Modelling the Temporal Dynamics of Groundwater Pollution Risks at the African Scale
Abstract
:1. Introduction
2. Material and Methods
2.1. Groundwater Vulnerability Modelling Framework
2.2. Data Sources
2.2.1. Dynamic Parameters Mapping
Net Recharge (R) Affected by Climate Change
Density of Population (P)
2.2.2. Data of Static Parameters
3. Results and Discussion
3.1. Dynamic Maps of the Groundwater Pollution Risk
3.2. Novelty of the Study
3.3. Limitations of the Study
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UNEP (United Nations Environment Programme). Africa Water Atlas; UNEP, Division of Early Warning and Assessment (DEWA): Nairobi, Kenya, 2010; Available online: http://na.unep.net/atlas/africaWater/book.php (accessed on 15 January 2015).
- Xu, Y.; Usher, B. Groundwater Pollution in Africa; Taylor and Francis/Balkema: Leiden, The Netherlands, 2006; p. 353. ISBN 10:415-41167-X. [Google Scholar]
- MacDonald, A.M.; Taylor, R.G.; Bonsor, C.H. Groundwater in Africa—Is There Sufficient Water to Support the Intensification of Agriculture from “Land Grabs”. In Hand Book of Land and Water Grabs in Africa; MacDonald, A.M., Taylor, R.G., Bonsor, C.H., Eds.; Routledge: Abingdon, UK, 2013; pp. 376–383. [Google Scholar]
- Gurdak, J.J. Groundwater vulnerability. In Handbook of Engineering Hydrology; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2014; p. 33. [Google Scholar]
- Quevauviller, P. Chapter 1: General Introduction: The Need to Protect Groundwater. European Commission, DG Environment (BU9 3/142), Rue de la Loi 200, BE-1049 Brussels, Belgium. p. 18. Available online: https://www.researchgate.net/publication/257029447 (accessed on 1 June 2017).
- Amharref, M.; Bouchnan, R.; Bernoussi, A.S. Extension of DRASTIC Approach for Dynamic Vulnerability Assessment in Fissured Area: Application to the Angad Aquifer (Morocco). In Hydrogeological and Environmental Investigations in Karst Systems; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Butscher, C.; Huggenberger, P. Modeling the temporal variability of karst groundwater vulnerability, with implications for climate change. Environ. Sci. Technol. 2009, 43, 1665–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aller, L.; Bennet, T.; Lehr, J.H.; Petty, R.J. DRASTIC: A Standardized System for Evaluating Groundwater Pollution Using Hydrological Settings; National Water Well Association for the US EPA Office of Research and Development: Ada, OK, USA, 1985; p. 163. [Google Scholar]
- Aller, L.; Bennet, T.; Leher, J.H.; Petty, R.J.; Hackett, G. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeological Settings; U.S. Environmental Protection Agency: Ada, OK, USA, 1987; p. 662.
- Honnungar, V.C. Structural and Functional Enhancements to Regional-Scale Groundwater Vulnerability Assessment Models; Texas A&M University-Kingsville: Kingsville, TX, USA, 2009; p. 200. [Google Scholar]
- National Research Council (NRC). Groundwater Vulnerability Assessment: Contamination Potential Under Conditions of Uncertainties; National Academy Press: Washington, DC, USA, 1993; p. 185. [Google Scholar]
- Loague, K.; Corwin, D.L. Uncertainty in Regional-Scale Assessments of Non-Point Source Pollutants. In Applications of GIS to the Modeling of Non-Point Source Pollutants in the Vadose Zone; Soil Science Society of America: Fitchburg, WI, USA, 1996; pp. 131–152. [Google Scholar]
- Murat, V.; Martel, R.; Savard, M.M.; Nastev, M.; Paradis, D.; Michaud, Y.; Lefebvre, R.; Therrien, R. Comparing Vulnerability Mapping Methods in Two Canadian Hydrogeological Settings. In Proceedings of the Géo Québec 2004: 57ième Congrès canadien de géotechnique-5ième Congrès conjoint SCG/AIH-CHN/57th Canadian Geotechnical Conference-5th Joint CGS/IAH-CNC Conference, Quebec City, QC, Canada, 24–27 October 2004. [Google Scholar]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83. [Google Scholar] [CrossRef] [Green Version]
- Ouedraogo, I.; Defourny, P.; Vanclooster, M. Mapping the groundwater vulnerability for pollution at the pan African scale. Sci. Total. Environ. 2016, 544, 939–953. [Google Scholar] [CrossRef]
