Groundwater Contribution to Sewer Network Baseflow in an Urban Catchment-Case Study of Pin Sec Catchment, Nantes, France
Abstract
:1. Introduction
2. Materials and Methods
2.1. In-Situ Interactions Between Baseflow and Groundwater Levels
2.1.1. Case Study
2.1.2. Geology and Hydrogeology
2.1.3. Baseflow in Sewer Networks
2.2. Groundwater Modeling at the Urban Catchment Scale
2.2.1. Main Modeling Principles and Assumptions
2.2.2. Urban Groundwater Modeling at the Catchment Scale and Application to the Case Study
3. Results
3.1. Groundwater Dynamics and Experimental Relationship Between Groundwater Level and Baseflow
3.2. Comparison between Modeling Results and Observed Data at the Catchment Scale
3.2.1. Implementation and Calibration of MODFLOW at the Catchment Scale
3.2.2. Groundwater Level Distribution Assessment
3.2.3. Baseflow Rate Assessment
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, J.Y.; Choi, M.J.; Kim, Y.Y.; Lee, K.K. Evaluation of hydrologic data obtained from a local groundwater monitoring network in a metropolitan city, Korea. Hydrol. Process. 2005, 19, 2525–2537. [Google Scholar] [CrossRef]
- Barrett, M.H.; Hiscock, K.M.; Pedley, S.; Lerner, D.N.; Tellam, J.H.; French, M.J. Marker species for identifying urban groundwater recharge sources: A review and case study in Nottingham, UK. Water Res. 1999, 33, 3083–3097. [Google Scholar] [CrossRef]
- Lerner, D.N. Identifying and quantifying urban recharge: A review. Hydrogeol. J. 2002, 10, 134–152. [Google Scholar] [CrossRef]
- Gogu, C.R.; Gaitanaru, D.; Boukhemacha, M.A.; Serpescu, I.; Litescu, L.; Zaharia, V.; Moldovan, A.; Mihailovici, M.J. Urban hydrogeology studies in Bucharest City, Romania. Procedia Eng. 2017, 209, 135–142. [Google Scholar] [CrossRef]
- Sanzana, P.; Gironás, J.; Braud, I.; Muñoz, J.F.; Vicuña, S.; Reyes-Paecke, S.; de la Barrera, F.; Branger, F.; Rodriguez, F.; Vargas, X.; et al. Impact of Urban Growth and High Residential Irrigation on Streamflow and Groundwater Levels in a Peri-Urban Semiarid Catchment. JAWRA J. Am. Water Resour. Assoc. 2019, 55, 720–739. [Google Scholar] [CrossRef]
- Reynolds, J.H.; Barrett, M.H. A review of the effects of sewer leakage on groundwater quality. Water Environ. J. 2003, 17, 34–39. [Google Scholar] [CrossRef]
- Evans, M.G.; Burt, T.P.; Holden, J.; Adamson, J.K. Runoff generation and water table fluctuations in blanket peat: Evidence from UK data spanning the dry summer of 1995. J. Hydrol. 1999, 221, 141–160. [Google Scholar] [CrossRef]
- Scibek, J.; Allen, D.M.; Cannon, A.J.; Whitfield, P.H. Groundwater–surface water interaction under scenarios of climate change using a high-resolution transient groundwater model. J. Hydrol. 2007, 333, 165–181. [Google Scholar] [CrossRef]
- Berthier, E.; Andrieu, H.; Creutin, J.D. The role of soil in the generation of urban runoff: Development and evaluation of a 2D model. J. Hydrol. 2004, 299, 252–266. [Google Scholar] [CrossRef]
- Wittenberg, H. Effects of season and man-made changes on baseflow and flow recession: Case studies. Hydrol. Process. 2003, 17, 2113–2123. [Google Scholar] [CrossRef]
