Hydrometallurgical Recovery of Cr(III) from Tannery Waste: Optimization and Selectivity Investigation
Abstract
1. Introduction
2. Materials and Methods
2.1. Tannery Sludge
2.2. Leaching Experiments
2.3. Precipitation Experiments
2.4. Precipitate Characterization
3. Results and Discussion
3.1. Tannery Sludge Characterization
3.2. Extraction/Leaching of Cr(III)
3.3. Selectivity
3.4. Effect of Major Experimental Conditions
3.5. Precipitation
3.6. Precipitate Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- European Union. 2013/84/EU. Commission Implementing Decision οf 11 February 2013 Establishing the Best Available Techniques (BAT) Conclusions under Directive 2010/75/EU of the European Parliament and of the Council on Industrial Emissions for the Tanning of Hides and Skins; European Union: Brussels, Belgium, 2013; Available online: http://data.europa.eu/eli/dec_impl/2013/84/oj (accessed on 21 December 2019).
- Awual, M.R. Innovative composite material for efficient and highly selective Pb(II) ion capturing from wastewater. J. Mol. Liq. 2019, 284, 502–510. [Google Scholar] [CrossRef]
- Karim, M.R.; Aijaz, M.O.; Alharth, N.H.; Alharbi, H.F.; Al-Mubaddel, F.S.; Awual, M.R. Composite nanofibers membranes of poly(vinyl alcohol)/chitosan for selective lead(II) and cadmium(II) ions removal from wastewater. Ecotoxicol. Environ. Saf. 2019, 169, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.R.; Zhang, G.; Fang, J.; Dou, X. Enhanced chromium recovery from tanning wastewater. J. Clean. Prod. 2006, 14, 75–79. [Google Scholar] [CrossRef]
- Ramírez-Estrada, A.; Mena-Cervantes, V.Y.; Fuentes-García, J.; Vazquez-Arenas, J.; Palma-Goyes, R.; Flores-Vela, A.I.; Vazquez-Medina, R.; Altamirano, R.H. Cr(III) removal from synthetic and real tanning effluents using an electro-precipitation method. J. Environ. Chem. Eng. 2018, 6, 1219–1225. [Google Scholar] [CrossRef]
- Fabbricino, M.; Naviglio, B.; Tortora, G.; D’Antonio, L. An environmental friendly cycle for Cr(III) removal and recovery from tannery wastewater. J. Environ. Manag. 2013, 117, 1–6. [Google Scholar] [CrossRef]
- Hintermeyer, B.H.; Lacour, N.A.; Perez Padilla, A.; Tavani, E.L. Separation of the chromium(III) present in a tanning wastewater by means of precipitation, reverse osmosis and adsorption. Lat. Am. Appl. Res. 2008, 38, 63–71. [Google Scholar]
- Sahu, S.K.; Meshram, P.; Pandey, B.D.; Kumar, V.; Mankhand, T.R. Removal of chromium(III) by cation exchange resin, Indion 790 for tannery waste treatment. Hydrometallurgy 2009, 99, 170–174. [Google Scholar] [CrossRef]
- Religa, P.; Kowalik, A.; Gierycz, P. Application of nanofiltration for chromium concentration in the tannery wastewater. J. Hazard. Mater. 2011, 186, 288–292. [Google Scholar] [CrossRef]
- Galiana-Aleixandre, M.V.; Mendoza-Roca, J.A.; Bes-Pia, A. Reducing sulfates concentration in the tannery effluent by applying pollution prevention techniques and nanofiltration. J. Clean. Prod. 2011, 19, 91–98. [Google Scholar] [CrossRef]
- Selvaraj, R.; Santhanam, M.; Selvamani, V.; Sundaramoorthy, S.; Sundaram, M. A membrane electroflotation process for recovery of recyclable chromium(III) from tannery spent liquor effluent. J. Hazard. Mater. 2018, 316, 169–177. [Google Scholar] [CrossRef]
- Mella, B.; Glanert, A.C.; Gutterres, M. Removal of chromium from tanning wastewater and its reuse. Process Saf. Environ. Prot. 2015, 95, 195–201. [Google Scholar] [CrossRef]
- Vignati, D.A.L.; Ferrari, B.J.D.; Roulier, J.L.; Coquery, M.; Szalinska, E.; Bobrowski, A.; Czaplicka, A.; Kownacki, A.; Dominik, J. Chromium bioavailability in aquatic systems impacted by tannery wastewaters. Part 1: Understanding chromium accumulation by indigenous chironomids. Sci. Total Environ. 2019, 653, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, K.; Sahu, O. Bioadsorption and membrane technology for reduction and recovery of chromium from tannery industry wastewater. Environ. Technol. Innov. 2015, 4, 150–158. [Google Scholar] [CrossRef]
- Ahmed, E.; Abdulla, H.M.; Mohamed, A.H.; El-Bassuony, A.D. Remediation and recycling of chromium from tannery wastewater using combined chemical–biological treatment system. Process Saf. Environ. Prot. 2016, 104, 1–10. [Google Scholar] [CrossRef]
- Saxena, G.; Chandra, R.; Bharagava, R.N. Environmental Pollution, Toxicity Profile and Treatment Approaches for Tannery Wastewater and Its Chemical Pollutants. In Reviews of Environmental Contamination and Toxicology (Continuation of Residue Reviews); De Voogt, P., Ed.; Springer: Cham, Switzerland, 2016; Volume 240. [Google Scholar] [CrossRef]
- UNIDO. Introduction to Treatment of Tannery Effluents; United Nations Industrial Development Organization: Vienna, Austria, 2011. [Google Scholar]
