Investigation of Groundwater Contamination and Health Implications in a Typical Semiarid Basin of North China
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Sample Collection and Analysis
3.2. Health Risk Assessment
3.3. Multivariate Statistical Analysis
4. Results and Discussion
4.1. Groundwater Hydrochemical Charecteristics
4.2. Potential Health Risk Assessment
4.2.1. Spatial Distribution of the Total Health Risk
4.2.2. Discrepancy of Health Risk through Various Exposure Pathways
4.2.3. Health Risk from Nitrogen, Fluoride, and Toxic metals
4.3. Source Analysis and Implication for Sustainable Water Management
5. Conclusions
- (1)
- The groundwater in the basin is slightly alkaline, hard fresh water. The abundance of major ions in groundwater is in the order of Ca2+ > Na+ + K+ > Mg2+ for cations and HCO3− > SO42− > Cl− for anions. NO3-N, F−, Mn, and Zn were found to be beyond the permissible limits at some sampling sites. Groundwaters exceeding the limits of NO3-N, F−, Mn and Zn accounted for 11.8%, 2.6%, 1.3%, and 1.3% in all the sampled sites, respectively, with maximum concentrations of 21.8 mg/L, 1.17 mg/L, 0.17 mg/L and 1.12 mg/L.
- (2)
- Groundwater NO3-N and F− contaminants may pose potential health risks to local residents. The risks due to Mn and Zn in the study area are low and negligible. The dermal exposure of high nitrate and fluoride contaminations in groundwater would not threated health, but oral exposure pathway should be further studied, as high potential risks be may posed. The health risks for all populations are primarily posed by NO3-N contamination. Adults are only at risk of NO3-N contaminants in groundwater, while minors are susceptible to both NO3-N and F− contaminants. The total potential noncarcinogenic risks for various populations are in the order of infants > children > adult males > adult females.
- (3)
- High NO3-N groundwaters are dominantly distributed in residential areas, and were attributed to the anthropogenic sources. The inputs of anthropogenic sources in these urban areas also elevate the TDS values of groundwater. Advanced and strict administration measures are recommended to protect groundwaters from contamination due to anthropogenic activities. The elevation of TDS in groundwater is also associated with the leaching of irrigation water in agricultural areas. Rational irrigation practices like dropping and sprinkling are encouraged to replace the older flooding method. The high Zn in groundwaters is also related to anthropogenic activities, and should be studied by future water resource administrations. F− and Mn contaminants in groundwater originate from geogenic sources. Treatment of groundwaters with high levels of F− contaminants is necessary if the waters are to be used for long-term drinking purposes, especially regarding infants and children. The effects of Mn contamination in groundwater is limited and can be ignored.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Snousy, M.G.; Morsi, M.S.; Elewa, A.M.T.; Ahmed, S.A.E.-F.; El-Sayed, E. Groundwater vulnerability and trace element dispersion in the Quaternary aquifers along middle Upper Egypt. Environ. Monit. Assess. 2020, 192, 174. [Google Scholar] [CrossRef]
- Gu, X.; Xiao, Y.; Yin, S.; Hao, Q.; Liu, H.; Hao, Z.; Meng, G.; Pei, Q.; Yan, H. Hydrogeochemical Characterization and Quality Assessment of Groundwater in a Long-Term Reclaimed Water Irrigation Area, North China Plain. Water 2018, 10, 1209. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, P.; Xue, L.; Dong, Z.; Li, D. Solute geochemistry and groundwater quality for drinking and irrigation purposes: A case study in Xinle City, North China. Geochemistry 2020, 125609. [Google Scholar] [CrossRef]
- Xiao, Y.; Shao, J.; Frape, S.; Cui, Y.; Dang, X.; Wang, S.; Ji, Y. Groundwater origin, flow regime and geochemical evolution in arid endorheic watersheds: A case study from the Qaidam Basin, northwestern China. Hydrol. Earth Syst. Sci. 2018, 22, 4381–4400. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Alcaide, S.; Martínez-Santos, P. Review: Advances in groundwater potential mapping. Hydrogeol. J. 2019, 27, 2307–2324. [Google Scholar] [CrossRef]