- Thorndahl, S.; Balling, J.D.; Larsen, U.B.B. Analysis and integrated modelling of groundwater infiltration to sewer networks. Hydrol. Process. 2016, 30, 3228–3238. [Google Scholar] [CrossRef]
- Semadeni-Davies, A.; Hernebring, C.; Svensson, G.; Gustafsson, L.-G. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Combined sewer system. J. Hydrol. 2008, 350, 100–113. [Google Scholar] [CrossRef]
- Dirckx, G.; Van Daele, S.; Hellinck, N. Groundwater Infiltration Potential (GWIP) as an aid to determining the cause of dilution of waste water. J. Hydrol. 2016, 542, 474–486. [Google Scholar] [CrossRef]
- Belhadj, N.; Joannis, C.; Raimbault, G. Modelling of rainfall induced infiltration into separate sewerage. Water Sci. Technol. 1995, 32, 161–168. [Google Scholar]
- Dupasquier, B. Modélisation Hydrologique et Hydraulique des Infiltrations D’eaux Parasites dans les Réseaux Séparatifs D’eaux Usées [Hydrological and Hydraulic Modelling of Infiltration into Separate Sanitary Sewers]. Ph.D. Thesis, ENGREF, Paris, France, 26 February 1999. [Google Scholar]
- Houhou, J.; Lartiges, B.S.; France-Lanord, C.; Guilmette, C.; Poix, S.; Mustin, C. Isotopic tracing of clear water sources in an urban sewer: A combined water and dissolved sulfate stable isotope approach. Water Res. 2010, 44, 256–266. [Google Scholar] [CrossRef] [PubMed]
- De Bondt, K.; Seveno, F.; Petrucci, G.; Rodriguez, F.; Joannis, C.; Claeys, P. Potential and limits of stable isotopes (δ18O and δD) to detect parasitic water in sewers of oceanic climate cities. J. Hydrol Reg. Stud. 2018, 18, 119–142. [Google Scholar] [CrossRef]
- Beheshti, M.; Saegrov, S. Quantification assessment of extraneous water infiltration and inflow by analysis of the thermal behavior of the sewer network. Water 2018, 10, 1070. [Google Scholar] [CrossRef] [Green Version]
- Kaushal, S.S.; Belt, K.T. The urban watershed continuum: Evolving spatial and temporal dimensions. Urban Ecosyst. 2012, 15, 409–435. [Google Scholar] [CrossRef]
- Gessner, M.O.; Hinkelmann, R.; Nützmann, G.; Jekel, M.; Singer, G.; Lewandowski, J.; Nehls, T.; Barjenbruch, M. Urban water interfaces. J. Hydrol. 2014, 514, 226–232. [Google Scholar] [CrossRef]
- Schlea, D.; Martin, J.F.; Ward, A.D.; Brown, L.C.; Suter, S.A. Performance and water table responses of retrofit rain gardens. J. Hydrol. Eng. 2013, 19. [Google Scholar] [CrossRef]
- Furumai, H. Rainwater and reclaimed wastewater for sustainable urban water use. Phys. Chem. Earth 2008, 33, 340–346. [Google Scholar] [CrossRef]
- Roldin, M.; Fryd, O.; Jeppesen, J.; Mark, O.; Binning, P.J.; Mikkelsen, P.S.; Jensen, M.B. Modelling the impact of soakaway retrofits on combined sewage overflows in a 3km2 urban catchment in Copenhagen, Denmark. J. Hydrol. 2012, 452, 64–75. [Google Scholar] [CrossRef]
- Mitchell, V.G.; Mein, R.G.; McMahon, T.A. Modelling the urban water cycle. Environ. Modell. Softw. 2001, 16, 615–629. [Google Scholar] [CrossRef]
- Rossman, L.A. Storm Water Management Model User’s Manual Version 5.0. U.S. Environmental Protection Agency, EPA/600/R–05/040. 2009. Available online: https://csdms.colorado.edu/w/images/Epaswmm5_user_manual.pdf (accessed on 24 February 2020).
