality index for rivers in West Java Province, Indonesia. Ecol. Indic. 2018, 85, 966–982. [Google Scholar] [CrossRef]
- Horton, R.K. An Index-Number System for Rating Water Quality. J. Water Pollut. Control Fed. 1965, 37, 300–306. [Google Scholar]
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; Tozer, R.G. A water quality index-Do we dare? Water Sew. Work. 1970, 117, 339–343. [Google Scholar]
- Brown, R.; McClelland, N.; Deininger, R.; Landwehr, J. Validating the WQI. In Proceedings of the Paper Presented at National Meeting of American Society of Civil Engineers on Water Resources Engineering, Washington, DC, USA, 30 January 1973. [Google Scholar]
- SRDD. Development of a water quality index. In Applied Research & Development Report Number ARD3; Scottish Research Development Department Engineering Division, Ed.; Scottish Research Development Department Engineering Division: Edinburg, UK, 1976; Volume ARD3, p. 61. [Google Scholar]
- Ross, S. An index system for classifying river water quality. Water Pollut. Control 1977, 76, 113–122. [Google Scholar]
- House, M.A. Water Quality Indices; Middlesex Polytechnic: London, UK, 1986. [Google Scholar]
- House, M.A. A water quality index for river management. Water Environ. J. 1989, 3, 336–344. [Google Scholar] [CrossRef]
- House, M.A. Water quality indices as indicators of ecosystem change. Environ. Monit. Assess. 1990, 15, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Dinius, S. Design of an index of water quality. Jawra J. Am. Water Resour. Assoc. 1987, 23, 833–843. [Google Scholar] [CrossRef]
- Smith, D.G. Water Quality Indexes for Use in New Zealand’s Rivers and Streams; National Water and Soil Conservation Authority of New Zealand, Water Quality Centre Publication: Hamilton, New Zealand, 1987; Available online: http://docs.niwa.co.nz/library/public/WQCpub12.pdf (accessed on 16 October 2015).
- Smith, D.G. A better water quality indexing system for rivers and streams. Water Res. 1990, 24, 1237–1244. [Google Scholar] [CrossRef]
- Tyson, J.; House, M. The application of a water quality index to river management. Water Sci. Technol. 1989, 21, 1149–1159. [Google Scholar] [CrossRef]
- Nagels, J.; Davies-Colley, R.; Smith, D. A water quality index for contact recreation in New Zealand. Water Sci. Technol. 2001, 43, 285–292. [Google Scholar] [CrossRef]
- Kumar, D.; Alappat, B.J. NSF-Water Quality Index: Does It Represent the Experts’ Opinion? Pract. Period. Hazard. Toxicand Radioact. Waste Manag. 2009, 13, 75–79. [Google Scholar] [CrossRef]
- Almeida, C.; González, S.O.; Mallea, M.; González, P. A recreational water quality index using chemical, physical and microbiological parameters. Environ. Sci. Pollut. Res. 2012, 19, 3400–3411. [Google Scholar] [CrossRef] [PubMed]
- Linstone, H.A.; Turoff, M. The Delphi Method: Techniques and Applications; Addison-Wesley: Reading, MA, USA, 1975; Volume 29. [Google Scholar]
- Linstone, H.A.; Turoff, M. The Delphi Method: Techniques and Applications; Addison-Wesley Publishing Company, Advanced Book Program: Newark, NJ, USA, 2002; Volume 18. [Google Scholar]
- Sharma, P.; Meher, P.K.; Kumar, A.; Gautam, Y.P.; Mishra, K.P. Changes in water quality index of Ganges river at different locations in Allahabad. Sustain. Water Qual. Ecol. 2014, 3, 67–76. [Google Scholar] [CrossRef]
