Field-Based Analysis of Runoff Generation Processes in Humid Lowlands of the Taihu Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Hongqiwei Field Experiment
2.1.2. Baitaqiao Field Experiment
2.2. Data Collection
2.3. Data Assessment
2.3.1. Rainfall Event Definition
2.3.2. Water Balance Analysis for Events
2.3.3. Correlation Analysis
3. Results and Discussion
3.1. Hydroclimatic Conditions during the Study Period
3.2. Overview of Rainfall-Runoff Events
3.3. Rainfall–Runoff Relationships
3.3.1. Saturation Excess Runoff
3.3.2. Infiltration Excess Runoff
3.4. Antecedent Conditions–Runoff Relationships
3.5. Depression Storage-Runoff Relationships
4. Discussion
5. Conclusions
- The prevalence of small intensity rainfall events and soils prone to saturation promoted the predominant role of the saturation excess runoff in the runoff responses, while the infiltration excess runoff was limited in extreme storm events, indicating that multiple runoff processes existed in the area. The strong linear relationship between the total rainfall and runoff confirmed this point of view.
- A good linear positive correlation was found between the initial groundwater depth and the soil water storage capacity before the rainfall events, which reflected the strong interactions between the shallow groundwater and soil water in this area.
- The depression storage value calculated by the water balance was suggested in a rough proxy, which was meaningful for the value range of this parameter in the numerical simulation.
Author Contributions
Funding
Conflicts of Interest
References
- Hua, L.; Zhai, L.; Liu, J.; Liu, H.; Zhang, F.; Fan, X. Effect of irrigation-drainage unit on phosphorus interception in paddy field system. J. Environ. Manage. 2019, 235, 319–327. [Google Scholar] [CrossRef]
- Brauer, C.C.; Teuling, A.J.; Torfs, P.J.J.F.; Uijlenhoet, R. The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall–runoff model for catchments with shallow groundwater. Geosci. Model Dev. 2014, 7, 2313–2332. [Google Scholar] [CrossRef] [Green Version]
- Yan, R.; Li, L.; Gao, J. Framework for quantifying rural NPS pollution of a humid lowland catchment in Taihu Basin, Eastern China. Sci. Total Environ. 2019, 688, 983–993. [Google Scholar] [CrossRef] [PubMed]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding-A global assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Rozemeijer, J.; van Breukelen, B.M.; Ouboter, M.; van der Vlugt, C.; Broers, H.P. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area. Hydrol. Earth Syst. Sci. 2018, 22, 487–508. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.; Tetzlaff, D.; Gelbrecht, J.; Kleine, L.; Soulsby, C. Riparian wetland rehabilitation and beaver re-colonization impacts on hydrological processes and water quality in a lowland agricultural catchment. Sci. Total Environ. 2020, 699, 134302. [Google Scholar] [CrossRef]
- Colombani, N.; Mastrocicco, M.; Castaldelli, G.; Aravena, R. Contrasting biogeochemical processes revealed by stable isotopes of H2O, N, C and S in shallow aquifers underlying agricultural lowlands. Sci. Total Environ. 2019, 691, 1282–1296. [Google Scholar] [CrossRef]
- Wheater, H.S.; Peach, D. Developing interdisciplinary science for integrated catchment management: the UK lowland catchment research (LOCAR) programme. Int. J. Water Resour. Dev. 2004, 20, 369–385. [Google Scholar] [CrossRef] [Green Version]
- Xiang, J.; Xu, Y.; Yuan, J.; Wang, Q.; Wang, J.; Deng, X. Multifractal Analysis of River Networks in an Urban Catchment on the Taihu Plain, China. Water 2019, 11, 2283. [Google Scholar] [CrossRef] [Green Version]
- Uhlenbrook, S. Catchment hydrology—a science in which all processes are preferential. Hydrol. Process. 2006, 20, 3581–3585. [Google Scholar] [CrossRef]