- Babel, S.; Del Mundo Dacera, D. Heavy metal removal from contaminated sludge for land application: A review. Waste Manag. 2006, 26, 988–1004. [Google Scholar] [CrossRef]
- Raguraman, R.; Sailo, L. Efficient chromium recovery from tannery sludge for sustainable management. Int. J. Environ. Sci. Technol. 2017, 14, 1473–1480. [Google Scholar] [CrossRef]
- Kilic, E.; Font, J.; Puig, R.; Çolak, S.; Çelik, D. Chromium recovery from tannery sludge with saponin and oxidative remediation. J. Hazard. Mater. 2011, 185, 456–462. [Google Scholar] [CrossRef]
- Zeng, J.; Gou, M.; Tang, Y.Q.; Li, G.Y.; Sun, Z.Y.; Kida, K. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community. Bioresour. Technol. 2016, 218, 859–866. [Google Scholar] [CrossRef]
- Ma, H.; Zhou, J.; Hua, L.; Cheng, F.; Zhou, L.; Qiao, X. Chromium recovery from tannery sludge by bioleaching and its reuse in tanning process. J. Clean. Prod. 2017, 142, 2752–2760. [Google Scholar] [CrossRef]
- Prakash, P.; Chakraborty, P.K.; Priya, T.; Mishra, B.K. Performance evaluation of saponin over other organic acid and tap water for removal of chromium in tannery sludge by electrokinetic enhancement. Sep. Sci. Technol. 2019, 54, 173–182. [Google Scholar] [CrossRef]
- Zou, D.; Chi, Y.; Dong, J.; Fu, C.; Wang, F.; Ni, M. Supercritical water oxidation of tannery sludge: Stabilization of chromium and destruction of organics. Chemosphere 2013, 93, 1413–1418. [Google Scholar] [CrossRef]
- Kokkinos, E.; Proskynitopoulou, V.; Zouboulis, A. Chromium and energy recovery from tannery wastewater treatment waste: Investigation of major mechanisms in the framework of circular economy. J. Environ. Chem. Eng. 2019, 7, 103307–103313. [Google Scholar] [CrossRef]
- Jiang, W.; Xu, X.; Lin, L.; Wang, H.; Shaw, R.; Lucero, D.; Xu, P. A Pilot Study of an Electromagnetic Field for Control of Reverse Osmosis Membrane Fouling and Scaling During Brackish Groundwater Desalination. Water 2019, 11, 1015. [Google Scholar] [CrossRef]
- Merdhah, A.B.B.; Yassin, A.A.M. Laboratory Study and Prediction of Calcium Sulphate at High-Salinity Formation Water. Open Pet. Eng. J. 2008, 1, 62–73. [Google Scholar] [CrossRef][Green Version]
- European Commission. Implementing Decision (EU) 2018/1147 of 10 August 2018 Establishing Best Available Techniques (BAT) Conclusions for Waste Treatment, under Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on Industrial Emissions was Published in the Official Journal on 17 August 2018; European Commission: Brussels, Belgium, 2018; Available online: http://data.europa.eu/eli/dec_impl/2018/1147/oj (accessed on 21 December 2019).
- European Commission. Best Available Techniques Reference Document (BREF) for the Production of Speciality Inorganic Chemicals (SIC), August 2007; European Commission: Brussels, Belgium, 2007; Available online: https://eippcb.jrc.ec.europa.eu/sites/default/files/2019-11/sic_bref_0907.pdf (accessed on 21 December 2019).
- Minas, F.; Chandravanshi, B.S.; Leta, S. Chemical precipitation method for chromium removal and its recovery from tannery wastewater in Ethiopia. Chem. Int. 2017, 3, 291–305. [Google Scholar]
- Wang, D.; He, S.; Shan, C.; Ye, Y.; Ma, H.; Zhang, X.; Zhang, W.; Pan, B. Chromium speciation in tannery effluent after alkaline precipitation: Isolation and characterization. J. Hazard. Mater. 2016, 316, 169–177. [Google Scholar] [CrossRef]
- Joint Center for Powder Diffraction Studies (JCPDS). Powder Diffraction File; International Centre for Diffraction Data: Newtown Square, PA, USA, 2004. [Google Scholar]
Moisture | Organic Carbon | Inorganic Carbon | Ca | Cr(III) | Mg | pH | Conductivity |
---|---|---|---|---|---|---|---|
% | mS/cm | ||||||
11 | 12.2 | 3.1 | 14.8 | 14.1 | 2.4 | 9.1 | 0.96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokkinos, E.; Zouboulis, A. Hydrometallurgical Recovery of Cr(III) from Tannery Waste: Optimization and Selectivity Investigation. Water 2020, 12, 719. https://doi.org/10.3390/w12030719
Kokkinos E, Zouboulis A. Hydrometallurgical Recovery of Cr(III) from Tannery Waste: Optimization and Selectivity Investigation. Water. 2020; 12(3):719. https://doi.org/10.3390/w12030719
Chicago/Turabian StyleKokkinos, Evgenios, and Anastasios Zouboulis. 2020. "Hydrometallurgical Recovery of Cr(III) from Tannery Waste: Optimization and Selectivity Investigation" Water 12, no. 3: 719. https://doi.org/10.3390/w12030719
APA StyleKokkinos, E., & Zouboulis, A. (2020). Hydrometallurgical Recovery of Cr(III) from Tannery Waste: Optimization and Selectivity Investigation. Water, 12(3), 719. https://doi.org/10.3390/w12030719