- Beckie, R.D. Groundwater. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Subba Rao, N.; Ravindra, B.; Wu, J. Geochemical and health risk evaluation of fluoride rich groundwater in Sattenapalle Region, Guntur district, Andhra Pradesh, India. Hum. Ecol. Risk Assess. Int. J. 2020, 1–33. [Google Scholar] [CrossRef]
- Saito, T.; Spadini, L.; Saito, H.; Martins, J.M.F.; Oxarango, L.; Takemura, T.; Hamamoto, S.; Moldrup, P.; Kawamoto, K.; Komatsu, T. Characterization and comparison of groundwater quality and redox conditions in the Arakawa Lowland and Musashino Upland, southern Kanto Plain of the Tokyo Metropolitan area, Japan. Sci. Total Environ. 2020, 722, 137783. [Google Scholar] [CrossRef] [PubMed]
- Critelli, T.; Vespasiano, G.; Apollaro, C.; Muto, F.; Marini, L.; De Rosa, R. Hydrogeochemical study of an ophiolitic aquifer: A case study of Lago (Southern Italy, Calabria). Environ. Earth Sci. 2015, 74, 533–543. [Google Scholar] [CrossRef]
- Xiao, Y.; Shao, J.; Cui, Y.; Zhang, G.; Zhang, Q. Groundwater circulation and hydrogeochemical evolution in Nomhon of Qaidam Basin, northwest China. J. Earth Syst. Sci. 2017, 126, 26. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, H.; Xiu, W.; Wang, J.; Shen, M. High arsenic groundwater in the Guide basin, northwestern China: Distribution and genesis mechanisms. Sci. Total Environ. 2018, 640–641, 194. [Google Scholar] [CrossRef]
- Adimalla, N.; Venkatayogi, S.; Das, S.V.G. Assessment of fluoride contamination and distribution: A case study from a rural part of Andhra Pradesh, India. Appl. Water Sci. 2019, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- Marghade, D.; Malpe, D.B.; Subba Rao, N. Applications of geochemical and multivariate statistical approaches for the evaluation of groundwater quality and human health risks in a semi-arid region of eastern Maharashtra, India. Environ. Geochem. Health 2019. [Google Scholar] [CrossRef] [PubMed]
- Carling, G.T.; Romanowicz, E.A.; Jin, L.; Fernandez, D.P.; Tingey, D.G.; Goodsell, T.H. Redox conditions and pH control trace element concentrations in a meandering stream and shallow groundwater of a semiarid mountain watershed, Red Canyon, Wyoming, USA. Environ. Earth Sci. 2019, 78, 510. [Google Scholar] [CrossRef]
- Huang, G.; Liu, C.; Li, L.; Zhang, F.; Chen, Z. Spatial distribution and origin of shallow groundwater iodide in a rapidly urbanized delta: A case study of the Pearl River Delta. J. Hydrol. 2020, 585, 124860. [Google Scholar] [CrossRef]
- Dar, F.A.; Ganai, J.A.; Ahmed, S.; Satyanarayanan, M. Groundwater trace element chemistry of the karstified limestone of Andhra Pradesh, India. Environ. Earth Sci. 2017, 76, 673. [Google Scholar] [CrossRef]
- Renau-Pruñonosa, A.; García-Menéndez, O.; Ibáñez, M.; Vázquez-Suñé, E.; Boix, C.; Ballesteros, B.B.; Hernández García, M.; Morell, I.; Hernández, F. Identification of Aquifer Recharge Sources as the Origin of Emerging Contaminants in Intensive Agricultural Areas. La Plana de Castellón, Spain. Water 2020, 12, 731. [Google Scholar] [CrossRef] [Green Version]
- Bouteldjaoui, F.; Bessenasse, M.; Taupin, J.-D.; Kettab, A. Mineralization mechanisms of groundwater in a semi-arid area in Algeria: Statistical and hydrogeochemical approaches. J. Water Supply Res. Technol. Aqua 2019, 69, 173–183. [Google Scholar] [CrossRef]
- Ahmadi, S.; Jahanshahi, R.; Moeini, V.; Mali, S. Assessment of hydrochemistry and heavy metals pollution in the groundwater of Ardestan mineral exploration area, Iran. Environ. Earth Sci. 2018, 77, 212. [Google Scholar] [CrossRef]
- Rahmati, O.; Samani, A.N.; Mahmoodi, N.; Mahdavi, M. Assessment of the Contribution of N-Fertilizers to Nitrate Pollution of Groundwater in Western Iran (Case Study: Ghorveh–Dehgelan Aquifer). Water Qual. Expo. Health 2015, 7, 143–151. [Google Scholar] [CrossRef]