- Yan, R.; Gao, J.; Huang, J. Modelling the hydrological processes of a Chinese lowland polder and identifying the key factors using an improved PHPS model. J. Hydrol. 2019, 578, 124083. [Google Scholar] [CrossRef]
- Kuchment, L.S. The Hydrological Cycle and Human Impact on it. In Water Resources Management; Hoekstra, A.Y., Savenije, H.H.G., Eds.; Eolss Publishers: Oxford, UK, 2004. [Google Scholar]
- Uhlenbrook, S.; Didszun, J.; Wenninger, J. Source areas and mixing of runoff components at the hillslope scale—a multi-technical approach. Hydrol. Sci. J. 2008, 53, 741–753. [Google Scholar] [CrossRef] [Green Version]
- Horton, R.E. The Rôle of infiltration in the hydrologic cycle. Eos, Trans. Am. Geophys. Union 1933, 14, 446–460. [Google Scholar] [CrossRef]
- Dunne, T.; Black, R.D. An Experimental Investigation of Runoff Production in Permeable Soils. Water Resour. Res. 1970, 6, 478–490. [Google Scholar] [CrossRef]
- Hewlett, J.D.; Hibbert, A.R. Factors Affecting the Response of Small Watersheds to Precipitation in Humid Areas; International Symposium on Forest Hydrology: Pergamon, Oxford, 1967. [Google Scholar]
- Guinn Garrett, C.; Vulava, V.M.; Callahan, T.J.; Jones, M.L. Groundwater-surface water interactions in a lowland watershed: source contribution to stream flow. Hydrol. Process. 2012, 26, 3195–3206. [Google Scholar] [CrossRef]
- Song, S.; Wang, W. Impacts of Antecedent Soil Moisture on the Rainfall-Runoff Transformation Process Based on High-Resolution Observations in Soil. Water 2019, 11, 296. [Google Scholar] [CrossRef] [Green Version]
- Bracken, L.J.; Croke, J. The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrol. Process. 2007, 21, 1749–1763. [Google Scholar] [CrossRef]
- Slattery, M.C.; Gares, P.A.; Phillips, J.D. Multiple modes of storm runoff generation in a North Carolina coastal plain watershed. Hydrol. Process. 2006, 20, 2953–2969. [Google Scholar] [CrossRef]
- Andersen, H.E. Hydrology and nitrogen balance of a seasonally inundated Danish floodplain wetland. Hydrol. Process. 2004, 18, 415–434. [Google Scholar] [CrossRef]
- Haidu, I.; Ivan, K. Ponds delineation in various urban landforms. Case study for cluj-napoca, Romania. Environ. Eng. Manag. J. 2016, 15, 1379–1386. [Google Scholar] [CrossRef]
- Rossi, M.J.; Ares, J.O. Water fluxes between inter-patches and vegetated mounds in flat semiarid landscapes. J. Hydrol. 2017, 546, 219–229. [Google Scholar] [CrossRef]
- Brauer, C.C.; Teuling, A.J.; Overeem, A.; van der Velde, Y.; Hazenberg, P.; Warmerdam, P.M.M.; Uijlenhoet, R. Anatomy of extraordinary rainfall and flash flood in a Dutch lowland catchment. Hydrol. Earth Syst. Sci. 2011, 15, 1991–2005. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Boggs, J.; McNulty, S.G.; Amatya, D.M.; Trettin, C.C.; Dai, Z. Hydrologic processes of forested headwater watersheds across a physiographic gradient in the southeastern United States. In Proceedings of the 2008 South Carolina Water Resources Conference, Charleston, SC, USA, 14–15 October 2008; Miscellaneous Publication: Asheville, NC, USA, 2008. [Google Scholar]
- Vansteelant, J.; Trévisan, D.; Perron, L.; Dorioz, J.; Roybin, D. Frequency of runoff in the cropped area of the French basin of Lac Leman. Agronomie 1997, 17, 65–82. [Google Scholar] [CrossRef]
- Warsta, L.; Karvonen, T.; Koivusalo, H.; Paasonen-Kivekäs, M.; Taskinen, A. Simulation of water balance in a clayey, subsurface drained agricultural field with three-dimensional FLUSH model. J. Hydrol. 2013, 476, 395–409. [Google Scholar] [CrossRef]
- Sweet, W.V.; Geratz, J.W. Bankfull hydraulic geometry relationships and recurrence intervals for North Carolina’s coastal plain. J. Am. Water Resour. Assoc. 2003, 39, 861–871. [Google Scholar] [CrossRef]
- Zimmer, M.A.; McGlynn, B.L. Ephemeral and intermittent runoff generation processes in a low relief, highly weathered catchment. Water Resour. Res. 2017, 53, 7055–7077. [Google Scholar] [CrossRef]