- Li, R. Groundwater Pollution Risk Assessment under Scenarios of Climate and Land Use Change in the Northern Great Plains. Ph.D. Thesis, University of Nebraska-Lincoln, Lincoln, NE, USA, 2012; p. 45. [Google Scholar]
- Li, R.; Merchant, J.W. Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: A case study in North Dakota, USA. Sci. Total. Environ. 2013, 447, 32–45. [Google Scholar] [CrossRef] [Green Version]
- Toews, M.; Allen, D.M. Evaluating different GCMs for predicting spatial recharge in an irrigated arid region. J. Hydrol. 2009, 374, 265–281. [Google Scholar] [CrossRef]
- Scibek, J.; Allen, D.M. Modeled impacts of predicted climate change on recharge and groundwater levels. Water Resour. Res. 2006, 42, 1–18. [Google Scholar] [CrossRef]
- Pointer, C. Groundwater and Climate Change. In Proceedings of the IAH Working Group of Groundwater and Climate Change Meeting, Norwich, UK, 4–6 April 2005. [Google Scholar]
- Ducci, D. Influence of Climate Changes on Vulnerability Maps. In Proceedings of the First Conference and Workshop on “Groundwater and Climate Change”, Norwich, UK, 4–6 April 2005. [Google Scholar]
- Luers, A.L.; Lobell, D.B.; Sklar, L.S.; Addams, C.; A Matson, P. A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Glob. Environ. Chang. 2003, 13, 255–267. [Google Scholar] [CrossRef]
- Dennis, I.; Dennis, R. Climate Change Vulnerability Index for South African Aquifers. Water SA 2012, 38, 417–426. Available online: http://www.scielo.org.za/pdf/wsa/v38n3/08.pdf (accessed on 15 February 2017). [CrossRef] [Green Version]
- Albuquerque, M.; Sanz, G.; Oliveira, S.F.; Martínez-Alegría, R.; Antunes, I.M. Spatio-Temporal Groundwater Vulnerability Assessment—A Coupled Remote Sensing and GIS Approach for Historical Land Cover Reconstruction. Water Resour. Manag. 2013, 27, 4509–4526. [Google Scholar] [CrossRef]
- Pórcel, R.A.D.; Schüth, C.; De León-Gómez, H.; Hoppe, A.; Lehné, R. Land-Use Impact and Nitrate Analysis to Validate DRASTIC Vulnerability Maps Using a GIS Platform of Pablillo River Basin, Linares, N.L., Mexico. Int. J. Geosci. 2014, 5, 1468–1489. [Google Scholar] [CrossRef] [Green Version]
- Stevenazzi, S.; Masetti, M.; Nghiem, S.; Sorichetta, A. Groundwater vulnerability maps derived from a time-dependent method using satellite scatterometer data. Hydrogeol. J. 2015, 23, 631–647. [Google Scholar] [CrossRef]
- Xi, X.; Sun, C.Z.; Wu, T.; Zhng, D.F. Spatial-temporal evolution of groundwater vulnerability in the lower reaches of the Liaohe River plain. Acta Ecol. Sin. 2016, 36, 3074–3083. [Google Scholar] [CrossRef]
- Paradis, D.; Vigneault, H.; Lefebvre, R.; Savard, M.; Ballard, J.-M.; Qian, B. Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada. Earth Syst. Dyn. Discuss. 2015, 6, 1339–1394. [Google Scholar] [CrossRef]
- Saouini, H.E.; Amharref, M.; Bernoussi, A.S. Vulnérabilité à La Pollution des Eaux Souterraines: Statique ou Dynamique? Application à la Nappe de R’Mel (Maroc). Int. J. Innov. Appl. Stud. 2014, 6, 929–940. [Google Scholar]
- Secunda, S.; Collin, M.; Melloul, A. Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region. J. Environ. Manag. 1998, 54, 39–57. [Google Scholar] [CrossRef]
- Meunier, F. Caractérisation Hydrodynamique des Sols Pour la Cartographie de la Vulnérabilité de la Nappe des Triffa (Maroc Nord-Oriental). Master’s Thesis, Agro-Louvain, UCL, Ottignies-Louvain-la-Neuve, Belgium, 2012; p. 120. [Google Scholar]
- Baghapour, M.A.; Nobandegani, A.F.; Talebbeydokhti, N.; Bagherzadeh, S.; Nadiri, A.A.; Gharekhani, M.; Chitsazan, N. Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran. J. Environ. Health Sci. Eng. 2016, 14, 13. [Google Scholar] [CrossRef] [Green Version]
- Ehteshami, M.; Peralta, R.C.; Eisele, H.; Deer, H.; Tindall, T. Assessing Pesticide Contamination to Ground Water: A Rapid Approach. Ground Water 1991, 29, 862–868. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Zeng, G.; Liang, J.; Hua, S.; Yuan, Y.; Li, X.; Dong, H.; Liu, J.; Nie, S.; Liu, J. Combined Impacts of Land Use and Climate Change in the Modeling of Future Groundwater Vulnerability. J. Hydrol. Eng. 2017, 22, 05017007. [Google Scholar] [CrossRef]
