Implementing a Statewide Deficit Analysis for Inland Surface Waters According to the Water Framework Directive—An Exemplary Application on Phosphorus Pollution in Schleswig-Holstein (Northern Germany)
Abstract
:1. Introduction
- Absolute and area-specific phosphorus loads for each subcatchment;
- Maximum and second-highest input path from a comparison of all paths;
- Percentage shares of point and diffuse sources for each subcatchment;
- Expected phosphorus concentration in each subcatchment;
- Absolute and relative required reduction in mg/L, t/yr or % for each subcatchment in order to meet the orientation values according to OGewV;
- Number of subcatchments which do not achieve good ecological status, statewide and for each river basin district;
- Required reduction statewide and for each river basin district. Results of the deficit analysis are also available for more detailed units such as planning units (Planungseinheiten) and subbasin areas (Bearbeitungsgebiete). In order to keep this paper short and easily readable, these results will not be included but can be provided if necessary.
2. Methods
2.1. Study Area
2.2. Methods of the Deficit Analysis
2.3. Input Data for the Deficit Analysis
2.3.1. The German Catchment Coding System and the Hydrological Area Register Schleswig-Holstein
2.3.2. Average Annual Discharge Modeled with GROWA
2.3.3. Phosphorus Emission Modeled with MEPhos
2.3.4. Phosphorus Orientation Values for Surface Waters
3. Results
4. Validation of Results and Discussion
4.1. Validation Based on Phosphorus Concentrations Measured in Rivers (at Least 50 Measurements per Measuring Station)
4.2. Validation Based on Phosphorus Concentrations Measured in Lakes
5. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Parliament; Council of the European Union. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. Eur. Communities 2000, L327, 1–73. Available online: https://eur-lex.europa.eu/eli/dir/2000/60/oj (accessed on 10 January 2020).
- European Union: European Commission. Wasserrahmenrichtlinie und Hochwasserrichtlinie-Maßnahmen zum Erreichen eines guten Gewässerzustands in der EU und zur Verringerung der Hochwasserrisiken, Mitteilung der Kommission an das Europäische Parlament und den Rat, COM(2015) 120 Final: Brussels, 9 March 2015. Available online: https://ec.europa.eu/environment/water/water-framework/pdf/4th_report/COM_2015_120_de.pdf (accessed on 10 January 2020).
- The German Working Group on water issues: LAWA. Empfehlungen für eine harmonisierte Vorgehensweise zum Nährstoffmanagement (Defizitanalyse, Nährstoffbilanzen, Wirksamkeit landwirtschaftlicher Maßnahmen) in Flussgebietseinheiten; Ständiger Ausschuss Oberirdische Gewässer und Küstengewässer LAWA-AO: Magdeburg, Germany, 14 July 2017; Available online: https://www.wasserblick.net/servlet/is/142651/WRRL_AO_35-36-37_Vorgehensweise_Naehrstoffmanagement_20170714.pdf?command=downloadContent&filename=WRRL_AO_35-36-37_Vorgehensweise_Naehrstoffmanagement_20170714.pdf (accessed on 10 January 2020).
- Tetzlaff, B.; Haider, J.; Kreins, P.; Kuhr, P.; Kunkel, R.; Wendland, F. Grid-based modelling of nutrient inputs from diffuse and point sources for the state of North Rhine-Westphalia (Germany) as a tool for river basin management according to EU-WFD. River Syst. 2013, 20, 213–229. [Google Scholar] [CrossRef]
- Haustein, V.; Janson, P.; Petenati, T.; Plambeck, G.; Schrey, J.; Steinmann, F.; Trepel, M. Nährstoffe in Gewässern Schleswig-Holsteins—Entwicklung und Bewirtschaftungsziele; Landesamt für Landwirtschaft, Umwelt und ländliche Räume Schleswig-Holstein: Flintbek, Germany, 2014; Available online: https://www.umweltdaten.landsh.de/nuis/wafis/fliess/gewaessernaehrstoffe.pdf (accessed on 10 January 2020).