- DWAF. South African Water Quality Guidelines: Volume 1: Domestic Water Use; Department of Water Affairs and Forestry: Pretoria, South Africa, 1996; p. 190. [Google Scholar]
- DWAF. South African Water Quality Guidelines: Volume 3: Industrial Use; Department of Water Affairs and Forestry: Pretoria, South Africa, 1996. [Google Scholar]
- DWAF. South African Water Quality Guidelines: Volume 7: Aquatic Ecosystems; Department of Water Affairs and Forestry: Pretoria, South Africa, 1996. [Google Scholar]
- Wang, P.; Mou, S.; Lian, J.; Ren, W. Solving a system of linear equations: From centralized to distributed algorithms. Annu. Rev. Control 2019, 47, 306–322. [Google Scholar] [CrossRef]
- Low, K.H.; Koki, I.B.; Juahir, H.; Azid, A.; Behkami, S.; Ikram, R.; Mohammed, H.A.; Zain, S.M. Evaluation of water quality variation in lakes, rivers, and ex-mining ponds in Malaysia (review). Desalin. Water Treat. 2016, 57, 28215–28239. [Google Scholar] [CrossRef]
- Nozaic, D.; Freese, S.; Thompson, P. Longterm experience in the use of polymeric coagulants at Umgeni Water. Water Sci. Technol. Water Supply 2001, 1, 43–50. [Google Scholar] [CrossRef]
- Manickum, T.; John, W.; Terry, S.; Hodgson, K. Preliminary study on the radiological and physicochemical quality of the Umgeni Water catchments and drinking water sources in KwaZulu-Natal, South Africa. J. Environ. Radioact. 2014, 137, 227–240. [Google Scholar] [CrossRef]
- Warburton, M.L.; Schulze, R.E.; Jewitt, G.P.W. Hydrological impacts of land use change in three diverse South African catchments. J. Hydrol. 2012, 414–415, 118–135. [Google Scholar] [CrossRef]
- Rangeti, I. Determinants of Key Drivers for Potable Water Treatment cost in uMngeni Basin. Ph.D. Thesis, Durban University of Technology, Durban, Republic of South Africa, 2015. [Google Scholar]
- Olaniran, A.O.; Naicker, K.; Pillay, B. Assessment of physico-chemical qualities and heavy metal concentrations of Umgeni and Umdloti Rivers in Durban, South Africa. Environ. Monit. Assess. 2014, 186, 2629–2639. [Google Scholar] [CrossRef]
- Gakuba, E.; Moodley, B.; Ndungu, P.; Birungi, G. Occurrence and significance of polychlorinated biphenyls in water, sediment pore water and surface sediments of Umgeni River, KwaZulu-Natal, South Africa. Environ. Monit. Assess. 2015, 187, 568. [Google Scholar] [CrossRef] [PubMed]
- Namugize, J.N.; Jewitt, G.P.W. Sensitivity analysis for water quality monitoring frequency in the application of a water quality index for the uMngeni River and its tributaries, KwaZulu-Natal, South Africa. Water Sa 2018, 44, 516–527. [Google Scholar] [CrossRef] [Green Version]
- Umgeni Water. Infrastructure Master Plan 2019/2020 - 2049/2050, Volume 5: North Coast System; Umgeni Water: Pietermaritzburg, South Africa, 2019; p. 116. [Google Scholar]
- Govender, S. An Investigation of the Natural and Human Induced Impacts on the Umdloti Catchment. Ph.D. Thesis, University of KwaZulu, Durban, South Africa, 2009. [Google Scholar]
- Umgeni Water. Infrastructure Master Plan 2019/2020-2049/2050, Volume 4: South Coast System; Umgeni Water: Pietermaritzburg, South Africa, 2019; p. 116. [Google Scholar]