- Xiao, Y.; Gu, X.; Yin, S.; Pan, X.; Shao, J.; Cui, Y. Investigation of Geochemical Characteristics and Controlling Processes of Groundwater in a Typical Long-Term Reclaimed Water Use Area. Water 2017, 9, 800. [Google Scholar] [CrossRef] [Green Version]
- Busico, G.; Kazakis, N.; Colombani, N.; Khosravi, K.; Voudouris, K.; Mastrocicco, M. The Importance of Incorporating Denitrification in the Assessment of Groundwater Vulnerability. Appl. Sci. 2020, 10, 2328. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Song, X.; Li, B.; Ma, Y.; Zhang, Y.; Yang, L.; Bu, H.; Holm, P.E. Temporal variation in groundwater hydrochemistry driven by natural and anthropogenic processes at a reclaimed water irrigation region. Hydrol. Res. 2018, 49, 1652–1668. [Google Scholar] [CrossRef] [Green Version]
- Barzegar, R.; Asghari Moghaddam, A.; Soltani, S.; Fijani, E.; Tziritis, E.; Kazemian, N. Heavy Metal(loid)s in the Groundwater of Shabestar Area (NW Iran): Source Identification and Health Risk Assessment. Expo. Health 2017. [Google Scholar] [CrossRef]
- Jehan, S.; Khattak, S.A.; Muhammad, S.; Ali, L.; Rashid, A.; Hussain, M.L. Human health risks by potentially toxic metals in drinking water along the Hattar Industrial Estate, Pakistan. Environ. Sci. Pollut. Res. 2019. [Google Scholar] [CrossRef]
- Stefania, G.A.; Rotiroti, M.; Buerge, I.J.; Zanotti, C.; Nava, V.; Leoni, B.; Fumagalli, L.; Bonomi, T. Identification of groundwater pollution sources in a landfill site using artificial sweeteners, multivariate analysis and transport modeling. Waste Manag. 2019, 95, 116–128. [Google Scholar] [CrossRef]
- Dube, T.; Shoko, C.; Sibanda, M.; Baloyi, M.M.; Molekoa, M.; Nkuna, D.; Rafapa, B.; Rampheri, B.M. Spatial modelling of groundwater quality across a land use and land cover gradient in Limpopo Province, South Africa. Phys. Chem. Earth Parts A/B/C 2020, 115, 102820. [Google Scholar] [CrossRef]
- Jia, Z.; Bian, J.; Wang, Y. Impacts of urban land use on the spatial distribution of groundwater pollution, Harbin City, Northeast China. J. Contam. Hydrol. 2018, 215, 29–38. [Google Scholar] [CrossRef]
- Xiao, Y.; Yin, S.; Hao, Q.; Gu, X.; Pei, Q.; Zhang, Y. Hydrogeochemical appraisal of groundwater quality and health risk in a near-suburb area of North China. J. Water Supply Res. Technol. Aqua 2020, 69, 55–69. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A), Interim Final; EPA/540/1-89/002; United States Environmental Protection Agency: Washington, DC, USA, 1989.
- Huang, Y.; Zuo, R.; Li, J.; Wu, J.; Zhai, Y.; Teng, Y. The Spatial and Temporal Variability of Groundwater Vulnerability and Human Health Risk in the Limin District, Harbin, China. Water 2018, 10, 686. [Google Scholar] [CrossRef] [Green Version]
- Adimalla, N.; Li, P. Occurrence, health risks, and geochemical mechanisms of fluoride and nitrate in groundwater of the rock-dominant semi-arid region, Telangana State, India. Hum. Ecol. Risk Assess. 2018, 1–23. [Google Scholar] [CrossRef]
- Yousefi, M.; Ghalehaskar, S.; Asghari, F.B.; Ghaderpoury, A.; Dehghani, M.H.; Ghaderpoori, M.; Mohammadi, A.A. Distribution of fluoride contamination in drinking water resources and health risk assessment using geographic information system, northwest Iran. Regul. Toxicol. Pharmacol. 2019, 107, 104408. [Google Scholar] [CrossRef]
- Zango, M.S.; Sunkari, E.D.; Abu, M.; Lermi, A. Hydrogeochemical controls and human health risk assessment of groundwater fluoride and boron in the semi-arid North East region of Ghana. J. Geochem. Explor. 2019, 207, 106363. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, G.; Liu, C.; Zhang, Y.; Chen, Z.; Wang, J. Distributions and origins of nitrate, nitrite, and ammonium in various aquifers in an urbanized coastal area, south China. J. Hydrol. 2020, 582, 124528. [Google Scholar] [CrossRef]
- USEPA. User’s Guide: Human Health Risk Assessment; United States Environmental Protection Agency: Washington, DC, USA, 2008.