- Tarasova, L.; Basso, S.; Zink, M.; Merz, R. Exploring Controls on Rainfall-Runoff Events: 1. Time Series-Based Event Separation and Temporal Dynamics of Event Runoff Response in Germany. Water Resour. Res. 2018, 54, 7711–7732. [Google Scholar] [CrossRef]
- Appels, W.M.; Bogaart, P.W.; van der Zee, S.E.A.T.M. Surface runoff in flat terrain: How field topography and runoff generating processes control hydrological connectivity. J. Hydrol. 2016, 534, 493–504. [Google Scholar] [CrossRef]
- Pyzoha, J.E.; Callahan, T.J.; Sun, G.; Trettin, C.C.; Miwa, M. A conceptual hydrologic model for a forested Carolina bay depressional wetland on the Coastal Plain of South Carolina, USA. Hydrol. Process. 2008, 22, 2689–2698. [Google Scholar] [CrossRef]
- Krause, S.; Bronstert, A. The impact of groundwater–surface water interactions on the water balance of a mesoscale lowland river catchment in northeastern Germany. Hydrol. Process. 2007, 21, 169–184. [Google Scholar] [CrossRef]
- Woodward, S.J.R.; Stenger, R.; Bidwell, V.J. Dynamic analysis of stream flow and water chemistry to infer subsurface water and nitrate fluxes in a lowland dairying catchment. J. Hydrol. 2013, 505, 299–311. [Google Scholar] [CrossRef]
- Naughton, O.; Johnston, P.M.; McCormack, T.; Gill, L.W. Groundwater flood risk mapping and management: examples from a lowland karst catchment in Ireland. J. Flood Risk Manag. 2017, 10, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Sofia, G.; Ragazzi, F.; Giandon, P.; Dalla Fontana, G.; Tarolli, P. On the linkage between runoff generation, land drainage, soil properties, and temporal patterns of precipitation in agricultural floodplains. Adv. Water Resour. 2019, 124, 120–138. [Google Scholar] [CrossRef]
- Kirchner, J.W. Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology. Water Resour. Res. 2006, 42, 1–5. [Google Scholar] [CrossRef]
- Blume, T.; van Meerveld, I.; Weiler, M. The role of experimental work in hydrological sciences – insights from a community survey. Hydrol. Sci. J. 2016, 62, 334–337. [Google Scholar] [CrossRef] [Green Version]
- van der Velde, Y.; Rozemeijer, J.C.; de Rooij, G.H.; van Geer, F.C.; Broers, H.P. Field-Scale Measurements for Separation of Catchment Discharge into Flow Route Contributions. Vadose Zone J. 2010, 9, 25–35. [Google Scholar] [CrossRef]
- Lana-Renault, N.; Latron, J.; Regüés, D. Streamflow response and water-table dynamics in a sub-Mediterranean research catchment (Central Pyrenees). J. Hydrol. 2007, 347, 497–507. [Google Scholar] [CrossRef]
- van den Eertwegh, G.A.P.H.; Nieber, J.L.; de Louw, P.G.B.; van Hardeveld, H.A.; Bakkum, R. Impacts of drainage activities for clay soils on hydrology and solute loads to surface water. Irrig. Drain. 2006, 55, 235–245. [Google Scholar] [CrossRef]
- Ren, D.; Xu, X.; Huang, Q.; Huo, Z.; Xiong, Y.; Huang, G. Analyzing the Role of Shallow Groundwater Systems in the Water Use of Different Land-Use Types in Arid Irrigated Regions. Water 2018, 10, 634. [Google Scholar] [CrossRef] [Green Version]
- Estrany, J.; Garcia, C.; Batalla, R.J. Hydrological response of a small mediterranean agricultural catchment. J. Hydrol. 2010, 380, 180–190. [Google Scholar] [CrossRef]
- Sutcliffe, J.V. Water Balance. In Hydrology: A Question of Balance; Sutcliffe, J.V., Ed.; IAHS: Wallingford, UK, 2004; pp. 91–128. [Google Scholar]
- Qingfang, H.; Leizhi, W.; Yintang, W.; Lingjie, L.; Yong, L.; Tingting, C. Vegetation coverage dynamics and its response to urbanization in the Taihu Lake Basin during 1998~2010. In Proceedings of the 2019 International Conference on Civil and Hydraulic Engineering, Nanjing, China; IOP, 2019. Available online: https://iopscience.iop.org/article/10.1088/1755-1315/304/2/022023 (accessed on 23 April 2020).
