A Coupled Hydrologic–Hydraulic Model (XAJ–HiPIMS) for Flood Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. XAJ
2.2. HiPIMS
2.3. Coupling Framework
2.4. Statistical Method
2.5. Study Area
2.6. Flood Processes
2.7. Modelling Set
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tsakiris, G. Flood risk assessment: concepts, modelling, applications. Nat. Hazards Earth Syst. Sci. 2014, 14, 1361–1369. [Google Scholar] [CrossRef] [Green Version]
- IPCC, IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D.P., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1535; p. 23. [Google Scholar]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood risk and climate change: global and regional perspectives. Hydrol. Sci. J. 2014, 59, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X. Assessing the effect of land use/cover change on flood in Beijing, China. Front. Environ. Sci. Eng. 2013, 7, 769–776. [Google Scholar] [CrossRef]
- Yang, X.; Chen, H.; Wang, Y.; Xu, C. Evaluation of the effect of land use/cover change on flood characteristics using an integrated approach coupling land and flood analysis. Hydrol. Res. 2016, 47, 1161–1171. [Google Scholar] [CrossRef] [Green Version]
- Courty, L.G.; Rico-Ramirez, M.A.; Pedrozo-Acuña, A. The Significance of the Spatial Variability of Rainfall on the Numerical Simulation of Urban Floods. Water 2018, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Erena, S.H.; Worku, H. Flood risk analysis: Causes and landscape based mitigation strategies in Dire Dawa city, Ethiopia. Geoenviron. Disasters 2018, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modelling and assessment Part I: model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Williams, J.R.; Kiniry, J.R.; King, K.W. Soil and Water Assessment Tool Theoretical Documentation: Version 2000. 2002. Available online: https://swat.tamu.edu/media/1290/swat2000theory.pdf (accessed on 20 April 2020).
- Zhao, R.J.; Zhang, Y.L.; Fang, L.R.; Liu, X.R.; Zhang, Q.S. The Xinanjiang model. In Proceedings of the Hydrological Forecasting Symposium, Wallingford, UK, 15–18 April 1980; IAHS: Wallingford, UK; pp. 351–356. [Google Scholar]
- Zhao, R.; Liu, X. The Xinanjiang model. In Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resource Publications, LLC: Highlands Ranch, CO, USA, 1995. [Google Scholar]
- Crawford, N.H.; Linsley, R.K. Digital simulation in hydrology: Stanford Watershed Model IV; Stanford University: Stanford, CA, USA, 1966. [Google Scholar]
- Finnerty, B.D.; Smith, M.B.; Seo, D.-J.; Koren, V.; Moglen, G.E. Space-time scale sensitivity of the Sacramento model to radar-gage precipitation inputs. J. Hydrol. 1997, 203, 21–38. [Google Scholar] [CrossRef]
- Meng, C.; Zhou, J.; Zhong, D.; Wang, C.; Guo, J. An Improved Grid-Xinanjiang Model and Its Application in the Jinshajiang Basin, China. Water 2018, 10, 1265. [Google Scholar] [CrossRef] [Green Version]
- Yao, C.; Li, Z.; Yu, Z.; Zhang, K. A priori parameter estimates for a distributed, grid-based Xinanjiang model using geographically based information. J. Hydrol. 2012, 468, 47–62. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; Storm, B. MIKE SHE. In Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resource Publications, LLC: Highlands Ranch, CO, USA, 1995. [Google Scholar]
- Waseem, M.; Kachholz, F.; Klehr, W.; Tränckner, J. Suitability of a Coupled Hydrologic and Hydraulic Model to Simulate Surface Water and Groundwater Hydrology in a Typical North-Eastern Germany Lowland Catchment. Appl. Sci. 2020, 10, 1281. [Google Scholar] [CrossRef] [Green Version]
- Xiong, L.; Guo, S.; Tian, X. DEM-based distributed hydrological model and its application. Adv. Water Sci. 2004, 15, 517–520. (In Chinese) [Google Scholar]