- Zhai, Y.; Lei, Y.; Wu, J.; Teng, Y.; Wang, J.; Zhao, X.; Pan, X. Does the groundwater nitrate pollution in China pose a risk to human health? A critical review of published data. Environ. Sci. Pollut. Res. 2017, 24, 3640–3653. [Google Scholar] [CrossRef]
- USEPA. Nitrates and Nitrites Teach Chemical Summary. Toxicity and Exposure Assessment for Children’s Health; United States Environmental Protection Agency: Washington, DC, USA, 2006.
- Batayneh, A.T. Toxic (aluminum, beryllium, boron, chromium and zinc) in groundwater: Health risk assessment. Int. J. Environ. Sci. Technol. 2012, 9, 153–162. [Google Scholar] [CrossRef]
- Rezaei, A.; Hassani, H. Hydrogeochemistry study and groundwater quality assessment in the north of Isfahan, Iran. Environ. Geochem. Health 2018, 40, 583–608. [Google Scholar] [CrossRef]
- Singh, S.K.; Srivastava, P.K.; Singh, D.; Han, D.; Gautam, S.K.; Pandey, A.C. Modeling groundwater quality over a humid subtropical region using numerical indices, earth observation datasets, and X-ray diffraction technique: A case study of Allahabad district, India. Environ. Geochem. Health 2015, 37, 157–180. [Google Scholar] [CrossRef]
- Gu, X.; Xiao, Y.; Yin, S.; Pan, X.; Niu, Y.; Shao, J.; Cui, Y.; Zhang, Q.; Hao, Q. Natural and anthropogenic factors affecting the shallow groundwater quality in a typical irrigation area with reclaimed water, North China Plain. Environ. Monit. Assess. 2017, 189, 514. [Google Scholar] [CrossRef]
- General Administration of Quality Supervision. Standards for Groundwater Quality (GB/T 14848-2017); Standards Press of China: Beijing, China, 2017. (In Chinese) [Google Scholar]
- USGS. Classification of Natural Ponds and Lakes; U.S. Department of the Interior, U.S. Geological Survey: Washington, DC, USA, 2000.
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Zhang, Y.; Wu, J.; Xu, B. Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environ. Earth Sci. 2018, 77, 273. [Google Scholar] [CrossRef]
- Ukah, B.U.; Egbueri, J.C.; Unigwe, C.O.; Ubido, O.E. Extent of heavy metals pollution and health risk assessment of groundwater in a densely populated industrial area, Lagos, Nigeria. Int. J Energy Water Resour. 2019, 3, 291–303. [Google Scholar] [CrossRef]
- Narsimha, A.; Sudarshan, V. Assessment of fluoride contamination in groundwater from Basara, Adilabad District, Telangana State, India. Appl. Water Sci. 2017, 7, 2717–2725. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Venkatesh, A.S.; Singh, R.; Udayabhanu, G.; Saha, D. Geochemical signatures and isotopic systematics constraining dynamics of fluoride contamination in groundwater across Jamui district, Indo-Gangetic alluvial plains, India. Chemosphere 2018, 205, 493–505. [Google Scholar] [CrossRef]
Exposure Parameter | Value | Composition | RfDoral (mg/(kg × day)) | |||
---|---|---|---|---|---|---|
Infants | Children | Adult Females | Adult Males | |||
EF (days/year) | 365 a | 365 a | 365 a | 365 a | NO3− | 1.6 d |
