Model of Nutrient and Pesticide Outflow with Surface Water to Puck Bay (Southern Baltic Sea)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. WaterPUCK
2.3. SWAT Model
2.4. Water Balance
2.5. Calibration and Sensitivity Analysis of the Hydrological Model
2.6. Pesticides
2.7. Nutrients
- for top 10mm wmob = Qsurf + Qlat+ wperc
- for lower layers wmob = Qsurf + wperc
2.8. Field Measurements
2.9. Calculation Scenarios
3. Results and Discussion
3.1. Pesticides
3.2. Nutrient
3.3. WaterPuck Prediction and Information Service
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nausch, G.; Aertebjerg, G. Anthropogenic Nutrient Load of the Baltic Sea. Limnologica 1999, 29, 233–241. [Google Scholar] [CrossRef]
- San, P.; Rahm, L. Nutrient Trends in the Baltic Sea. Environmetrics 1993, 4, 75–103. [Google Scholar] [CrossRef]
- Council Directive. Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources (91/676/EEC). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991L0676&from=EN (accessed on 15 December 2019).
- Granéli, E.; Wallström, K.; Larsson, U.; Granéli, W.; Elmgren, R. Nutrient limitation of primary production in the Baltic Sea Area. AMBIO 1990, 19, 142–151. [Google Scholar]
- Velthof, G.L.; Lesschen, J.P.; Webb, J.; Pietrzak, S.; Miatkowski, Z.; Pinto, M.; Kros, J.; Oenema, O. Effects of implementation of nitrates directive on nitrogen emissions in the European Union. Sci. Total Environ. 2014, 468–469, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.H.; Fossing, H.; Hansen, J.W.; Manscher, O.H.; Murray, C.; Petersen, D.L. Nitrogen inputs from agriculture: Towards better assessments of eutrophication status in marine waters. Ambio 2014, 43, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cvetkovic, V.; Destouni, G. Scenarios of Nutrient-Related Solute Loading and Transport Fate from Different Land Catchments and Coasts into the Baltic Sea. Water 2019, 11, 1407. [Google Scholar] [CrossRef]
- Murray, C.J.; Muller-Karulis, B.; Carstensen, J.; Conley, D.J.; Gustafsson, B.; Andersen, J.H. Past, Present and Future Eutrophication Status of the Baltic Sea. Front. Mar. Sci. 2019, 6, 2. [Google Scholar] [CrossRef]
- Węsławski, J.M.; Kryla-Straszewska, L.; Piwowarczyk, J.; Urbański, J.; Warzocha, J.; Kotwicki, L.; Włodarska-Kowalczuk, M.; Wiktor, J. Habitat modelling limitations—Puck Bay, Baltic Sea—A case study. Oceanologia 2013, 55, 167–183. [Google Scholar] [CrossRef]
- Zima, P. Simulation of the impact of pollution discharged by surface waters from agricultural areas on the water quality of Puck Bay, Baltic Sea. Euro-Mediterr. J. Environ. Integr. 2019, 4, 16. [Google Scholar] [CrossRef]
- Carstensen, J.; Conley, D.J.; Almroth-Rosell, E.; Asmala, E.; Bonsdorff, E.; Fleming-Lehtinen, V.; Gustafsson, B.G.; Gustafsson, C.; Heiskanen, A.S.; Janas, U.; et al. Factors regulating the coastal nutrient filter in the Baltic Sea. Ambio 2019. [Google Scholar] [CrossRef]
- Kruk-Dowgiałło, L.; Szaniawska, A. Gulf of Gdańsk and Puck Bay. In Ecology of Baltic Coastal Waters. Ecological Studies (Analysis and Synthesis); Springer: Berlin/Heidelberg, Germany, 2008; pp. 139–165. [Google Scholar]
- Pędziński, J.; Witak, M. Evidence of cultural eutrophication of the Gulf of Gdańsk based on diatom analysis. Oceanol. Hydrobiol. Stud. 2019, 48, 247–261. [Google Scholar] [CrossRef]
- Piniewski, M.; Kardel, I.; Giełczewski, M.; Marcinkowski, P.; Okruszko, T. Adapting Polish Agriculture to Reduce Future Nutrient Loads in a Coastal Watershed. Ambio 2014, 43, 644–660. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowska, E.; Nawrot, N.; Matej-Łukowicz, K.; Gajewska, M.; Obarska-Pempkowiak, H. Seasonal changes of the concentrations of mineral forms of nitrogen and phosphorus in watercourses in the agricultural catchment area (Bay of Puck, Baltic Sea, Poland). Water Supply 2019, 19, 986–994. [Google Scholar] [CrossRef]
