Hydrometallurgical Recovery of Cr(III) from Tannery Waste: Optimization and Selectivity Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tannery Sludge
2.2. Leaching Experiments
2.3. Precipitation Experiments
2.4. Precipitate Characterization
3. Results and Discussion
3.1. Tannery Sludge Characterization
3.2. Extraction/Leaching of Cr(III)
3.3. Selectivity
3.4. Effect of Major Experimental Conditions
3.5. Precipitation
3.6. Precipitate Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- European Union. 2013/84/EU. Commission Implementing Decision οf 11 February 2013 Establishing the Best Available Techniques (BAT) Conclusions under Directive 2010/75/EU of the European Parliament and of the Council on Industrial Emissions for the Tanning of Hides and Skins; European Union: Brussels, Belgium, 2013; Available online: http://data.europa.eu/eli/dec_impl/2013/84/oj (accessed on 21 December 2019).
- Awual, M.R. Innovative composite material for efficient and highly selective Pb(II) ion capturing from wastewater. J. Mol. Liq. 2019, 284, 502–510. [Google Scholar] [CrossRef]
- Karim, M.R.; Aijaz, M.O.; Alharth, N.H.; Alharbi, H.F.; Al-Mubaddel, F.S.; Awual, M.R. Composite nanofibers membranes of poly(vinyl alcohol)/chitosan for selective lead(II) and cadmium(II) ions removal from wastewater. Ecotoxicol. Environ. Saf. 2019, 169, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.R.; Zhang, G.; Fang, J.; Dou, X. Enhanced chromium recovery from tanning wastewater. J. Clean. Prod. 2006, 14, 75–79. [Google Scholar] [CrossRef]
- Ramírez-Estrada, A.; Mena-Cervantes, V.Y.; Fuentes-García, J.; Vazquez-Arenas, J.; Palma-Goyes, R.; Flores-Vela, A.I.; Vazquez-Medina, R.; Altamirano, R.H. Cr(III) removal from synthetic and real tanning effluents using an electro-precipitation method. J. Environ. Chem. Eng. 2018, 6, 1219–1225. [Google Scholar] [CrossRef]
- Fabbricino, M.; Naviglio, B.; Tortora, G.; D’Antonio, L. An environmental friendly cycle for Cr(III) removal and recovery from tannery wastewater. J. Environ. Manag. 2013, 117, 1–6. [Google Scholar] [CrossRef]
- Hintermeyer, B.H.; Lacour, N.A.; Perez Padilla, A.; Tavani, E.L. Separation of the chromium(III) present in a tanning wastewater by means of precipitation, reverse osmosis and adsorption. Lat. Am. Appl. Res. 2008, 38, 63–71. [Google Scholar]
- Sahu, S.K.; Meshram, P.; Pandey, B.D.; Kumar, V.; Mankhand, T.R. Removal of chromium(III) by cation exchange resin, Indion 790 for tannery waste treatment. Hydrometallurgy 2009, 99, 170–174. [Google Scholar] [CrossRef]
- Religa, P.; Kowalik, A.; Gierycz, P. Application of nanofiltration for chromium concentration in the tannery wastewater. J. Hazard. Mater. 2011, 186, 288–292. [Google Scholar] [CrossRef]
- Galiana-Aleixandre, M.V.; Mendoza-Roca, J.A.; Bes-Pia, A. Reducing sulfates concentration in the tannery effluent by applying pollution prevention techniques and nanofiltration. J. Clean. Prod. 2011, 19, 91–98. [Google Scholar] [CrossRef]
- Selvaraj, R.; Santhanam, M.; Selvamani, V.; Sundaramoorthy, S.; Sundaram, M. A membrane electroflotation process for recovery of recyclable chromium(III) from tannery spent liquor effluent. J. Hazard. Mater. 2018, 316, 169–177. [Google Scholar] [CrossRef]
- Mella, B.; Glanert, A.C.; Gutterres, M. Removal of chromium from tanning wastewater and its reuse. Process Saf. Environ. Prot. 2015, 95, 195–201. [Google Scholar] [CrossRef]
- Vignati, D.A.L.; Ferrari, B.J.D.; Roulier, J.L.; Coquery, M.; Szalinska, E.; Bobrowski, A.; Czaplicka, A.; Kownacki, A.; Dominik, J. Chromium bioavailability in aquatic systems impacted by tannery wastewaters. Part 1: Understanding chromium accumulation by indigenous chironomids. Sci. Total Environ. 2019, 653, 401–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, K.; Sahu, O. Bioadsorption and membrane technology for reduction and recovery of chromium from tannery industry wastewater. Environ. Technol. Innov. 2015, 4, 150–158. [Google Scholar] [CrossRef]
- Ahmed, E.; Abdulla, H.M.; Mohamed, A.H.; El-Bassuony, A.D. Remediation and recycling of chromium from tannery wastewater using combined chemical–biological treatment system. Process Saf. Environ. Prot. 2016, 104, 1–10. [Google Scholar] [CrossRef]
- Saxena, G.; Chandra, R.; Bharagava, R.N. Environmental Pollution, Toxicity Profile and Treatment Approaches for Tannery Wastewater and Its Chemical Pollutants. In Reviews of Environmental Contamination and Toxicology (Continuation of Residue Reviews); De Voogt, P., Ed.; Springer: Cham, Switzerland, 2016; Volume 240. [Google Scholar] [CrossRef]
- UNIDO. Introduction to Treatment of Tannery Effluents; United Nations Industrial Development Organization: Vienna, Austria, 2011. [Google Scholar]