- Mwelase, L.T. Non-Revenue Water: Most Suitable Business Model for Water Services Authorities in South Africa: Ugu District Municipality. Ph.D. Thesis, Durban University of Technology, Durban, Republic of South Africa, 2016. [Google Scholar]
- Pegram, G.; Görgens, A. A Guide to Non-Point Source Assessment: To Support Water Quality Management of Surface Water Resources in South Africa (WRC Project No. 696/2/01); Water Research Commission: Cape Town, Republic of South Africa, 2001; p. 127. [Google Scholar]
- Ochieng, G.M. Hydrological and water quality modelling of the Upper Vaal water management areas using a stochastic mechanistic approach. Ph.D. Thesis, Tshwane University of Technology, Pretoria, South Africa, 2007. [Google Scholar]
- Bogart, S.J.; Woodman, S.; Steinkey, D.; Meays, C.; Pyle, G.G. Rapid changes in water hardness and alkalinity: Calcite formation is lethal to Daphnia magna. Sci. Total Environ. 2016, 559, 182–191. [Google Scholar] [CrossRef]
- Beyene, G.; Aberra, D.; Fufa, F. Evaluation of the suitability of groundwater for drinking and irrigation purposes in Jimma Zone of Oromia, Ethiopia. Groundw. Sustain. Dev. 2019, 9, 100216. [Google Scholar] [CrossRef]
- Fan, A.M. Nitrate and Nitrite in Drinking Water: A Toxicological Review. Encycl. Environ. Health 2011, 137–145. [Google Scholar] [CrossRef]
- Serio, F.; Miglietta, P.P.; Lamastra, L.; Ficocelli, S.; Intini, F.; De Leo, F.; De Donno, A. Groundwater nitrate contamination and agricultural land use: A grey water footprint perspective in Southern Apulia Region (Italy). Sci. Total Environ. 2018, 645, 1425–1431. [Google Scholar] [CrossRef] [PubMed]
- Espejo-Herrera, N.; Cantor, K.P.; Malats, N.; Silverman, D.T.; Tardón, A.; García-Closas, R.; Serra, C.; Kogevinas, M.; Villanueva, C.M. Nitrate in drinking water and bladder cancer risk in Spain. Environ. Res. 2015, 137, 299–307. [Google Scholar] [CrossRef]
- Sadler, R.; Maetam, B.; Edokpolo, B.; Connell, D.; Yu, J.; Stewart, D.; Park, M.J.; Gray, D.; Laksono, B. Health risk assessment for exposure to nitrate in drinking water from village wells in Semarang, Indonesia. Environ. Pollut. 2016, 216, 738–745. [Google Scholar] [CrossRef]
- Shah, K.A.; Joshi, G.S. Evaluation of water quality index for River Sabarmati, Gujarat, India. Appl. Water Sci. 2017, 7, 1349–1358. [Google Scholar] [CrossRef] [Green Version]
- Robert, E.; Grippa, M.; Kergoat, L.; Pinet, S.; Gal, L.; Cochonneau, G.; Martinez, J.-M. Monitoring water turbidity and surface suspended sediment concentration of the Bagre Reservoir (Burkina Faso) using MODIS and field reflectance data. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 243–251. [Google Scholar] [CrossRef]
- Uncles, R.J.; Hooper, T.; Stephens, J.A.; Harris, C. Seasonal variability of turbidity, salinity, temperature and suspended chlorophyll in a strongly tidal sub-estuary: The Lynher Marine Conservation Zone. Estuar. Coast. Shelf Sci. 2018, 212, 253–264. [Google Scholar] [CrossRef]
- Andrade, C.; Alcântara, E.; Bernardo, N.; Kampel, M. An assessment of semi-analytical models based on the absorption coefficient in retrieving the chlorophyll-a concentration from a reservoir. Adv. Space Res. 2019, 63, 2175–2188. [Google Scholar] [CrossRef]