- Ying, P.; Jie, L.; Guang-chen, T.; Peng, T.; Jin-chi, Z.; Zhe-yan, G. Spatio-Temporal Variations of Vegetation Coverage in Taihu Lake Basin From 2004 to 2014. J. Ecol. Rural Environ. 2018, 34, 37–45. [Google Scholar]
- Hua, W.; Wang, C.; Chen, G.; Yang, H.; Zhai, Y. Measurement and Simulation of Soil Water Contents in an Experimental Field in Delta Plain. Water 2017, 9, 947. [Google Scholar] [CrossRef] [Green Version]
- Staff, S.S.D. Soil Survey Manual; U.S. Department of Agriculture: Government Printing Office: Washington, DC, USA, 2017; pp. 120–126.
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Amatya, D.; Gregory, J.; Skaggs, R. Effects of controlled drainage on storm event hydrology in a loblolly pine plantation. J. Am. Water Resour. Assoc. 2000, 36, 175–190. [Google Scholar] [CrossRef]
- Han, S.; Xu, D.; Wang, S. Runoff formation from experimental plot, field, to small catchment scales in agricultural North Huaihe River Plain, China. Hydrol. Earth Syst. Sci. 2012, 16, 3115–3125. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Hou, R.; Wu, F.; Keesstra, S. Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments. Soil Tillage Res. 2018, 179, 47–53. [Google Scholar] [CrossRef]
- Rossi, M.J.; Ares, J.O. Overland flow from plant patches: Coupled effects of preferential infiltration, surface roughness and depression storage at the semiarid Patagonian Monte. J. Hydrol. 2016, 533, 603–614. [Google Scholar] [CrossRef]
- Nachabe, M.; Masek, C.; Obeysekera, J. Observations and Modeling of Profile Soil Water Storage above a Shallow Water Table. Soil Sci. Soc. Am. J. 2004, 68, 719–724. [Google Scholar] [CrossRef]
- La Torre Torres, I.B.; Amatya, D.M.; Sun, G.; Callahan, T.J. Seasonal rainfall-runoff relationships in a lowland forested watershed in the southeastern USA. Hydrol. Process. 2011, 25, 2032–2045. [Google Scholar] [CrossRef]
- Soler, M.; Regüés, D.; Latron, J.; Gallart, F. Flood and sediment transport response to hydrometeorological events of diverse magnitude in the Vallcebre basin, Eastern Pyrenees. In Sediment Dynamics and the Hydromorphology of Fluvial Systems; IAHS: Allingford, UK, 2006; Volume 306, pp. 56–63. [Google Scholar]
- Chen, B.; Krajewski, W.F.; Helmers, M.J.; Zhang, Z. Spatial Variability and Temporal Persistence of Event Runoff Coefficients for Cropland Hillslopes. Water Resour. Res. 2019, 55, 1583–1597. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, N.; Xu, J.; Yin, Y. Long-Term Study of the Relationship between Precipitation and Aquatic Vegetation Succession in East Taihu Lake, China. Scientifica 2017, 2017, 6345138. [Google Scholar] [CrossRef]