- Wojciechowska, E.; Pietrzak, S.; Matej-Łukowicz, K.; Nawrot, N.; Zima, P.; Kalinowska, D.; Wielgat, P.; Obarska-Pempkowiak, H.; Gajewska, M.; Dembska, G.; et al. Nutrient loss from three small-size watersheds in the southern Baltic Sea in relation to agricultural practices and policy. J. Environ. Manag. 2019, 252, 109637. [Google Scholar] [CrossRef]
- Potrykus, D.; Gumuła-Kawęcka, A.; Jaworska-Szulc, B.; Pruszkowska-Caceres, M.; Szymkiewicz, A. Assessing groundwater vulnerability to pollution in the Puck region (denudation moraine upland) using vertical seepage method. E3S Web Conf. 2018, 44, 147. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Recknagel, F.; Meyer, W. Effects of projected urbanization and climate change on flow and nutrient loads of a Mediterranean catchment in South Australia. Ecohydrol. Hydrobiol. 2019, 19, 279–288. [Google Scholar] [CrossRef]
- Tamm, O.; Maasikamäe, S.; Padari, A.; Tamm, T. Modelling the effects of land use and climate change on the water resources in the eastern Baltic Sea region using the SWAT model. Catena 2018, 167, 78–89. [Google Scholar] [CrossRef]
- Ballard, T.C.; Sinha, E.; Michalak, A.M. Long-term Changes in Precipitation and Temperature Have Already Impacted Nitrogen Loading. Environ. Sci. Technol. 2019, 53, 5080–5090. [Google Scholar] [CrossRef]
- Donnelly, C.; Yang, W.; Dahné, J. River discharge to the Baltic Sea in a future climate. Clim. Chang. 2014, 122, 157–170. [Google Scholar] [CrossRef]
- Smith, R.; Gent, P. Reference Manual for the Parallel Ocean Program (POP); Los Alamos National Lab: Los Alamos, NM, USA, 2004.
- Dzierzbicka-Glowacka, L.; Janecki, M.; Szymczycha, B.; Dybowski, D.; Nowicki, A.; Kłostowska, Ż.; Obarska-Pempkowiak, H.; Zima, P.; Jaworska-Szulc, B.; Jakacki, J.; et al. Integrated Information and Prediction Web Service WaterPUCK General Concept. MATEC Web Conf. 2018, 210, 2011. [Google Scholar] [CrossRef][Green Version]
- Interdisciplinary Centre for Mathematical and Computationalof Modelling UW, Weather Forecast. Available online: http://www.meteo.pl/index_en.php (accessed on 15 December 2019).
- Web Services WaterPuck. Available online: https://waterpuck.pl/en/start.html (accessed on 15 December 2019).
- Sun, C.; Ren, L. Assessing crop yield and crop water productivity and optimizing irrigation scheduling of winter wheat and summer maize in the Haihe plain using SWAT model. Hydrol. Process. 2014, 28, 2478–2498. [Google Scholar] [CrossRef]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Input/Output Documentation Version 2012 Soil & Water Assessment Tool; Texas Water Resources Institute: College Station, TX, USA, 2012. [Google Scholar]
- Institute of Meteorology and Water Management, Measurement and Observational Data. Available online: https://danepubliczne.imgw.pl/ (accessed on 15 December 2019).
- Kalinowska, D.; Wielgat, P.; Kolerski, T.; Zima, P. Effect of GIS parameters on modelling runoff from river basin. The case study of catchment in the Puck District. E3S Web Conf. 2018, 63, 5. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Cao, W.; Bowden, W.B.; Davie, T.; Fenemor, A. Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability. Hydrol. Process. 2006, 20, 1057–1073. [Google Scholar] [CrossRef]
- Mengistu, A.G.; van Rensburg, L.D.; Woyessa, Y.E. Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa. J. Hydrol. Reg. Stud. 2019, 25, 100621. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, X.; Yao, H.; Lin, B. Improved calibration scheme of SWAT by separating wet and dry seasons. Ecol. Model. 2015, 301, 54–61. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Wiliams, J.R. Soil and Water Assessment Tool, Theoretical Documentation, Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2009; Available online: https://swat.tamu.edu/media/99192/swat2009-theory.pdf (accessed on 15 December 2019).