- Hashim, K.S.; Al Khaddar, R.; Jasim, N.; Shaw, A.; Phipps, D.; Kot, P.; Pedrola, M.O.; Alattabi, A.W.; Abdulredha, M.; Alawsh, R. Electrocoagulation as a green technology for phosphate removal from river water. Sep. Purif. Technol. 2019, 210, 135–144. [Google Scholar] [CrossRef]
- Omwene, P.I.; Kobya, M.; Can, O.T. Phosphorus removal from domestic wastewater in electrocoagulation reactor using aluminium and iron plate hybrid anodes. Ecol. Eng. 2018, 123, 65–73. [Google Scholar] [CrossRef]
- Rankinen, K.; Cano Bernal, J.E.; Holmberg, M.; Vuorio, K.; Granlund, K. Identifying multiple stressors that influence eutrophication in a Finnish agricultural river. Sci. Total Environ. 2019, 658, 1278–1292. [Google Scholar] [CrossRef]
- Abrahão, R.; Carvalho, M.; da Silva, W., Jr.; Machado, T.; Gadelha, C.; Hernandez, M. Use of index analysis to evaluate the water quality of a stream receiving industrial effluents. Water Sa 2007, 33. [Google Scholar] [CrossRef] [Green Version]
- Rabee, A.M.; Al-Fatlawy, Y.F.; Nameer, M. Using pollution load index (PLI) and geoaccumulation index (I-Geo) for the assessment of heavy metals pollution in Tigris river sediment in Baghdad Region. Al-Nahrain J. Sci. 2011, 14, 108–114. [Google Scholar] [CrossRef]
- Rubio-Arias, H.; Contreras-Caraveo, M.; Quintana, R.M.; Saucedo-Teran, R.A.; Pinales-Munguia, A. An overall water quality index (WQI) for a man-made aquatic reservoir in Mexico. Int. J. Environ. Res. Public Health 2012, 9, 1687–1698. [Google Scholar] [CrossRef]
Sampling Station Identity | Identity Codes | Sampling Location Coordinates (DMS)* | |||
---|---|---|---|---|---|
Station | Catchment | Latitude | Longitude | ||
1 | Henley Dam | DHL003 | U20 | S 29°37′25.734″ | E 30°14′49.754″ |
2 | Hazelmere Dam | DHM003 | U30 | S 29°35′53.722″ | E 31°02′32.121″ |
3 | Inanda Dam 0.3 km | DIN003 | U20 | S 29°42′27.403″ | E 30°52′03.352″ |
4 | Midmar Dam | DMM003 | U20 | S 29°29′47.332″ | E 30°12′05.655″ |
5 | Umzinto Dam | DMZ009 | U80 | S 30°18′40.676″ | E 30°35′34.580″ |
6 | Nungwane Dam | DNW003 | U70 | S 30°00′24.473″ | E 30°44′36.150″ |
S.No.1 | Statistics | Water Quality Variables 7 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NH3 | Ca | Cl | Chl-a | EC | F | CaCO3 | Mg | Mn | NO3 | pH | SO4 | Turb | ||
1 | Min. 2 | 0.04 | 4.32 | 3.16 | 0.14 | 6.84 | 0.10 | 21.29 | 2.55 | 0.01 | 0.41 | 7.20 | 0.16 | 3.90 |
Mean 3 | 0.12 | 6.90 | 8.67 | 6.33 | 11.13 | 0.11 | 34.59 | 4.21 | 0.07 | 1.27 | 7.78 | 2.13 | 36.64 | |
Max. 4 | 0.56 | 14.20 | 21.40 | 68.31 | 21.80 | 0.54 | 69.55 | 8.28 | 0.59 | 2.27 | 8.60 | 3.46 | 367.00 | |
Std. Dev.5 | 0.09 | 1.61 | 2.30 | 11.67 | 2.17 | 0.06 | 7.55 | 0.91 | 0.12 | 0.50 | 0.28 | 0.71 | 61.57 | |
CoV 6 (%) | 72.68 | 23.37 | 26.56 | 184.30 | 19.47 | 56.76 | 21.83 | 21.59 | 166.03 | 39.19 | 3.55 | 33.45 | 168.05 | |
2 | Min. | 0.04 | 3.80 | 19.40 | 0.14 | 15.80 | 0.10 | 27.69 | 3.27 | 0.01 | 0.10 | 6.80 | 1.56 | 1.20 |
Mean | 0.09 | 5.45 | 28.87 | 6.23 | 18.18 | 0.12 | 34.15 | 4.99 | 0.03 | 0.37 | 7.90 | 6.38 | 31.62 | |
Max. | 0.16 | 18.80 | 40.50 | 92.22 | 22.30 | 0.20 | 81.45 | 8.38 | 0.14 | 3.54 | 9.10 | 13.40 | 293.00 | |
Std. Dev. | 0.02 | 1.67 | 3.82 | 13.62 | 1.23 | 0.02 | 6.41 | 0.61 | 0.03 | 0.41 | 0.47 | 2.13 | 38.95 | |