- Tetzlaff, B.; Keller, L.; Kuhr, P.; Kreins, P.; Kunkel, R.; Wendland, F. Räumlich differenzierte Quantifizierung der Nährstoffeinträge ins Grundwasser und die Oberflächengewässer Schleswig-Holsteins unter Anwendung der Modellkombination RAUMIS-GROWA-WEKU-MEPhos; Final Report: Jülich, Germany, 2017. Available online: https://www.schleswig-holstein.de/DE/Fachinhalte/W/wasserrahmenrichtlinie/Downloads/Bewirtschaftungszeitraum2/endberichtNaehrstoffmodellierung.pdf;jsessionid=7A97800F5A6E2E67340B24574A4C1BF1.delivery2-master?__blob=publicationFile&v=1 (accessed on 10 January 2020).
- Official Website of the Federal State of Schleswig-Holstein: Rivers and Streams. Available online: https://www.schleswig-holstein.de/DE/Themen/F/fluesse_baeche.html (accessed on 10 January 2020).
- Official Website of the Federal State of Schleswig-Holstein: Lakes. Available online: https://www.schleswig-holstein.de/DE/Themen/S/seen.html (accessed on 10 January 2020).
- Official Website of the Federal State of Schleswig-Holstein: Flussgebietseinheiten (FGE), Bearbeitungsgebiete und Wasserkörper. Available online: https://www.schleswig-holstein.de/DE/Fachinhalte/F/fluesse_baeche/flussgebietseinheiten.html (accessed on 22 April 2020).
- Statistisches Amt für Hamburg und Schleswig-Holstein. Kartenatlas zur Landwirtschaft in Hamburg und Schleswig-Holstein 2013, Endgültige Ergebnisse der Agrarstrukturerhebung 2013. Available online: https://www.statistik-nord.de/fileadmin/Dokumente/Statistische_Berichte/landwirtschaft/C_IV_Teil_1_S_Bodennutzung_Agrarstruktur/Kartenatlas_ASE_2013_Teil_1.pdf (accessed on 10 January 2020).
- The German Working Group on water issues: LAWA. Richtlinie für die Gebiets- und Gewässerverschlüsselung, ausgearbeitet vom LAWA-Unterausschuss Gewässerverschlüsselung in der Wasserrahmenrichtlinie beim Ständigen Ausschuss Daten, Herausgegeben von der Länderarbeitsgemeinschaft Wasser (LAWA), Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen. April 2005. [Google Scholar]
- Vollenweider, R.; Kerekes, J. The loading concept as a basis for controlling eutrophication: Philosophy and preliminary results of the OECD programme on eutrophication. Progress Water Technol. 1980, 12, 5–38. [Google Scholar]
- Kunkel, R.; Wendland, F. The GROWA98 model for water balance analysis in large river basins—The river Elbe case study. J. Hydrol. 2002, 259, 152–162. [Google Scholar] [CrossRef]
- Bogena, H.; Kunkel, R.; Schobel, T.; Schrey, H.P.; Wendland, F. Distributed modeling of groundwater recharge at the macroscale. Ecol. Model. 2005, 187, 15–26. [Google Scholar] [CrossRef]
- Wendland, F.; Kunkel, R.; Tetzlaff, B.; Dorhofer, G. GIS-based determination of the mean long-term groundwater recharge in Lower Saxony. Environ. Geol. 2003, 45, 273–278. [Google Scholar] [CrossRef]
- Tetzlaff, B.; Kunkel, R.; Taugs, R.; Wendland, F. Grundlagen für eine nachhaltige Bewirtschaftung von Grundwasserressourcen in der Metropolregion Hamburg; Umwelt/Environment; Forschungszentrum Jülich: Jülich, Germany, 2004; Volume 46. [Google Scholar]
- Panagopoulos, A.; Arampatzis, G.; Kuhr, P.; Kunkel, R.; Tziritis, E.; Wendland, F. Area-differentiated modeling of water balance in Pinios Basin, central Greece. Glob. Nest 2015, 17, 221–235. [Google Scholar]
- Tetzlaff, B.; Andjelov, M.; Kuhr, P.; Uhan, J.; Wendland, F. Model-based assessment of groundwater recharge in Slovenia. Environ. Earth Sci. 2015, 74, 6177–6192. [Google Scholar] [CrossRef]
- Tetzlaff, B.; Vereecken, H.; Kunkel, R.; Wendland, F. Modelling phosphorus inputs from agricultural sources and urban areas in river basins. Environ. Geol. 2008, 57, 183–193. [Google Scholar] [CrossRef]
- Tetzlaff, B.; Kreins, P.; Kunkel, R.; Wendland, F. Area-differentiated modelling of P-fluxes in heterogeneous macroscale river basins. Water Sci. Technol. 2007, 55, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Poikane, S.; Kelly, M.; Salas Herrero, F.; Pitt, J.; Jarvie, H.; Claussen, U.; Leujak, W.; Lyche Solheim, A.; Teixeira, H.; Phillips, G. Nutrient criteria for surface waters under the European Water Framework Directive: Current state-of-the-art, challenges and future outlook. Sci. Total Environ. 2019, 695, 133888. [Google Scholar] [CrossRef] [PubMed]
- Phillips, G.; Kelly, M.; Teixeira, H.; Salas, F.; Free, G.; Leujak, W.; Solheim, A.L.; Várbíró, G.; Poikane, S. Best Practice for Establishing Nutrient Concentrations to Support Good Ecological Status; Technical Report EUR 29329 EN.; Publications Office of the European Union: Luxembourg, 2018; p. 67. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC112667/bpg_online_corrected.pdf (accessed on 22 April 2020).