- Pazikowska-Sapota, G.; Galer-Tatarowicz, K.; Dembska, G.; Wojtkiwicz, M.; Duljas, E.; Pietrzak, S.; Dzierzbicka-Glowacka, L. The impact of pesticides used at the agricultural land of the Puck commune on the environment of the Puck Bay. PeerJ 2020. under review. [Google Scholar]
- Elmgren, R.; Larsson, U. Nitrogen and the Baltic Sea: Managing Nitrogen in Relation to Phosphorus. Sci. World J. 2001, 1, 371–377. [Google Scholar] [CrossRef]
- Stepanauskas, R.; JØrgensen, N.O.; Eigaard, O.R.; Žvikas, A.; Tranvik, L.J.; Leonardson, L. Summer Inputs of Riverine Nutrients to the Baltic Sea: Bioavailability and eutrophication relevance. Ecol. Monogr. 2002, 72, 579–597. [Google Scholar] [CrossRef]
Watercourse | Flow Range during Measurements | MQmean | Qmax1% | Qmax50% | MQmin | Qmin1% | Qmin50% |
---|---|---|---|---|---|---|---|
(m3/s) | |||||||
Płutnica | 0.05–0.75 | 0.60 | 8.50 | 4.34 | 0.26 | 0.06 | 0.21 |
Gizdepka | 0.06–0.79 | 0.22 | 3.10 | 1.58 | 0.09 | 0.02 | 0.08 |
Reda | 3.86–6.56 | 4.03 | 50.33 | 25.67 | 1.51 | 0.38 | 1.26 |
Plant | Pesticide | Dose (kg/ha) | Applied (kg/ha) | Surface Runoff (mg/ha) | Final on Plant (mg/ha) | To the Baltic Sea (mg/ha) | In the Ground (mg/ha) | |
---|---|---|---|---|---|---|---|---|
Dissolved | Sorbed | |||||||
Polish canola | Roundup | 1.08 | 0.41 | 289 | 3754 | 0 | 0 | 0.03 |
Winter wheat | Diflufenican | 0.11 | 0.04 | 759 | 515 | 35 | 0 | 0.09 |
Winter triticale | Diflufenican | 0.11 | 0.04 | 759 | 515 | 35 | 0 | 0.09 |
Monthly Sum of Precipitation (mm) | |||
---|---|---|---|
Month | 2017 | 2018 | The Multi-Year Average |
1 | 59 | 53 | 90 |
2 | 69 | 33 | 68 |
3 | 61 | 32 | 51 |
4 | 86 | 44 | 46 |
5 | 27 | 8 | 37 |
6 | 82 | 49 | 68 |
7 | 176 | 32 | 102 |
8 | 45 | 69 | 72 |
9 | 124 | 41 | 66 |
10 | 109 | 34 | 57 |
11 | 62 | 22 | 66 |
12 | 92 | 90 | 74 |
sum | 993 | 506 | 797 |
Year | Annual Sum of Precipitation (mm) | NO3 Surface-Runoff | NO3 Taken by Plants |
---|---|---|---|
2017 | 993 | 1.43 | 158.28 |
2018 | 506 | 0.54 | 181.85 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalinowska, D.; Wielgat, P.; Kolerski, T.; Zima, P. Model of Nutrient and Pesticide Outflow with Surface Water to Puck Bay (Southern Baltic Sea). Water 2020, 12, 809. https://doi.org/10.3390/w12030809
Kalinowska D, Wielgat P, Kolerski T, Zima P. Model of Nutrient and Pesticide Outflow with Surface Water to Puck Bay (Southern Baltic Sea). Water. 2020; 12(3):809. https://doi.org/10.3390/w12030809
Chicago/Turabian StyleKalinowska, Dominika, Paweł Wielgat, Tomasz Kolerski, and Piotr Zima. 2020. "Model of Nutrient and Pesticide Outflow with Surface Water to Puck Bay (Southern Baltic Sea)" Water 12, no. 3: 809. https://doi.org/10.3390/w12030809
APA StyleKalinowska, D., Wielgat, P., Kolerski, T., & Zima, P. (2020). Model of Nutrient and Pesticide Outflow with Surface Water to Puck Bay (Southern Baltic Sea). Water, 12(3), 809. https://doi.org/10.3390/w12030809