CoV (%) | 24.83 | 30.58 | 13.25 | 218.73 | 6.78 | 19.01 | 18.77 | 12.26 | 90.51 | 111.39 | 5.89 | 33.35 | 123.20 | |
3 | Min. | 0.04 | 7.35 | 18.70 | 0.14 | 7.85 | 0.13 | 31.16 | 3.11 | 0.01 | 0.05 | 0.00 | 11.50 | 0.60 |
Mean | 0.10 | 15.87 | 32.80 | 4.66 | 28.64 | 0.16 | 71.20 | 7.67 | 0.03 | 0.71 | 7.59 | 16.51 | 2.25 | |
Max. | 0.27 | 30.50 | 43.90 | 19.50 | 33.60 | 0.22 | 128.46 | 12.70 | 0.29 | 9.58 | 8.80 | 24.20 | 19.30 | |
Std. Dev. | 0.03 | 4.70 | 4.36 | 3.70 | 2.53 | 0.02 | 18.32 | 1.78 | 0.05 | 0.90 | 0.76 | 2.27 | 2.00 | |
CoV (%) | 30.18 | 29.64 | 13.30 | 79.33 | 8.84 | 12.11 | 25.74 | 23.17 | 157.57 | 125.59 | 10.02 | 13.75 | 88.90 | |
4 | Min. | 0.04 | 1.00 | 1.82 | 0.18 | 6.99 | 0.10 | 6.67 | 1.00 | 0.01 | 0.10 | 6.00 | 0.95 | 1.10 |
Mean | 0.11 | 5.93 | 4.35 | 4.70 | 7.67 | 0.10 | 27.91 | 3.14 | 0.01 | 0.32 | 7.87 | 1.86 | 5.23 | |
Max. | 0.61 | 18.50 | 7.88 | 25.62 | 8.93 | 0.21 | 79.00 | 8.08 | 0.08 | 4.50 | 8.50 | 2.64 | 19.10 | |
Std. Dev. | 0.08 | 2.58 | 0.92 | 4.84 | 0.38 | 0.02 | 10.90 | 1.07 | 0.01 | 0.61 | 0.39 | 0.35 | 3.78 | |
CoV (%) | 75.45 | 43.57 | 21.08 | 103.00 | 4.89 | 17.35 | 39.06 | 34.08 | 86.38 | 189.44 | 4.91 | 18.99 | 72.24 | |
5 | Min. | 0.04 | 1.91 | 31.90 | 0.14 | 18.80 | 0.11 | 11.07 | 1.53 | 0.01 | 0.05 | 6.80 | 1.72 | 1.24 |
Mean | 0.12 | 10.34 | 50.83 | 3.72 | 31.95 | 0.22 | 61.44 | 8.65 | 0.18 | 0.32 | 7.81 | 10.33 | 9.43 | |
Max. | 0.99 | 17.00 | 79.00 | 30.39 | 48.00 | 0.39 | 102.57 | 14.60 | 1.21 | 2.18 | 8.40 | 23.10 | 75.40 | |
Std. Dev. | 0.13 | 2.98 | 12.00 | 4.95 | 6.53 | 0.07 | 17.09 | 2.53 | 0.22 | 0.39 | 0.35 | 4.70 | 12.61 | |
CoV (%) | 110.62 | 28.79 | 23.60 | 133.02 | 20.43 | 30.67 | 27.82 | 29.30 | 126.21 | 120.10 | 4.45 | 45.52 | 133.83 | |
6 | Min. | 0.04 | 1.00 | 12.00 | 0.14 | 13.20 | 0.10 | 6.62 | 1.00 | 0.01 | 0.10 | 7.30 | 0.16 | 2.00 |
Mean | 0.12 | 3.76 | 24.49 | 4.13 | 14.84 | 0.10 | 25.62 | 3.94 | 0.02 | 0.45 | 7.87 | 3.14 | 8.63 | |
Max. | 0.68 | 7.91 | 37.10 | 11.92 | 16.60 | 0.10 | 36.39 | 5.02 | 0.15 | 1.77 | 8.70 | 7.16 | 29.20 | |
Std. Dev. | 0.09 | 1.12 | 3.55 | 2.45 | 0.99 | 0.00 | 6.40 | 0.96 | 0.03 | 0.36 | 0.31 | 1.30 | 5.69 | |
CoV (%) | 71.12 | 29.83 | 14.51 | 59.51 | 6.66 | 0.00 | 24.98 | 24.31 | 120.12 | 78.90 | 3.99 | 41.52 | 65.87 |
Variable Identity and Name | Impact Weight Ratings and Weightage Coefficients | ||||
---|---|---|---|---|---|
Delphi Rating (ci) | Literature Rating (di) | Weight Rating (bi) | Weight Coefficient (wi) | ||
1 | Ammonia | 4.3684 | 3.5033 | 3.9358 | 0.1035 |
2 | Calcium | 3.5263 | 1.9961 | 2.7612 | 0.0726 |
3 | Chloride | 3.7143 | 1.9249 | 2.8196 | 0.0742 |
4 | Chlorophyll a | 1.7222 | 1.0000 | 1.3611 | 0.0358 |
5 | Electrical Conductivity | 2.9474 | 2.3136 | 2.6305 | 0.0692 |
6 | Fluoride | 3.7500 | 3.4619 | 3.6059 | 0.0949 |
7 | Hardness | 2.5714 | 1.8943 | 2.2329 | 0.0587 |
8 | Magnesium | 3.4667 | 1.9334 | 2.7000 | 0.0710 |
9 | Manganese | 3.8125 | 3.1093 | 3.4609 | 0.0910 |
10 | Nitrate | 3.9048 | 3.0072 | 3.4560 | 0.0909 |
11 | pondus Hydrogenium | 4.3333 | 2.5949 | 3.4641 | 0.0911 |
12 | Sulphate | 2.9167 | 2.9712 | 2.9439 | 0.0774 |
13 | Turbidity | 2.6667 | 2.6226 | 2.6446 | 0.0696 |
