Energy Consumption and Internal Distribution in Activated Sludge Wastewater Treatment Plants of Greece
Abstract
:1. Introduction
2. Methodology
- Layout of the WWTP;
- Average daily flow;
- Population served;
- Qualitative characteristics of the inlet and outlet wastewater;
- Treatment of biosolids;
- Energy requirements for the WWTP and for the individual sub-processes;
- Operational cost, with respect to energy.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Glossary
CSTR | Continuous Stirred Tank Reactor |
E€/PE | Daily electric energy cost per inhabitant (€/PE·d) |
E€/V | Electric energy cost per wastewater volume unit (€/m3) |
EPE | Daily electric energy requirement per inhabitant (kWh/PE·d) |
EQ | Electric energy consumption per volume unit (kWh/m3) |
MBR | Membrane bioreactor |
ODR | Oxidation Ditch Reactor |
PE | Population Equivalent |
PFR | Plug Flow Reactor |
Qav | Average daily inlet flow (m3/d) |
R | Correlation coefficient |
WWTPs | Wastewater Treatment Plants |
References
- Carns, K. Bringing Energy Efficiency to the Water & Wastewater Industry: How Do We Get There? In Proceedings of the Water Quality Event (WEFTEC05), Washington DC, USA, 29 October–2 November 2005. [Google Scholar]
- Means, E. Water and Wastewater Industry Energy Efficiency: A Research Roadmap; AWWA Research Foundation: New York, NY, USA, 2004. [Google Scholar]
- Wett, B.; Buchauer, K.; Fimml, C. Energy self-sufficiency as a feasible concept for wastewater treatment systems. In Proceedings of the IWA 4th Leading Edge Technology Conference, Singapore, 3–6 June 2007. [Google Scholar]
- Gu, Y.; Li, Y.; Li, X.; Luo, P.; Wang, H.; Wang, X.; Wu, J.; Li, F. Energy self-sufficient wastewater treatment plants: Feasibilities and challenges. Energy Procedia 2017, 105, 3741–3751. [Google Scholar] [CrossRef]
- Gikas, P. Towards energy positive wastewater treatment plants. J. Environ. Manag. 2017, 203, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Guimet, V.; Kelly, R.; Doung, F.; Rosina, M.; Audic, M.; Terry, M. Green energy resource: Research and learning experiences from wastewater treatment plants. In Proceedings of the IWA World Water Congress, Montreal, QC, Canada, 19–24 September 2010. [Google Scholar]
- Plappally, K.; Lienhard, V.H. Energy requirements for water production, treatment, end use, reclamation, and disposal. Renew. Sustain. Energy Rev. 2012, 16, 4818–4848. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Burton, F.; Stensel, D. Metcalf and Eddy: Wastewater Engineering, Treatment and Reuse, 4th ed.; McGraw Hill: New York, NY, USA, 2003. [Google Scholar]
- Bodik, I.; Kubaská, M. Energy and sustainability of operation of a wastewater treatment plant. Environ. Prot. Eng. 2013, 39, 15–24. [Google Scholar] [CrossRef]
- Wastewater Treatment Plants Monitoring Database, Special Secretariat for Water, Hellenic Ministry of Environment and Energy, Government of the Hellenic Republic, Athens, Greece. Available online: http://astikalimata.ypeka.gr/Services/Pages/WtpViewApp.aspx# (accessed on 3 April 2020).