- Katimon, A.; Shahid, S.; Khairi Abd Wahab, A.; Ali, M.H. Hydrological behaviour of a drained agricultural peat catchment in the tropics. 1: Rainfall, runoff and water table relationships. Hydrol. Sci. J. 2013, 58, 1297–1309. [Google Scholar] [CrossRef]
- Garg, S.; Mishra, V. Role of Extreme Precipitation and Initial Hydrologic Conditions on Floods in Godavari River Basin, India. Water Resour. Res. 2019, 55, 9191–9210. [Google Scholar] [CrossRef]
- Zhao, S.; Hu, H.; Harman, C.J.; Tian, F.; Tie, Q. Understanding of Storm Runoff Generation in a Weathered, Fractured Granitoid Headwater Catchment in Northern China. Water 2019, 11, 123. [Google Scholar] [CrossRef] [Green Version]
- Saffarpour, S.; Western, A.W.; Adams, R.; McDonnell, J.J. Multiple runoff processes and multiple thresholds control agricultural runoff generation. Hydrol. Earth Syst. Sci. 2016, 20, 4525–4545. [Google Scholar] [CrossRef] [Green Version]
Parameters | Site HQW | Site BTQ | |
---|---|---|---|
Clay | (%) | 32.60 (4.60) 1 | 30.42 (3.60) |
Silt | (%) | 59.27 (3.72) | 60.20 (4.33) |
Sand | (%) | 8.13 (3.16) | 9.38 (2.04) |
Average bulk density (ρb) | (g/cm3) | 1.36 (0.14) | 1.52 (0.13) |
Saturated water content (θs) | (m3/m3) | 0.45 (0.083) | 0.47 (0.10) |
Saturated hydraulic conductivity (Ks) | (mm/hr) | 46.63 (31.33) | 30.22 (10.79) |
Organic matter (OM) | (g/kg) | 14.78 (5.61) | 18.38 (10.07) |
Pre-Event Conditions: Antecedent Soil Moisture Indices | |
H0 | The initial groundwater depth (m) |
SWSC | The soil water storage capacity (mm) |
Event conditions: Precipitation and derived variables | |
∑P | Total rainfall (mm) |
T | Rainfall duration (hr) |
Pmax | Maximum rainfall intensity (mm/hr) |
Pmean | Average rainfall intensity (mm/hr) |
Event conditions: Hydrological variables | |
R | Quickflow runoff (mm) |
ɑ | Runoff coefficient, equals to R/P |
Qmax | Peak discharge (L/s) |
D | Depression storage (mm) |
∆H | Increment of groundwater table (mm) |
I | Cumulative infiltration (mm) |
Event | Start Date | ΣP | T | Pmean | Pmax | R | ɑ | SWSC |
---|---|---|---|---|---|---|---|---|
mm | hr | mm/hr | mm/hr | mm | mm | |||
H1 | 20-05-2016 | 54.5 | 31.2 | 1.8 | 6.6 | 5.99 | 0.11 | 72.2 |
H2 | 31-05-2016 | 35.3 | 3.2 | 11.2 | 28.4 | 23.5 | 0.67 | 41.4 |
H3 | 19-10-2016 | 97.3 | 65.5 | 12.6 | 1.5 | 71.3 | 0.73 | 43.5 |
B1 | 08-07-2018 | 23.5 | 3.83 | 6.13 | 22 | 14.64 | 0.62 | 21.4 |
B2 | 06-11-2018 | 32.5 | 39.83 | 0.82 | 4.9 | 9.12 | 0.28 | 75 |