Totals | 38.0167 | 1.0000 |
Variable | Unit | Key Points of the Sub-Index Graph (SI0, …, 100 = Sub-Index Zero to Sub-Index One Hundred) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class 5 | Class 4 | Class 3 | Class 2 | Class 1 | |||||||||
SI0 | SI5 | SI10 | SI25 | SI45 | SI50 | SI55 | SI75 | SI90 | SI95 | SI100 | |||
1 | NH3 | mg/L | 2.00 | 1.58 | 1.47 | 1.28 | 0.93 | 0.84 | 0.75 | 0.40 | 0.13 | 0.05 | 0.00 |
2 | Ca | mg/L | 90.00 | 83.47 | 76.95 | 59.01 | 49.16 | 46.70 | 42.03 | 23.35 | 9.34 | 4.67 | 0.00 |
3 | Cl | mg/L | 601.00 | 501.00 | 461.01 | 344.37 | 188.85 | 150.00 | 137.50 | 87.50 | 50.00 | 50.00 | 50.00 |
4 | Chl-a | µg/L | 29.00 | 24.00 | 20.00 | 17.00 | 13.00 | 12.00 | 11.00 | 5.50 | 1.00 | 1.00 | 1.00 |
5 | EC | µS/m | 492.86 | 471.44 | 450.00 | 385.77 | 300.00 | 278.58 | 257.15 | 171.45 | 70.00 | 70.00 | 70.00 |
6 | F | mg/L | 1.51 | 1.38 | 1.27 | 0.92 | 0.46 | 0.35 | 0.33 | 0.27 | 0.05 | 0.05 | 0.05 |
7 | CaCO3 | mg/L | 300.00 | 280.00 | 260.00 | 200.00 | 180.00 | 175.00 | 170.00 | 150.00 | 75.00 | 50.00 | 0.00 |
8 | Mg | mg/L | 91.00 | 82.00 | 74.00 | 50.00 | 46.00 | 45.00 | 44.00 | 40.00 | 32.50 | 30.00 | 0.00 |
9 | Mn | mg/L | 1.54 | 1.43 | 1.33 | 1.03 | 0.63 | 0.53 | 0.49 | 0.34 | 0.05 | 0.05 | 0.05 |
10 | NO3 | mg/L | 2.00 | 1.75 | 1.50 | 0.95 | 0.75 | 0.70 | 0.65 | 0.37 | 0.07 | 0.03 | 0.00 |
11 | pH a | Unitless | 4.00 | 4.00 | 4.00 | 4.19 | 4.94 | 5.12 | 5.31 | 6.06 | 6.62 | 6.81 | 7.00 |
pH b | Unitless | 11.00 | 11.00 | 11.00 | 10.81 | 10.06 | 9.87 | 9.69 | 8.94 | 9.37 | 8.19 | 8.00 | |
12 | SO4 | mg/L | 350.00 | 310.00 | 270.00 | 150.00 | 113.98 | 104.99 | 95.99 | 60.00 | 37.50 | 30.00 | 0.00 |
13 | Turb | NTU | 45.00 | 27.50 | 10.00 | 8.75 | 7.08 | 6.67 | 6.25 | 4.60 | 3.40 | 3.00 | 0.00 |
Sample Identity | Water Quality Index Results from Scenario-Based Analysis | |||||
---|---|---|---|---|---|---|
Ideal WQI Results | Modified Weighted WQI Results | Developed UWQI Results | ||||
Index Score | WQI Class | Index Score | WQI Class | Index Score | WQI Class | |
Maximum | 100.00 | 1.00 | 99.51 | 1.00 | 99.74 | 1.00 |
Average | 50.00 | 4.00 | 39.39 | 4.00 | 48.83 | 4.00 |
1 | 0.00 | 5.00 | 0.00 | 5.00 | 0.00 | 5.00 |
2 | 5.00 | 5.00 | 0.18 | 5.00 | 3.18 | 5.00 |
3 | 10.00 | 5.00 | 0.83 | 5.00 | 7.38 | 5.00 |
4 | 45.00 | 4.00 | 20.25 | 5.00 | 41.95 | 4.00 |
5 | 50.00 | 4.00 | 25.03 | 4.00 | 47.07 | 4.00 |
6 | 55.00 | 3.00 | 30.27 | 4.00 | 52.20 | 3.00 |
7 | 90.00 | 2.00 | 84.67 | 2.00 | 91.35 | 2.00 |
8 | 95.00 | 2.00 | 93.76 | 2.00 | 96.56 | 1.00 |
9 | 100.00 | 1.00 | 99.51 | 1.00 | 99.74 | 1.00 |
Key Point a | Calculation of WQI Using the Parameter Values Corresponding to the Key Points of the Rating Curves | ||||||||||||||
Water Quality Parameters c | WQI Results | ||||||||||||||
NH3 | Ca | Cl | Chl-a | EC | F | CaCO3 | Mg | Mn | NO3 | pH | SO4 | Turb | Score | Class | |
KP1 | 2.00 | 90.00 | 601.00 | 29.00 | 492.86 | 1.51 | 301.00 | 91.00 | 1.54 | 2.10 | 4.00 | 351.00 | 46.00 | 0.00 | 5 |
KP2 | 1.58 | 83.47 | 501.00 | 24.00 | 471.44 | 1.38 | 280.00 | 82.00 | 1.43 | 1.75 | 4.00 | 310.00 | 27.50 | 3.18 | 5 |
KP3 | 1.47 | 76.95 | 461.01 | 20.00 | 450.00 | 1.27 | 260.00 | 74.00 | 1.33 | 1.50 | 4.00 | 270.00 | 10.00 | 7.36 | 5 |