- Directorate-General for Environment. Compliance Costs of the Urban. Wastewater Treatment Directive; Document No. 70610-D-DFR; European Commission: Brussels, Belgium, 2010. [Google Scholar]
- Dimopoulou, A. Comparative Assessment on Energy Consumption and Greenhouse Gas Emissions by Wastewater Treatment Plants. Master’s Thesis, National Technical University of Athens, Athens, Greece, 2011. [Google Scholar]
- Karagozoglu, B.; Altin, A. Flow-rate and pollution characteristics of domestic wastewater. Int. J. Environ. Pollut. 2003, 19, 259–270. [Google Scholar] [CrossRef]
- Almeida, M.; Butler, D.; Friedler, E. At-source domestic wastewater quality. Urban Water J. 1999, 1, 49–55. [Google Scholar] [CrossRef]
- Shoener, B.; Bradley, I.; Cusick, R.; Guest, J. Energy positive domestic wastewater treatment: The roles of anaerobic and phototrophic technologies. Environ. Sci. Process. Impacts 2014, 16, 1204–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DESTATIS. Public Water Supply and Public Wastewater Disposal 2013; German Federal Statistical Office: Wiesbaden, German, 2015. [Google Scholar]
- Voltz, T.; Grischek, T. Energy Management in the Water Sector – Comparative Case Study of Germany and the United States. Water-Energy Nexus 2018, 1, 2–16. [Google Scholar] [CrossRef]
- Salvato, J. Environmental Engineering and Sanitation, 4th ed.; Wiley Interscience Publishers: New York, NY, USA, 1992. [Google Scholar]
- Mamais, D.; Noutsopoulos, C.; Dimopoulou, A.; Stasinakis, A.; Lekkas, T. Wastewater treatment process impact on energy savings and greenhouse gas emissions. Water Sci. Technol. 2015, 71, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Stillwell, A.; Hoppock, D.; Webber, M. Energy recovery from WWTPs in the United States: A case study of the energy–water nexus. Sustainability 2010, 2, 945–962. [Google Scholar] [CrossRef] [Green Version]
- Krampe, J. Energy benchmarking of South Australian WWTPs. Water Sci. Technol. 2013, 67, 2059–2066. [Google Scholar] [CrossRef] [PubMed]
- Panepinto, D.; Fiore, S.; Zappone, M.; Genon, G.; Meucci, L. Evaluation of the energy efficiency of a large wastewater treatment plant in Italy. Appl. Energy 2016, 161, 404–411. [Google Scholar] [CrossRef]
- Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities; Technical Report; National Renewable Energy Laboratory: Golden, CO, USA, 2012. [Google Scholar]
- Longo, S.; d’Antoni, B.; Bongards, M.; Chaparro, A.; Cronrath, A.; Fatone, F.; Lema, J.; Mauricio-Iglesias, M.; Soares, A.; Hospido, A. Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement. Appl. Energy 2016, 179, 1251–1268. [Google Scholar] [CrossRef]
- Castellet-Viciano, L.; Hernández-Chover, V.; Hernández-Sancho, F. Modelling the energy costs of the wastewater treatment process: The influence of the aging factor. Sci. Total Environ. 2018, 625, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, A.; Romano, G.; Indipendenza, A. Energy Efficiency Drivers in Wastewater Treatment Plants: A Double Bootstrap DEA Analysis. Sustainability 2017, 9, 1126. [Google Scholar] [CrossRef] [Green Version]
- AWWA. Energy Index Development for Benchmarking Water and Wastewater Utilities; Carlson, S.W., Walberger, A., Eds.; American Water Works Association (AWWA) Research Foundation: Denver, CO, USA, 2007. [Google Scholar]
- Cao, Y. Mass Flow and Energy Efficiency of Municipal Wastewater Treatment Plants; IWA Publishing: London, UK, 2011. [Google Scholar]
- Olsson, G. Water-Energy Nexus. In Encyclopedia of Sustainability Science and Technology; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2012; pp. 11932–11946. [Google Scholar]
- Hernández-Sancho, F.; Molinos-Senante, M.; Sala-Garrido, R. Energy efficiency in Spanish wastewater treatment plants: A non-radial DEA approach. Sci. Total Environ. 2011, 409, 2693–2699. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, Y.; Keller, A.; Li, X.; Feng, S.; Dong, Y.; Fengting, L. Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa. Appl. Energy 2016, 184, 873–881. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Zeng, S.; Chen, J.; He, M.; Yang, W. Operational energy performance assessment system of municipal wastewater treatment plants. Water Sci. Technol. 2010, 62, 1361–1370. [Google Scholar] [CrossRef] [PubMed]