ED (years) | 0.5 b | 6 b | 30 b | 30 b | F | 0.06 c |
IR (L/day) | 0.65 b | 1.5 b | 2.66 b | 3.62 b | Fe | 0.7 a |
BW (kg) | 6.94 b | 25.9 b | 64.0 b | 73.0 b | Mn | 0.14 a |
BH (cm) | 62.1 b | 117.0 b | 163.0 b | 165.3 b | Zn | 0.3 e |
T (h/d) | 0.4 b | 0.4 b | 0.4 b | 0.4 b | ||
ABSgi | 0.5 b | 0.5 b | 0.5 b | 0.5 b | ||
EV (day) | 1 a | 1 a | 1 a | 1 a | ||
CF (L/cm3) | 0.002 b | 0.002 b | 0.002 b | 0.002 b | ||
K (cm/h) | 0.001 b | 0.001 b | 0.001 b | 0.001 b |
Index | Min | Max | Mean | SD * | Guideline | % of the Sample Exceeding the Chinese Guideline |
---|---|---|---|---|---|---|
pH | 7.3 | 8.1 | 7.7 | 0.2 | 6.5–8.5 ** | / |
TH (mg/L) | 86 | 414 | 216 | 65 | 450 ** | / |
TDS (mg/L) | 203 | 606 | 316 | 86 | 1000 ** | / |
Na+ + K+ (mg/L) | 5.3 | 165.0 | 28.9 | 37.3 | 200 **** | / |
Ca2+ (mg/L) | 20.0 | 89.2 | 53.4 | 16.0 | 75 *** | 1.3% |
Mg2+ (mg/L) | 9.1 | 32.8 | 19.5 | 8.2 | 50 *** | / |
Cl− (mg/L) | 2.4 | 61.0 | 14.8 | 12.8 | 250 ** | / |
SO42− (mg/L) | 3.8 | 86.4 | 20.2 | 19.0 | 250 ** | / |
HCO3− (mg/L) | 173 | 494 | 279 | 79 | / | / |
NO3-N(mg/L) | 0.04 | 21.80 | 5.01 | 5.11 | 10.0 *** | 11.8% |
NO2-N (mg/L) | 0.01 | 0.09 | 0.01 | 0.02 | 1.0 ** | / |
NH4-N (mg/L) | 0.02 | 0.40 | 0.12 | 0.16 | 0.5 ** | / |
F− (mg/L) | 0.12 | 1.17 | 0.39 | 0.22 | 1.0 ** | 2.6% |
Fe (mg/L) | 0.005 | 0.252 | 0.017 | 0.051 | 0.3 ** | / |
Mn (mg/L) | 0.001 | 0.173 | 0.004 | 0.022 | 0.1 ** | 1.3% |
Zn (mg/L) | 0.001 | 1.12 | 0.032 | 0.134 | 1.0 ** | 1.3% |
Population | Indexes | Dermal Contact Pathway | Drinking Water Pathway | Multiple Pathways (Oral + Dermal) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | SD | Min | Max | Mean | SD | Min | Max | Mean | SD | ||
Infants | HQNO3-N | 0.00 | 0.05 | 0.01 | 0.01 | 0.01 | 5.65 | 1.30 | 1.33 | 0.01 | 5.7 | 1.31 | 1.34 |
HQF | 0.00 | 0.05 | 0.01 | 0.01 | 0.19 | 1.83 | 0.60 | 0.34 | 0.19 | 5.35 | 0.67 | 0.64 | |
HQMn | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.00 | 0.02 | 0.00 | 0.12 | 0.00 | 0.02 | |
HQZn | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.35 | 0.01 | 0.04 | 0.00 | 0.35 | 0.01 | 0.04 | |
HI | 0.00 | 0.05 | 0.02 | 0.01 | 0.42 | 6.08 | 1.98 | 1.29 | 0.42 | 6.14 | 1.99 | 1.36 | |
Children | HQNO3-N | 0.00 | 0.03 | 0.01 | 0.01 | 0.01 | 3.49 | 0.80 | 0.82 | 0.01 | 3.53 | 0.81 | 0.83 |
HQF | 0.00 | 0.03 | 0.00 | 0.00 | 0.12 | 1.13 | 0.37 | 0.21 | 0.12 | 3.31 | 0.41 | 0.40 | |
HQMn | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.01 | 0.00 | 0.07 | 0.00 | 0.01 | |
HQZn | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.22 | 0.01 | 0.03 | 0.00 | 0.22 | 0.01 | 0.03 | |
HI | 0.00 | 0.04 | 0.01 | 0.01 | 0.26 | 3.76 | 1.19 | 0.80 | 0.26 | 3.8 | 1.23 | 0.84 | |
Females | HQNO3-N | 0.00 | 0.03 | 0.01 | 0.01 | 0.00 | 2.51 | 0.58 | 0.59 | 0.00 | 2.53 | 0.58 | 0.59 |
HQF | 0.00 | 0.02 | 0.00 | 0.00 | 0.08 | 0.81 | 0.27 | 0.15 | 0.08 | 2.38 | 0.30 | 0.29 | |
HQMn | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.01 | 0.00 | 0.05 | 0.00 | 0.01 | |