KP4 | 1.28 | 59.01 | 344.37 | 17.00 | 385.77 | 0.92 | 200.00 | 50.00 | 1.03 | 0.95 | 4.19 | 150.00 | 8.75 | 22.13 | 5 |
KP5 | 0.93 | 49.16 | 188.85 | 13.00 | 300.00 | 0.46 | 180.00 | 46.00 | 0.63 | 0.75 | 4.94 | 113.98 | 7.08 | 41.95 | 4 |
KP6 | 0.84 | 46.70 | 150.00 | 12.00 | 278.58 | 0.35 | 175.00 | 45.00 | 0.53 | 0.70 | 5.12 | 104.99 | 6.67 | 47.07 | 4 |
KP7 | 0.75 | 42.03 | 137.50 | 11.00 | 257.15 | 0.33 | 170.00 | 44.00 | 0.49 | 0.65 | 5.31 | 95.99 | 6.25 | 52.20 | 3 |
KP8 | 0.40 | 23.35 | 87.50 | 5.50 | 171.45 | 0.27 | 150.00 | 40.00 | 0.34 | 0.37 | 6.06 | 60.00 | 4.60 | 73.13 | 3 |
KP9 | 0.13 | 9.34 | 50.10 | 1.01 | 70.01 | 0.05 | 75.00 | 32.50 | 0.05 | 0.07 | 6.62 | 37.50 | 3.40 | 89.16 | 2 |
KP10 | 0.05 | 4.67 | 50.00 | 0.99 | 70.00 | 0.05 | 50.00 | 30.00 | 0.05 | 0.03 | 6.81 | 30.00 | 3.00 | 96.55 | 1 |
KP11 | 0.00 | 0.00 | 50.00 | 0.99 | 70.00 | 0.05 | 0.00 | 0.00 | 0.05 | 0.00 | 7.00 | 0.00 | 0.00 | 99.74 | 1 |
S.No. b | Calculation of WQI Using the Parameter Values from Umgeni Water Board for Six Different Sampling Stations | ||||||||||||||
Water Quality Parameters c | WQI Results d | ||||||||||||||
NH3 | Ca | Cl | Chl-a | EC | F | CaCO3 | Mg | Mn | NO3 | pH | SO4 | Turb | Score | Class | |
1 | 0.27 | 5.92 | 3.16 | 5.71 | 9.71 | 0.54 | 29.77 | 3.64 | 0.26 | 0.51 | 7.40 | 1.11 | 97.20 | 77.98 | 2 |
0.13 | 8.47 | 7.23 | 5.65 | 14.20 | 0.10 | 42.89 | 5.28 | 0.02 | 0.45 | 8.20 | 2.53 | 7.10 | 88.08 | 2 | |
2 | 0.10 | 5.64 | 29.50 | 20.49 | 19.20 | 0.17 | 35.66 | 5.24 | 0.01 | 0.99 | 7.70 | 7.70 | 66.70 | 77.87 | 2 |
0.10 | 6.36 | 22.20 | 0.14 | 20.10 | 0.10 | 38.86 | 5.58 | 0.01 | 0.10 | 7.30 | 5.81 | 1.90 | 95.15 | 1 | |
3 | 0.10 | 16.50 | 36.40 | 19.50 | 31.40 | 0.20 | 82.36 | 10.00 | 0.01 | 1.31 | 7.90 | 20.05 | 5.80 | 80.01 | 2 |
0.10 | 13.30 | 35.30 | 1.71 | 28.90 | 0.16 | 61.79 | 6.94 | 0.03 | 0.10 | 7.90 | 19.40 | 1.00 | 93.45 | 2 | |
4 | 0.36 | 5.19 | 5.54 | 1.28 | 8.40 | 0.10 | 24.80 | 2.83 | 0.01 | 4.50 | 7.90 | 2.26 | 4.70 | 83.30 | 2 |
0.04 | 1.00 | 4.79 | 1.87 | 7.85 | 0.10 | 6.67 | 1.00 | 0.01 | 0.34 | 7.80 | 1.89 | 1.90 | 94.92 | 2 | |
5 | 0.09 | 13.36 | 59.33 | 5.91 | 42.60 | 0.23 | 80.59 | 11.47 | 1.05 | 0.43 | 7.60 | 16.20 | 13.20 | 75.99 | 2 |
0.04 | 10.70 | 56.80 | 1.08 | 34.90 | 0.27 | 66.87 | 9.75 | 0.03 | 0.05 | 7.80 | 12.50 | 1.90 | 92.64 | 2 | |
6 | 0.10 | 3.30 | 23.70 | 2.96 | 14.20 | 0.10 | 24.84 | 4.03 | 0.01 | 1.77 | 8.00 | 2.66 | 13.30 | 80.48 | 2 |
0.10 | 4.28 | 26.10 | 2.63 | 16.50 | 0.10 | 29.14 | 4.48 | 0.01 | 0.10 | 7.80 | 3.60 | 3.80 | 93.95 | 2 |
Year | Month | Sampling Stations | |||||
---|---|---|---|---|---|---|---|
Station 1 | Station 2 | Station 3 | Station 4 | Station 5 | Station 6 | ||
2014 | July | 80.45 | 91.97 | 88.40 | 91.20 | 89.42 | 90.71 |
October | 83.80 | 86.98 | 90.32 | 83.30 | 87.04 | 85.62 | |
Seasonal Average 1 | 82.13 | 89.48 | 89.36 | 87.25 | 88.23 | 88.16 | |
Annual Average 2 | 80.94 | 87.49 | 89.63 | 91.42 | 84.78 | 88.35 | |
2015 | January | 79.09 | 84.19 | 92.35 | 94.92 | 86.73 | 90.70 |
April | 80.40 | 82.48 | 92.89 | 90.79 | 90.38 | 92.20 | |
July | 79.68 | 84.04 | 87.13 | 87.72 | 78.32 | 89.61 | |
October | 87.13 | 84.70 | 91.75 | 94.05 | 90.04 | 93.95 | |
Seasonal Average 1 | 81.58 | 83.85 | 91.03 | 91.87 | 86.37 | 91.61 | |