- Wang, Y.; Liang, Q.; Kesserwani, G.; Hall, J.W. A 2D shallow flow model for practical dam-break simulations. J. Hydraul. Res. 2011, 49, 307–316. [Google Scholar] [CrossRef]
- Liang, Q.; Xia, X.; Hou, J. Efficient urban flood simulation using a GPU-accelerated SPH model. Environ. Earth Sci. 2015, 74, 7285–7294. [Google Scholar] [CrossRef]
- Wang, C.; Hou, J.; Miller, D.; Brown, I.; Jiang, Y. Flood risk management in sponge cities: The role of integrated simulation and 3D visualization. Int. J. Disaster Risk Reduct. 2019, 39, 101139. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.S.; Liang, Q. Towards a generalised GPU/CPU shallow-flow modelling tool. Comput. Fluids 2013, 88, 334–343. [Google Scholar] [CrossRef]
- Liang, Q.; Smith, L.S. A high-performance integrated hydrodynamic modelling system for urban flood simulations. J. Hydroinform. 2015, 17, 518–533. [Google Scholar] [CrossRef]
- Xia, X.; Liang, Q.; Ming, X. A full-scale fluvial flood modelling framework based on a high-performance integrated hydrodynamic modelling system (HiPIMS). Adv. Water Resour. 2019, 132, 103392. [Google Scholar] [CrossRef]
- Bellos, V.; Tsakiris, G. A hybrid method for flood simulation in small catchments combining hydrodynamic and hydrological techniques. J. Hydrol. 2016, 540, 331–339. [Google Scholar] [CrossRef]
- Yin, J.; Yu, D.; Yin, Z.; Liu, M.; He, Q. Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case study in the city center of Shanghai, China. J. Hydrol. 2016, 537, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Horton, R.E. The Rôle of infiltration in the hydrologic cycle. Trans. Am. Geophys. Union 1933, 14, 446. [Google Scholar] [CrossRef]
- Horton, R.E. The Interpretation and Application of Runoff Plat Experiments with Reference to Soil Erosion Problems. Soil Sci. Soc. Am. J. 1939, 3, 340–349. [Google Scholar] [CrossRef]
- Mudd, S. Investigation of the hydrodynamics of flash floods in ephemeral channels: Scaling analysis and simulation using a shock-capturing flow model incorporating the effects of transmission losses. J. Hydrol. 2006, 324, 65–79. [Google Scholar] [CrossRef]
- Anselmo, V.; Galeati, G.; Palmieri, S.; Rossi, U.; Todini, E. Flood risk assessment using an integrated hydrological and hydraulic modelling approach: A case study. J. Hydrol. 1996, 175, 533–554. [Google Scholar] [CrossRef]
- Seibert, S.; Skublics, D.; Ehret, U. The potential of coordinated reservoir operation for flood mitigation in large basins—A case study on the Bavarian Danube using coupled hydrological—hydrodynamic models. J. Hydrol. 2014, 517, 1128–1144. [Google Scholar] [CrossRef]
- Li, W.; Lin, K.; Zhao, T.; Lan, T.; Chen, X.-H.; Du, H.; Chen, H. Risk assessment and sensitivity analysis of flash floods in ungauged basins using coupled hydrologic and hydrodynamic models. J. Hydrol. 2019, 572, 108–120. [Google Scholar] [CrossRef]
- Ren-Jun, Z. The Xinanjiang model applied in China. J. Hydrol. 1992, 135, 371–381. [Google Scholar] [CrossRef]
- Jayawardena, A.; Zhou, M. A modified spatial soil moisture storage capacity distribution curve for the Xinanjiang model. J. Hydrol. 2000, 227, 93–113. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, L.; Guan, Y.; Chen, X.; Chen, X. Sensitivity analysis of Xinanjiang rainfall–runoff model parameters: A case study in Lianghui, Zhejiang province, China. Hydrol. Res. 2012, 43, 123–134. [Google Scholar] [CrossRef]
- Zhao, R.J. Water Hydrological Modelling—Xinanjiang Model and Shanbei Model; China Water Resources and Hydropower Publishing House: Beijing, China, 1984; pp. 125–129. (in Chinese) [Google Scholar]
- Liang, Q.; Smith, L.; Xia, X. New prospects for computational hydraulics by leveraging high-performance heterogeneous computing techniques. J. Hydrodyn. 2016, 28, 977–985. [Google Scholar] [CrossRef]