- Babel, S.; Del Mundo Dacera, D. Heavy metal removal from contaminated sludge for land application: A review. Waste Manag. 2006, 26, 988–1004. [Google Scholar] [CrossRef]
- Raguraman, R.; Sailo, L. Efficient chromium recovery from tannery sludge for sustainable management. Int. J. Environ. Sci. Technol. 2017, 14, 1473–1480. [Google Scholar] [CrossRef]
- Kilic, E.; Font, J.; Puig, R.; Çolak, S.; Çelik, D. Chromium recovery from tannery sludge with saponin and oxidative remediation. J. Hazard. Mater. 2011, 185, 456–462. [Google Scholar] [CrossRef]
- Zeng, J.; Gou, M.; Tang, Y.Q.; Li, G.Y.; Sun, Z.Y.; Kida, K. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community. Bioresour. Technol. 2016, 218, 859–866. [Google Scholar] [CrossRef]
- Ma, H.; Zhou, J.; Hua, L.; Cheng, F.; Zhou, L.; Qiao, X. Chromium recovery from tannery sludge by bioleaching and its reuse in tanning process. J. Clean. Prod. 2017, 142, 2752–2760. [Google Scholar] [CrossRef]
- Prakash, P.; Chakraborty, P.K.; Priya, T.; Mishra, B.K. Performance evaluation of saponin over other organic acid and tap water for removal of chromium in tannery sludge by electrokinetic enhancement. Sep. Sci. Technol. 2019, 54, 173–182. [Google Scholar] [CrossRef]
- Zou, D.; Chi, Y.; Dong, J.; Fu, C.; Wang, F.; Ni, M. Supercritical water oxidation of tannery sludge: Stabilization of chromium and destruction of organics. Chemosphere 2013, 93, 1413–1418. [Google Scholar] [CrossRef]
- Kokkinos, E.; Proskynitopoulou, V.; Zouboulis, A. Chromium and energy recovery from tannery wastewater treatment waste: Investigation of major mechanisms in the framework of circular economy. J. Environ. Chem. Eng. 2019, 7, 103307–103313. [Google Scholar] [CrossRef]
- Jiang, W.; Xu, X.; Lin, L.; Wang, H.; Shaw, R.; Lucero, D.; Xu, P. A Pilot Study of an Electromagnetic Field for Control of Reverse Osmosis Membrane Fouling and Scaling During Brackish Groundwater Desalination. Water 2019, 11, 1015. [Google Scholar] [CrossRef] [Green Version]
- Merdhah, A.B.B.; Yassin, A.A.M. Laboratory Study and Prediction of Calcium Sulphate at High-Salinity Formation Water. Open Pet. Eng. J. 2008, 1, 62–73. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Implementing Decision (EU) 2018/1147 of 10 August 2018 Establishing Best Available Techniques (BAT) Conclusions for Waste Treatment, under Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on Industrial Emissions was Published in the Official Journal on 17 August 2018; European Commission: Brussels, Belgium, 2018; Available online: http://data.europa.eu/eli/dec_impl/2018/1147/oj (accessed on 21 December 2019).
- European Commission. Best Available Techniques Reference Document (BREF) for the Production of Speciality Inorganic Chemicals (SIC), August 2007; European Commission: Brussels, Belgium, 2007; Available online: https://eippcb.jrc.ec.europa.eu/sites/default/files/2019-11/sic_bref_0907.pdf (accessed on 21 December 2019).
- Minas, F.; Chandravanshi, B.S.; Leta, S. Chemical precipitation method for chromium removal and its recovery from tannery wastewater in Ethiopia. Chem. Int. 2017, 3, 291–305. [Google Scholar]
- Wang, D.; He, S.; Shan, C.; Ye, Y.; Ma, H.; Zhang, X.; Zhang, W.; Pan, B. Chromium speciation in tannery effluent after alkaline precipitation: Isolation and characterization. J. Hazard. Mater. 2016, 316, 169–177. [Google Scholar] [CrossRef]
- Joint Center for Powder Diffraction Studies (JCPDS). Powder Diffraction File; International Centre for Diffraction Data: Newtown Square, PA, USA, 2004. [Google Scholar]
Moisture | Organic Carbon | Inorganic Carbon | Ca | Cr(III) | Mg | pH | Conductivity |
---|---|---|---|---|---|---|---|
% | mS/cm | ||||||
11 | 12.2 | 3.1 | 14.8 | 14.1 | 2.4 | 9.1 | 0.96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokkinos, E.; Zouboulis, A. Hydrometallurgical Recovery of Cr(III) from Tannery Waste: Optimization and Selectivity Investigation. Water 2020, 12, 719. https://doi.org/10.3390/w12030719
Kokkinos E, Zouboulis A. Hydrometallurgical Recovery of Cr(III) from Tannery Waste: Optimization and Selectivity Investigation. Water. 2020; 12(3):719. https://doi.org/10.3390/w12030719
Chicago/Turabian StyleKokkinos, Evgenios, and Anastasios Zouboulis. 2020. "Hydrometallurgical Recovery of Cr(III) from Tannery Waste: Optimization and Selectivity Investigation" Water 12, no. 3: 719. https://doi.org/10.3390/w12030719
APA StyleKokkinos, E., & Zouboulis, A. (2020). Hydrometallurgical Recovery of Cr(III) from Tannery Waste: Optimization and Selectivity Investigation. Water, 12(3), 719. https://doi.org/10.3390/w12030719