Annual Average 2 | 82.74 | 83.99 | 91.32 | 90.99 | 86.48 | 91.60 | |
2016 | January | 78.38 | 84.37 | 93.28 | 94.08 | 85.27 | 88.38 |
April | 81.52 | 86.61 | 93.45 | 92.54 | 91.89 | 93.68 | |
July | 86.51 | 90.73 | 83.93 | 86.76 | 81.37 | 91.55 | |
October | 85.12 | 90.07 | 91.65 | 86.99 | 89.27 | 90.27 | |
Seasonal Average 1 | 82.89 | 87.94 | 90.58 | 90.09 | 86.95 | 90.97 | |
Annual Average 2 | 81.72 | 88.80 | 89.20 | 89.88 | 87.80 | 90.03 | |
2017 | January | 82.43 | 95.15 | 83.69 | 92.86 | 86.03 | 92.02 |
April | 82.42 | 92.63 | 91.91 | 94.35 | 91.79 | 91.21 | |
July | 85.16 | 91.87 | 86.30 | 91.05 | 91.31 | 81.90 | |
October | 81.21 | 94.46 | 90.95 | 93.90 | 85.21 | 86.03 | |
Seasonal Average 1 | 82.81 | 93.53 | 88.21 | 93.04 | 88.59 | 87.79 | |
Annual Average 2 | 81.86 | 92.32 | 88.73 | 92.93 | 85.66 | 85.72 | |
2018 | January | 80.47 | 87.50 | 84.12 | 92.96 | 85.16 | 87.46 |
April | 80.63 | 94.71 | 90.52 | 94.06 | 88.00 | 87.90 | |
July | 83.14 | 91.40 | 84.65 | 91.41 | 82.55 | 87.35 | |
Seasonal Average 1 | 81.41 | 91.20 | 86.43 | 92.81 | 85.24 | 87.57 | |
Annual Average 2 | 81.26 | 90.80 | 86.76 | 92.83 | 86.71 | 87.58 | |
Station Minimum WQI 3 | 77.98 | 77.87 | 80.01 | 83.30 | 75.99 | 80.48 | |
Station Maximum WQI 4 | 88.08 | 95.15 | 93.45 | 94.92 | 92.64 | 93.95 | |
Station Average WQI 5 | 81.81 | 87.39 | 89.05 | 91.52 | 86.39 | 88.74 |
ID | Water Quality Classification | |
---|---|---|
Description of Rank and Classification | Index Score | |
1 | Class 1—Good water quality Water quality is protected with a virtual absence of threat or impairment; conditions very close to natural or pristine levels | 95 < Index ≤ 100 |
2 | Class 2—Acceptable water quality Water quality is usually protected with only a minor degree of threat or impairment; conditions rarely depart from natural or desirable levels | 75 < Index ≤ 95 |
3 | Class 3—Regular water quality Water quality is usually protected but occasionally threatened or impaired; conditions sometimes depart from natural or desirable levels | 50 < Index ≤ 75 |
4 | Class 4—Bad water quality Water quality is frequently threatened or impaired; conditions often depart from natural or desirable levels | 25 < Index ≤ 50 |
5 | Class 5—Very bad water quality Water quality is almost always threatened or impaired; conditions usually depart from natural or desirable levels | 0 < Index ≤ 25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banda, T.D.; Kumarasamy, M. Development of a Universal Water Quality Index (UWQI) for South African River Catchments. Water 2020, 12, 1534. https://doi.org/10.3390/w12061534
Banda TD, Kumarasamy M. Development of a Universal Water Quality Index (UWQI) for South African River Catchments. Water. 2020; 12(6):1534. https://doi.org/10.3390/w12061534
Chicago/Turabian StyleBanda, Talent Diotrefe, and Muthukrishnavellaisamy Kumarasamy. 2020. "Development of a Universal Water Quality Index (UWQI) for South African River Catchments" Water 12, no. 6: 1534. https://doi.org/10.3390/w12061534
APA StyleBanda, T. D., & Kumarasamy, M. (2020). Development of a Universal Water Quality Index (UWQI) for South African River Catchments. Water, 12(6), 1534. https://doi.org/10.3390/w12061534