- Wendland, F.; Bergmann, S.; Eisele, M.; Gömann, H.; Herrmann, F.; Kreins, P.; Kunkel, R. Model-Based Analysis of Nitrate Concentration in the Leachate—The North Rhine-Westfalia Case Study, Germany. Water 2020, 12, 550. [Google Scholar] [CrossRef] [Green Version]
- Obernolte, M.; Trepel, M. Beurteilung der physikalisch-chemischen Bedingungen der Fließgewässer Schleswig-holsteins und Maßnahmen zur Verringerung der Nährstoffbelastung. 2017. Available online: http://www.umweltdaten.landsh.de/public/wrrl/massnahmen_db/download/FG_pc_sh_171222.pdf (accessed on 10 January 2020).
- Trepel, M. Entwicklung von Nährstoffkonzentrationen- und -frachten in Fließgewässern Schleswig-Holsteins. Presentation, 20 October 2015. Available online: https://www.lung.mv-regierung.de/dateien/20151020_trepel.pdf (accessed on 10 January 2020).
- Wendland, F.; Kreins, P.; Kuhr, P.; Kunkel, R.; Tetzlaff, B.; Vereecken, H. Räumlich differenzierte Quantifizierung der N- und P-Einträge in Grundwasser und Oberflächengewässer in Nordrhein-Westfalen unter besonderer Berücksichtigung diffuser landwirtschaftlicher Quellen; Schriften des Forschungszentrums Jülich, Reihe Energie & Umwelt/Energy & Environment, Band/Volume 88; Forschungszentrums Jülich: Jülich, Germany, 2010; Available online: https://www.flussgebiete.nrw.de/system/files/atoms/files/raeumlich_differenzierte_quantifizierung_eintraege_n_p_grundwasser_ow_wendland_etal_2010.pdf (accessed on 10 January 2020).
- Wendland, F.; Keller, L.; Kuhr, P.; Kunkel, R.; Tetzlaff, B. Regional differenzierte Quantifizierung der Nährstoffeinträge in das Grundwasser und in die Oberflächengewässer Mecklenburg-Vorpommerns unter Anwendung der Modellkombination GROWA-DENUZ-WEKU-MEPhos; Final Report. 2015. Available online: https://www.wrrl-mv.de/doku/hintergrund/modellierung_naehrstoffeintraege_mv.pdf (accessed on 10 January 2020).
- Schilling, C.; Zessner, M.; Kovacs, A.; Hochedlinger, G.; Windhofer, G.; Gabriel, O.; Thaler, S.; Parajka, J.; Natho, S. Stickstoff- und Phosphorbelastungen der Fließgewässer Österreichs und Möglichkeiten zu deren Reduktion. Österreichische Wasser- und Abfallwirtschaft 2011, 63, 105–116. [Google Scholar] [CrossRef]
- Hürdler, J.; Prasuhn, V.; Spiess, E. Abschätzung diffuser Stickstoff- und Phosphoreinträge in die Gewässer der Schweiz MODIFFUS 3.0; Bericht im Auftrag des Bundesamtes für Umwelt (BAFU); Publ. Agroscope INH: Zürich, Switzerland, 2015; pp. 1–117. Available online: https://www.agroscope.admin.ch/agroscope/de/home/themen/nutztiere/bienen/bienenprodukte/honig/honigqualitaet/_jcr_content/par/columncontrols_1833305568/items/0/column/externalcontent_1350153509.external.exturl.html/aHR0cHM6Ly9pcmEuYWdyb3Njb3BlLmNoL2VuLVVTL3B1YmxpY2/F0aW9uLzM1MDUy.html (accessed on 10 January 2020).