B3 | 19-06-2019 | 24.5 | 39.5 | 0.62 | 9.6 | 7.43 | 0.30 | 44.4 |
(a) | ΣP | T | Pmax | Pmean | R | α | Qmax | D | ∆H | I | H0 | SWSC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ΣP | 1 | 0.748 | 0.599 | 0.248 | 0.975 | 0.720 | 0.252 | 0.469 | 0.248 | 0.042 | −0.081 | −0.131 |
T | 1 | 0.254 | −0.171 | 0.655 | 0.465 | 0.141 | 0.652 | 0.445 | 0.302 | 0.184 | 0.073 | |
Pmax | 1 | 0.683 | 0.634 | 0.741 | 0.287 | 0.115 | −0.063 | −0.142 | −0.162 | −0.159 | ||
Pmean | 1 | 0.288 | 0.478 | 0.161 | −0.127 | −0.060 | −0.105 | −0.180 | −0.177 | |||
R | 1 | 0.797 | 0.196 | 0.343 | 0.051 | −0.167 | −0.255 | −0.276 | ||||
α | 1 | 0.214 | 0.098 | −0.101 | −0.361 | −0.496 | −0.568 | |||||
Qmax | 1 | 0.016 | 0.518 | 0.347 | 0.259 | 0.204 | ||||||
D | 1 | 0.435 | 0.270 | 0.122 | 0.057 | |||||||
∆H | 1 | 0.861 | 0.630 | 0.447 | ||||||||
I | 1 | 0.878 | 0.764 | |||||||||
H0 | 1 | 0.922 | ||||||||||
SWSC | 1 | |||||||||||
(b) | ΣP | T | Pmax | Pmean | R | α | Qmax | D | ∆H | I | H0 | SWSC |
ΣP | 1 | 0.321 | 0.225 | −0.119 | 0.496 | 0.332 | 0.365 | −0.281 | 0.535 | 0.593 | 0.129 | 0.342 |
T | 1 | −0.624 | −0.638 | −0.037 | 0.031 | 0.006 | 0.184 | 0.465 | 0.178 | 0.046 | 0.177 | |
Pmax | 1 | 0.526 | 0.693 | 0.641 | 0.641 | −0.554 | −0.150 | −0.234 | −0.247 | −0.238 | ||
Pmean | 1 | −0.041 | −0.074 | 0.020 | 0.188 | −0.002 | −0.103 | 0.189 | 0.233 | |||
R | 1 | 0.957 | 0.936 | −0.604 | −0.069 | −0.322 | −0.530 | −0.454 | ||||
α | 1 | 0.934 | −0.591 | −0.173 | −0.469 | −0.625 | −0.525 | |||||
Qmax | 1 | −0.551 | 0.026 | −0.405 | −0.462 | −0.414 | ||||||
D | 1 | −0.008 | −0.071 | 0.060 | 0.114 | |||||||
∆H | 1 | 0.629 | 0.675 | 0.703 | ||||||||
I | 1 | 0.705 | 0.784 | |||||||||
H0 | 1 | 0.918 | ||||||||||
SWSC | 1 |
Parameter | HQW | BTQ |
---|---|---|
Maximum (mm) | 18.86 | 12.13 |
Minimum (mm) | 0.29 | 0.19 |
Mean (mm) | 6.20 | 6.63 |
SD (mm) | 4.75 | 3.91 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, Y.; Wang, C.; Chen, G.; Wang, C.; Li, X.; Liu, Y. Field-Based Analysis of Runoff Generation Processes in Humid Lowlands of the Taihu Basin, China. Water 2020, 12, 1216. https://doi.org/10.3390/w12041216
Zhai Y, Wang C, Chen G, Wang C, Li X, Liu Y. Field-Based Analysis of Runoff Generation Processes in Humid Lowlands of the Taihu Basin, China. Water. 2020; 12(4):1216. https://doi.org/10.3390/w12041216
Chicago/Turabian StyleZhai, Yue, Chuanhai Wang, Gang Chen, Chun Wang, Xiaoning Li, and Yating Liu. 2020. "Field-Based Analysis of Runoff Generation Processes in Humid Lowlands of the Taihu Basin, China" Water 12, no. 4: 1216. https://doi.org/10.3390/w12041216