HQZn | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.16 | 0.00 | 0.02 | 0.00 | 0.16 | 0.00 | 0.02 | |
HI | 0.00 | 0.03 | 0.01 | 0.01 | 0.19 | 2.7 | 0.86 | 0.57 | 0.19 | 2.73 | 0.89 | 0.60 | |
Males | HQNO3-N | 0.00 | 0.02 | 0.01 | 0.01 | 0.01 | 2.99 | 0.69 | 0.7 | 0.01 | 2.53 | 0.58 | 0.59 |
HQF | 0.00 | 0.02 | 0.00 | 0.01 | 0.10 | 0.97 | 0.32 | 0.18 | 0.1 | 2.83 | 0.35 | 0.34 | |
HQMn | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.01 | 0.00 | 0.06 | 0.00 | 0.01 | |
HQZn | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.19 | 0.01 | 0.02 | 0.00 | 0.19 | 0.01 | 0.02 | |
HI | 0.00 | 0.03 | 0.01 | 0.01 | 0.22 | 3.22 | 1.02 | 0.68 | 0.22 | 3.25 | 1.06 | 0.71 |
Index | pH | TH | TDS | Na++K+ | Ca2+ | Mg2+ | Cl− | SO42- | HCO3− | NO3− | NO2− | NH4+ | F− | Mn | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | ||||||||||||||
TH | −0.54 * | 1 | |||||||||||||
TDS | −0.45 | 0.96 * | 1 | ||||||||||||
Na+ + K+ | −0.17 | 0.24 | 0.18 | 1 | |||||||||||
Ca2+ | −0.02 | 0.02 | −0.01 | −0.66 * | 1 | ||||||||||
Mg2+ | −0.31 | 0.39 | 0.33 | −0.44 | 0.78 * | 1 | |||||||||
Cl− | −0.36 | 0.86 * | 0.94 * | 0.03 | 0.05 | 0.30 | 1 | ||||||||
SO42− | 0.10 | 0.44 | 0.59 * | 0.16 | −0.14 | −0.20 | 0.56 * | 1 | |||||||
HCO3− | −0.44 | 0.45 | 0.32 | 0.69 * | 0.03 | 0.25 | 0.12 | −0.03 | 1 | ||||||
NO3− | −0.38 | 0.79 * | 0.83 * | 0.12 | −0.08 | 0.18 | 0.89 * | 0.46 | 0.09 | 1 | |||||
NO2− | −0.42 | 0.00 | −0.05 | −0.14 | 0.23 | 0.41 | −0.18 | −0.13 | 0.14 | −0.21 | 1 | ||||
NH4+ | −0.19 | 0.30 | 0.23 | 0.94 * | −0.54 * | −0.31 | 0.10 | 0.13 | 0.70 * | 0.17 | −0.07 | 1 | |||
F− | 0.48 | −0.49 | −0.31 | −0.20 | −0.20 | −0.46 | −0.28 | 0.41 | −0.57 * | −0.27 | −0.02 | −0.27 | 1 | ||
Mn | 0.57 * | −0.29 | −0.11 | −0.02 | −0.05 | −0.14 | −0.11 | 0.39 | −0.15 | −0.32 | −0.10 | −0.09 | 0.62 * | 1 | |
Zn | −0.27 | 0.18 | 0.13 | 0.36 | −0.24 | −0.31 | 0.03 | 0.22 | 0.19 | 0.19 | −0.13 | 0.25 | −0.07 | −0.17 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, S.; Xiao, Y.; Han, P.; Hao, Q.; Gu, X.; Men, B.; Huang, L. Investigation of Groundwater Contamination and Health Implications in a Typical Semiarid Basin of North China. Water 2020, 12, 1137. https://doi.org/10.3390/w12041137
Yin S, Xiao Y, Han P, Hao Q, Gu X, Men B, Huang L. Investigation of Groundwater Contamination and Health Implications in a Typical Semiarid Basin of North China. Water. 2020; 12(4):1137. https://doi.org/10.3390/w12041137
Chicago/Turabian StyleYin, Shiyang, Yong Xiao, Pengli Han, Qichen Hao, Xiaomin Gu, Baohui Men, and Linxian Huang. 2020. "Investigation of Groundwater Contamination and Health Implications in a Typical Semiarid Basin of North China" Water 12, no. 4: 1137. https://doi.org/10.3390/w12041137
APA StyleYin, S., Xiao, Y., Han, P., Hao, Q., Gu, X., Men, B., & Huang, L. (2020). Investigation of Groundwater Contamination and Health Implications in a Typical Semiarid Basin of North China. Water, 12(4), 1137. https://doi.org/10.3390/w12041137