Input Data | Data Source | Processing Method |
---|---|---|
hierarchy between subcatchments | hydrological area register Schleswig-Holstein (GFV) | decoding based on [11] |
total and agricultural area of subcatchments | GFV, Integrated Administration and Control System (InVeKoS 2011) | derivation in GIS |
information relating to river basin districts | State Agency for Agriculture, Environment and Rural Areas Schleswig-Holstein (LLUR) | transfer to subcatchments |
lake information | expert information system for water management: lakes | transfer to lake subcatchments |
average annual discharge | water balance model GROWA [6] | spatially intersecting in GIS |
phosphorus emission | phosphorus emission model MEPhos [6] | spatially intersecting in GIS |
type of surface water body | GFV, database of surface water body characteristics | link column SH_CD_WB from GFV to surface water body database |
orientation value | OGewV 2016, LLUR (Table 2) | transfer to subcatchments based on the type of surface water body |
Type | Explanation | Phosphorus Orientation Value [mg/L] | |
---|---|---|---|
Rivers | 14 | Small sand-dominated lowland rivers | 0.1 |
15 | Mid-sized and large sand and loam-dominated lowland rivers | 0.1 | |
16 | Small gravel-dominated lowland rivers | 0.1 | |
17 | Mid-sized and large gravel-dominated lowland rivers | 0.1 | |
19 | Small streams in riverine floodplains | 0.15 | |
20 | Very large sand-dominated rivers | 0.1 | |
21_N | Lake outflows in the North German lowlands | 0.1 | |
22.1 | Marshland streams with catchments almost completely inside the marshes, which flow directly into the North Sea or lower reaches of large rivers | 0.3 | |
22.2 | Marshland streams with catchments in ground moraines of young and old moraine landscapes | 0.3 | |
22.3 | Very large marshland rivers (only Elbe and Weser) | 0.3 | |
77 | Kiel Canal | 0.15 (in agreement with LLUR) | |
Lakes | 10.1 | Lowland layered lakes with relatively large catchment area | 0.0325 |
10.2 | Lowland layered lakes with relatively large catchment area | 0.037 | |
11.1 | Lowland polymictic lakes with relatively large catchment area | 0.04 | |
11.2 | Lowland polymictic lakes with relatively large catchment area | 0.045 | |
12 | Lowland river-like lakes | 0.075 | |
13 | Lowland layered lakes with relatively small catchment area | 0.03 | |
14 | Lowland polymictic lakes with relatively small catchment area | 0.037 | |
99 | Artificial lakes located along the North Sea Coast | Not considered as in good condition |
River Basin District | Number of Subcatchments | Number of Subcatchments Exceeding Orientation Values | Phosphorus Loads [t/yr] | Required Reductions [t/yr] |
---|---|---|---|---|
Elbe | 2815 | 1609 (57%) | 313 | 101 (32%) |
Eider | 1170 | 718 (61%) | 359 | 100 (28%) |
Schlei/Trave | 2422 | 1542 (64%) | 208 | 68 (33%) |
Schleswig-Holstein | 6407 | 3869 (60%) | 880 | 269 (31%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ta, P.; Tetzlaff, B.; Trepel, M.; Wendland, F. Implementing a Statewide Deficit Analysis for Inland Surface Waters According to the Water Framework Directive—An Exemplary Application on Phosphorus Pollution in Schleswig-Holstein (Northern Germany). Water 2020, 12, 1365. https://doi.org/10.3390/w12051365
Ta P, Tetzlaff B, Trepel M, Wendland F. Implementing a Statewide Deficit Analysis for Inland Surface Waters According to the Water Framework Directive—An Exemplary Application on Phosphorus Pollution in Schleswig-Holstein (Northern Germany). Water. 2020; 12(5):1365. https://doi.org/10.3390/w12051365
Chicago/Turabian StyleTa, Phuong, Björn Tetzlaff, Michael Trepel, and Frank Wendland. 2020. "Implementing a Statewide Deficit Analysis for Inland Surface Waters According to the Water Framework Directive—An Exemplary Application on Phosphorus Pollution in Schleswig-Holstein (Northern Germany)" Water 12, no. 5: 1365. https://doi.org/10.3390/w12051365