- Ouedraogo, I.; Vanclooster, M. A meta-analysis and statistical modelling of nitrates in groundwater at the African scale. Hydrol. Earth Syst. Sci. 2016, 20, 2353–2381. [Google Scholar] [CrossRef] [Green Version]
- Girard, A. Modélisation Spatio-Temporelle de la Pollution Diffuse des Eaux Souterraines à L’échelle Africaine. Master’s Thesis, Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium, 2017; p. 104. [Google Scholar]
- Gogu, R.C.; Dassargues, A. Current and future trends in groundwater vulnerability assessment. Environ. Geol. 2000, 39, 549–559. [Google Scholar] [CrossRef]
- Raupach, M.; Haverd, V.; Briggs, P.R. Sensitivities of the Australian terrestrial water and carbon balances to climate change and variability. Agric. For. Meteorol. 2013, 182, 277–291. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Usher, B. Groundwater Pollution in Africa. Groundw. Pollut. Africa 2006, 353. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Nkhuwa, D.C.W.; Okotto-Okotto, J.; Pedley, S.; Stuart, M.E.; Tijani, M.N.; Wright, J. Urban groundwater quality in sub-Saharan Africa: Current status and implications for water security and public health. Hydrogeol. J. 2017, 25, 1093–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaezihir, A.; Tabarmayeh, M. Total vulnerability estimation for the Tabriz aquifer (Iran) by combining a new model with DRASTIC. Environ. Earth Sci. 2015, 74, 2949–2965. [Google Scholar] [CrossRef]
- Yang, Y.S.; Wang, L. Catchment-scale vulnerability assessment of groundwater pollution from diffuse sources using the DRASTIC method: A case study. Hydrol. Sci. J. 2010, 55, 1206–1216. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.; Burke, I.C. Nitrogen Retention in Semiarid Ecosystems Across a Soil Organic-Matter Gradient. Ecol. Appl. 2002, 12, 878–890. [Google Scholar] [CrossRef]
- Rahman, A. A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Appl. Geogr. 2008, 28, 32–53. [Google Scholar] [CrossRef]
- M’mayi, L.P. Sanitation and Groundwater Protection—A UNEP Perspective UNEP/DEWA. 2014. Available online: http://www.bgr.bund.de/EN/Themen/Wasser/Veranstaltungen/symp_sanitatgwprotect/present_mmayi_pdf.pdf?blob=publicationFile&v=2 (accessed on 13 August 2014).
- Gwebu, T.D. Environmental problems among low income urban residents: An empirical analysis of old Naledi-Gaborone, Botswana. Habitat Int. 2003, 27, 407–427. [Google Scholar] [CrossRef]
- Ren, W.; Zhong, Y.; Meligrana, J.; Anderson, B.; Watt, W.; Chen, J.; Leung, H.-L. Urbanization, land use, and water quality in Shanghai. Environ. Int. 2003, 29, 649–659. [Google Scholar] [CrossRef]
- Wright, A. Groundwater Contamination as a Result of Developing Urban Settlement: Report to the Water Research Commission; WRC Report No. 514/1/99; Council for Scientific and Industrial Research (CSIR): Pretoria, South Africa, 1999. [Google Scholar]
- Zingoni, E.; Love, D.; Magadza, C.; Moyce, W.; Musiwa, K. Effects of a semi-formal urban settlement on groundwater quality. Phys. Chem. Earth Parts A/B/C 2005, 30, 680–688. [Google Scholar] [CrossRef]
- Magadzire, F.; Love, I.; Meck, M.; Owen, R.; Musiwa, K.; Mangeya, P.; Magadza, C.; Love, D.; Tekere, M.; Ravengai, S.; et al. Characterization of diffuse pollution of shallow groundwater in the Harare urban area, Zimbabwe. In Groundwater Pollution in Africa; Informa UK Limited: London, UK, 2006; pp. 65–75. [Google Scholar]
- Yang, H.; Bain, R.; Bartram, J.; Gundry, S.; Pedley, S.; Wright, J. Water Safety and Inequality in Access to Drinking-water between Rich and Poor Households. Environ. Sci. Technol. 2013, 47, 1222–1230. [Google Scholar] [CrossRef] [PubMed]
- UPGro. Groundwater and Poverty in Sub-Saharan Africa; UPGro Working Paper; Skat Foundation: St. Gallen, Switzerland, June 2017; Available online: https://opus.lib.uts.edu.au/bitstream/10453/104407/1/groundwater-and-poverty-report_0003.pdf (accessed on 7 October 2017).