- Chae, K.-J.; Kang, J. Estimating the energy independence of a municipal wastewater treatment plant incorporating green energy resources. Energy Convers. Manag. 2013, 75, 664–672. [Google Scholar] [CrossRef]
- Energy Solutions. Energy Efficiency and GHG Reduction in Wastewater Facilities; EPA: Washington, DC, USA, 2009. [Google Scholar]
- WERF. Energy Efficiency in Wastewater Treatment in North. America: A Compendium of Best Practices and Case Studies of Novel Approaches; Water Environment Research Foundation: Alexandria, VA, USA, 2010. [Google Scholar]
Process | Influent Pump Station | Screening | Grit Chamber | Degreasing | Equalization Tank | Primary Sedimentation | Aeration Tank | Type of Oxidation Process | Nitrification & Denitrification | Phosphorus Removal | Secondary Sedimentation | Disinfection Tank | Water Reuse | Sludge Thickening | Sludge Dewatering | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WWTP | ||||||||||||||||
1 | Marpissa | X | X | X | X | CSTR 1 | X | X | X | X | ||||||
2 | Naousa | X | X | X | X | CSTR | X | X | X | X | X | |||||
3 | Parikia | X | X | X | X | CSTR | X | X | X | X | X | |||||
4 | Thasos | X | X | X | X | X | CSTR | X | X | X | X | X | ||||
5 | Elounda | X | X | X | PFR 2 | X | X | X | X | X | ||||||
6 | Amyntaio | X | X | X | X | X | CSTR | X | X | X | X | X | X | |||
7 | Farsala | X | X | X | X | X | CSTR | X | X | X | X | X | X | |||
8 | Litochoro | X | X | X | X | X | CSTR | X | X | X | X | X | X | |||
9 | Elassona | X | X | X | X | X | PFR | X | X | X | X | X | X | |||
10 | Chrysoupoli | X | X | X | X | CSTR | X | X | X | X | X | X | ||||
11 | Agios Nikolaos | X | X | X | X | X | ODR 3 | X | X | X | X | X | ||||
12 | Lavrio | X | X | X | X | X | X | ODR | X | X | X | X | X | |||
13 | Florina | X | X | X | X | X | CSTR | X | X | X | X | X | X | |||
14 | Nea Kydonia | X | X | X | X | CSTR | X | X | X | X | X | X | ||||
15 | Thiva | X | X | X | X | ODR | X | X | X | X | X | X | X | |||
16 | Lamia | X | X | X | X | X | ODR | X | X | X | X | X | ||||
17 | Karditsa | X | X | X | X | PFR | X | X | X | X | X | X |
WWTP | Average Daily Inlet Flow, Qav (m3/d) | Population Served (PE) | Average Daily Energy Consumption (kWh/d) | Energy Consumption per m3, EQ (kWh/m3) | |
---|---|---|---|---|---|
1 | Marpissa | 290 | 1157 | 471 | 1.65 |
2 | Naousa | 940 | 2555 | 774 | 1.08 |
3 | Parikia | 927 | 3215 | 529 | 0.44 |
4 | Thasos | 1150 | 4000 | 933 | 0.78 |
5 | Elounda | 700 | 4350 | 539 | 1.16 |
6 | Amyntaio | 1550 | 5350 | 1637 | 0.76 |
7 | Farsala | 935 | 5400 | 1298 | 1.37 |
8 | Litochoro | 2625 | 7000 | 1426 | 1.08 |
9 | Elassona | 644 | 12,225 | 1436 | 2.28 |
10 | Chrysoupoli | 1987 | 14,220 | 1473 | 0.76 |
11 | Agios Nikolaos | 3400 | 22,000 | 2179 | 0.74 |
12 | Lavrio | 2850 | 25,500 | 2301 | 0.80 |
13 | Florina | 11,830 | 26,000 | 2751 | 0.49 |
14 | Nea Kydonia | 6687 | 35,934 | 4123 | 0.63 |
15 | Thiva | 8410 | 40,000 | 1634 | 0.71 |
16 | Lamia | 14,285 | 46,550 | 7243 | 0.50 |
17 | Karditsa | 27,350 | 56,050 | 3102 | 0.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siatou, A.; Manali, A.; Gikas, P. Energy Consumption and Internal Distribution in Activated Sludge Wastewater Treatment Plants of Greece. Water 2020, 12, 1204. https://doi.org/10.3390/w12041204
Siatou A, Manali A, Gikas P. Energy Consumption and Internal Distribution in Activated Sludge Wastewater Treatment Plants of Greece. Water. 2020; 12(4):1204. https://doi.org/10.3390/w12041204
Chicago/Turabian StyleSiatou, Alexandra, Anthoula Manali, and Petros Gikas. 2020. "Energy Consumption and Internal Distribution in Activated Sludge Wastewater Treatment Plants of Greece" Water 12, no. 4: 1204. https://doi.org/10.3390/w12041204
APA StyleSiatou, A., Manali, A., & Gikas, P. (2020). Energy Consumption and Internal Distribution in Activated Sludge Wastewater Treatment Plants of Greece. Water, 12(4), 1204. https://doi.org/10.3390/w12041204