- Xia, X.; Liang, Q.; Ming, X.; Hou, J. An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations. Water Resour. Res. 2017, 53, 3730–3759. [Google Scholar] [CrossRef]
- Jin, S. Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: A review. Rivista di Matematica della Universita di Parma 2010, 2, 177–216. [Google Scholar]
- Liang, Q.; Xia, X.; Hou, J. Catchment-scale High-resolution Flash Flood Simulation Using the GPU-based Technology. Procedia Eng. 2016, 154, 975–981. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; He, S.; Wu, F.; Hu, J. Relationship between surface roughness and Manning roughness. J. Mt. Sci. 2004, 22, 236–239. (in Chinese). [Google Scholar] [CrossRef]
- Tang, X. Characteristics of runoff and soil erosion of typical forest types in the sources of Qiantang River. Master Thesis, Zhejiang A&F University, Hangzhou, China, 22 May 2012. (in Chinese). [Google Scholar]
- Huang, J. Evaluation of anti-water erosion function of main forests in the south hilly and mountain region of Jiangsu Province. PhD Thesis, Nanjing Forestry University, Nanjing, China, 16 June 2011. (in Chinese). [Google Scholar]
No. | Land Use Type | Area Proportion (%) | Manning’s n 1 |
---|---|---|---|
L1 | Forest | 45.5 | 0.139 |
L2 | Heavy brush | 37.3 | 0.098 |
L3 | Cultivated land | 2.2 | 0.041 |
L4 | Grass land | 7.3 | 0.031 |
L5 | Pond/river | 5.8 | 0.021 |
L6 | Bare land | 0.7 | 0.026 |
L7 | Urban land | 1.2 | 0.013 |
Name | Start Time | End Time | Rainfall Height | Peak Flow |
---|---|---|---|---|
FP(S) | 1987/5/26 8:00 | 1987/5/27 20:00 | 65 mm | 202 m3/s |
FP(M) | 1985/5/5 8:00 | 1985/5/7 12:00 | 106 mm | 708 m3/s |
FP(B) | 1983/5/29 8:00 | 1983/5/30 13:00 | 222 mm | 1820 m3/s |
Module | Parameters | Physical Meaning | Value |
---|---|---|---|
Evapotranspiration | WUM | Averaged soil moisture storage capacity of the upper layer | 14 |
WLM | Averaged soil moisture storage capacity of the lower layer | 86 | |
WDM | Averaged soil moisture storage capacity of the deep layer | 33 | |
K | Conversion coefficient of evaporation | 1 | |
C | Coefficient of the deep layer | 0.126 | |
Runoff generation | B | Exponential of the distribution to tension water capacity | 0.375 |
IMP | Percentage of impervious and saturated areas in the catchment | 10 | |
Runoff source partition | SM | Areal mean free water capacity of the surface soil layer | 97 |
EX | Exponent of the free water capacity curve influencing the development of the saturated area | 1.03 | |
KG | Outflow coefficients of the free water storage to groundwater relationships | 0.459 | |
KSS | Outflow coefficients of the free water storage to interflow relationships | 0.07 | |
Runoff routing | KKG | Recession constants of the groundwater storage | 0.997 |
KKSS | Recession constants of the lower interflow storage | 0.747 |
FP No. | Peak discharge (m3/s) | ARED (%) | DPAT (hour) | NSE | |||||
---|---|---|---|---|---|---|---|---|---|
O | H | C | H | C | H | C | NSE1 | NSE2 | |
FP(S) | 202 | 291 | 250 | 0.44 | 0.24 | 0 | 1 | 0.6392 | 0.8459 |
FP(M) | 708 | 900 | 822 | 0.27 | 0.16 | 0 | 0 | 0.7111 | 0.8524 |
FP(B) | 1820 | 1620 | 1817 | 0.11 | 0.002 | −1 | −1 | 0.9757 | 0.9422 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yang, X. A Coupled Hydrologic–Hydraulic Model (XAJ–HiPIMS) for Flood Simulation. Water 2020, 12, 1288. https://doi.org/10.3390/w12051288
Wang Y, Yang X. A Coupled Hydrologic–Hydraulic Model (XAJ–HiPIMS) for Flood Simulation. Water. 2020; 12(5):1288. https://doi.org/10.3390/w12051288
Chicago/Turabian StyleWang, Yueling, and Xiaoliu Yang. 2020. "A Coupled Hydrologic–Hydraulic Model (XAJ–HiPIMS) for Flood Simulation" Water 12, no. 5: 1288. https://doi.org/10.3390/w12051288