- Sorensen, J.; Lapworth, D.J.; Marchant, B.; Nkhuwa, D.; Pedley, S.; Stuart, M.; Bell, R.; Chirwa, M.; Kabika, J.; Liemisa, M.; et al. In-situ tryptophan-like fluorescence: A real-time indicator of faecal contamination in drinking water supplies. Water Res. 2015, 81, 38–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saley, M.; Jourda, J.; Deh, S.; Oga, Y.; Kouam, K.; Kouadio, B.; Vermeulen, P. Contamination of the Abidjan Aquifer by sewage. In Groundwater Pollution in Africa; Informa UK Limited: London, UK, 2006; pp. 289–299. [Google Scholar] [CrossRef]
- Struckmeier, W.; Richts, A. Groundwater resources of the world 1: 25 000 000 (Hannover: World-wide Hydrogeological Mapping and Assessment Programme (WHYMAP)). 2008. Available online: https://www.un-igrac.org/sites/default/files/resources/files/GroundwaterResourcesMap_ed2008_25m_WHYMAP.pdf (accessed on 15 May 2020).
- Macdonald, A.; Bonsor, H.C.; Dochartaigh, B.É.Ó.; Taylor, R.G. Quantitative maps of groundwater resources in Africa. Environ. Res. Lett. 2012, 7, 024009. [Google Scholar] [CrossRef]
- Altchenko, Y.; Villholth, K.G. Mapping irrigation potential from renewable groundwater in Africa—A quantitative hydrological approach. Hydrol. Earth Syst. Sci. Discuss. 2014, 11, 6065–6097. [Google Scholar] [CrossRef]
- Naumann, G.; Barbosa, P.; Garrote, L.; Iglesias, A.; Vogt, J.V. Exploring drought vulnerability in Africa: An indicator based analysis to be used in early warning systems. Hydrol. Earth Syst. Sci. 2014, 18, 1591–1604. [Google Scholar] [CrossRef] [Green Version]
- Jaroslav Vrba (UNESCO-IHP); Andrea Richts (BGR). The Global Map of Groundwater Vulnerability to Floods and Droughts of 1:25,000,000. Explanatory Notes. 2015. Available online: https://www.whymap.org/whymap/EN/Maps_Data/Gwv/whymap_ed2015_explan_notes.pdf?__blob=publicationFile&v=3 (accessed on 15 May 2020).
- Ippolito, A.; Kattwinkel, M.; Rasmussen, J.J.; Schäfer, R.B.; Fornaroli, R.; Liess, M. Modeling global distribution of agricultural insecticides in surface waters. Environ. Pollut. 2015, 198, 54–60. [Google Scholar] [CrossRef]
- Amini, M.K.C.; Abbaspour, M.; Berg, L.; Winkel, S.J.; Hug, E.; Hoehn, H.C.; Johnson, C.A. Statistical modeling of global geogenic arsenic contamination in groundwater. Environ. Sci. Technol. 2008, 42, 3669–3675. [Google Scholar] [CrossRef]
- Amini, M.K.; Mueller, K.C.; Abbaspour, T.; Rosenberg, M.; Afyuni, K.N.; Møller, M.S.; Johnson, C.A. Statistical modeling of global geogenic fluoride contamination in groundwaters. Environ. Sci. Technol. 2008, 42, 3662–3668. [Google Scholar] [CrossRef] [Green Version]
- Ouedraogo, I.; Defourny, P.; Vanclooster, M. Application of random forest regression and comparison of its performance to multiple linear regression in modeling groundwater nitrate concentration at the African continent scale. Hydrogeol. J. 2018, 27, 1081–1098. [Google Scholar] [CrossRef]
- Li, F.; Phoon, K.K.; Du, X.; Zhang, M. Improved AHP Method and Its Application in Risk Identification. J. Constr. Eng. Manag. 2013, 139, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Lyu, H.-M.; Sun, W.-J.; Shen, S.-L.; Zhou, A.-N. Risk Assessment Using a New Consulting Process in Fuzzy AHP. J. Constr. Eng. Manag. 2020, 146, 04019112. [Google Scholar] [CrossRef]
- Bonsor, H.C.; MacDonald, A.M. An Initial Estimate of Depth to Groundwater across Africa. Available online: http://nora.nerc.ac.uk/id/eprint/17907/ (accessed on 15 May 2020).
Symbol | Parameter | Weight |
---|---|---|
D | Depth to Water | 5 |
R | Net Recharge | 4 |
A | Aquifer media (type) | 3 |
S | Soil media (type) | 2 |
T | Topography | 1 |
I | Impact of vadose zone (type) | 5 |
C | Hydraulic Conductivity | 3 |
Rating | Depth to Groundwater (D) (m) | Net Recharge (R) (mm/yr) | Aquifer Media (A) (Type) | Soil Media (S) (Type) | Topography (T) (%) | Impact of the Vadose Zone (I) (Type) | Hydraulic Conductivity (C) (m/day) | Land Use (D) (People/km2) |
---|---|---|---|---|---|---|---|---|
Weight: 5 | Weight: 4 | Weight: 3 | Weight: 2 | Weight: 1 | Weight: 5 | Weight: 3 | Weight: 1 | |
1 | >250 | 0–45 | - | Clay | >18 | - | <0.010 | 0–50 |
2 | 100–250 | - | - | - | - | - | 0.010–0.038 | 50–100 |
3 | 50–100 | 45–123 | Acid plutonic rocks | Clay loam | 12–18 | - | - | 100–150 |
Intermediate plutonic rocks | ||||||||
Basic plutonic rocks | ||||||||
Silty clay loam | ||||||||
Metamorphic rocks | ||||||||
4 | - | - | - | Sandy clay | - | Acid plutonic rocks | 0.038–0.127 | 150–200 |
Intermediate plutonic rocks | ||||||||
Sandy clay loam | Basic plutonic rocks | |||||||
Metamorphic rocks | ||||||||
5 | 25–50 | - | - | Loam | 8–12 | - | - | 200–250 |
6 | - | 123–224 | Siliciclastic sediments | Sandy loam | - | Siliciclastic sediments | 0.127–0.345 | 250–300 |
7 | - | - | - | Loamy sand | - | Unconsolidated sediments | 300–350 | |
8 | 7–25 | 224–355 | Unconsolidated sediments | - | 4–8 | Water bodies | 0.345–0.569 | 350–400 |
9 | - | >355 | Acid volcanic rocks | Sand | 2–4 | Acid volcanic rocks | - | 400–450 |
Intermediate volcanic rocks | ||||||||
Intermediate volcanic rocks | Basic volcanic rocks | |||||||
Basic volcanic rocks | ||||||||
10 | 0–7 | - | Mixed sedimentary rocks | - | 0–2 | Mixed sedimentary rocks | >0.569 | >450 |
Carbonate sedimentary rocks | Carbonate sedimentary rocks | |||||||
Evaporites | ||||||||
Evaporites |
Pollution Risk Class | |||||
---|---|---|---|---|---|
Year/Period | Very Low | Low | Moderate | High | Very High |
1990 | 91.98% | 5.5% | 1.66% | 0.55% | 0.29% |
2000 | 81.63% | 6.49% | 2.50% | 0.87% | 0.48% |
2010 | 86.79% | 7.94% | 3.22% | 1.26% | 0.76% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouedraogo, I.; Girard, A.; Vanclooster, M.; Jonard, F. Modelling the Temporal Dynamics of Groundwater Pollution Risks at the African Scale. Water 2020, 12, 1406. https://doi.org/10.3390/w12051406
Ouedraogo I, Girard A, Vanclooster M, Jonard F. Modelling the Temporal Dynamics of Groundwater Pollution Risks at the African Scale. Water. 2020; 12(5):1406. https://doi.org/10.3390/w12051406
Chicago/Turabian StyleOuedraogo, Issoufou, Arthur Girard, Marnik Vanclooster, and François Jonard. 2020. "Modelling the Temporal Dynamics of Groundwater Pollution Risks at the African Scale" Water 12, no. 5: 1406. https://doi.org/10.3390/w12051406