- Elliott, A.H.; Trowsdale, S.A. A review of models for low impact urban stormwater drainage. Environ. Modell. Softw. 2007, 22, 394–405. [Google Scholar] [CrossRef]
- Gustafsson, L.-G. Alternative Drainage Schemes for Reduction of Inflow/Infiltration—Prediction and Follow-Up of Effects with the Aid of an Integrated Sewer/Aquifer Model. 1st International Conference on Urban Drainage via Internet. 2000. Available online: http://www.dhigroup.com/upload/publications/mouse/Gustafsson_Alternative_Drainage.pdf (accessed on 24 February 2020).
- Wolf, L.; Klinger, J.; Hoetzl, H.; Mohrlok, U. Quantifying mass fluxes from urban drainage systems to the urban soil-aquifer system. J. Soils Sediments 2007, 7, 85–95. [Google Scholar] [CrossRef]
- Harbaugh, A.W. MODFLOW–2005, the U.S. Geological Survey Modular Ground-Water Model-the Ground-Water Flow Process, Techniques and Methods 6–A16, U.S. Geol. Surv., Reston, Va. 2005. Available online: https://pubs.er.usgs.gov/publication/tm6A16 (accessed on 24 February 2020).
- Trefry, M.G.; Muffels, C. FEFLOW: A Finite-Element Ground Water Flow and Transport Modeling Tool. Ground Water 2007, 45, 525–528. [Google Scholar] [CrossRef]
- Mitchell, V.; Diaper, C.; Gray, S.R.; Rahilly, M. UVQ: Modelling the movement of water and contaminants through the total urban water cycle. In Proceedings of the 28th International Hydrology and Water Resources Symposium: About Water, Wollongong, Australia, 10–13 November 2003. Symposium Proceedings 3.131–3.138. [Google Scholar]
- Burn, S.; DeSilva, D.; Ambrose, M.; Meddings, S.; Diaper, C.; Correll, R.; Miller, R.; Wolf, L. A decision support system for urban groundwater resource sustainability. Water Pract. Technol. 2006, 1, wpt2006010. [Google Scholar] [CrossRef]
- Karpf, C.; Krebs, P. Modelling of groundwater infiltration into sewer systems. Urban Water J. 2013, 10, 221–229. [Google Scholar] [CrossRef]
- Schirmer, M.; Leschik, S.; Musolff, A. Current research in urban hydrogeology–A review. Adv. Water Resour. 2013, 51, 280–291. [Google Scholar] [CrossRef]
- Liu, T.; Su, X.; Prigiobbe, V. Groundwater-sewer interaction in urban coastal areas. Water 2018, 10, 1774. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, F.; Andrieu, H.; Morena, F. A distributed hydrological model for urbanized areas—Model development and application to case studies. J. Hydrol. 2008, 351, 268–287. [Google Scholar] [CrossRef]
- Ruban, V.; Rodriguez, F.; Lamprea-Maldonado, K.; Mosini, M.L.; Lebouc, L.; Pichon, P.; Letellier, L.; Rouaud, J.M.; Martinet, L.; Dormal, G.; et al. Le secteur atelier pluridisciplinaire (SAP), un observatoire de l’environnement urbain: Présentation des premiers résultats du suivi hydrologique et microclimatique du bassin du Pin Sec (Nantes). [Interdisciplinary Experimental Observatory dedicated to the urban environment: Presentation of initial hydrological and microclimatic monitoring results from the Pin Sec catchment (Nantes)]. Bulletin de liaison des Lab. des Ponts et Chaussées 2010, 277, 5–18. [Google Scholar]
- BRGM. Notice de la Carte Géologique de Nantes. [Geological Map of Nantes—Instruction] Carte Géologique au 1/50000, Nantes (481). 1970. Available online: http://infoterre.brgm.fr/page/cartes-geologiques (accessed on 24 February 2020).
- Le Delliou, A.-L. Rôle des Interactions Entre les Réseaux D’assainissement et les Eaux Souterraines dans le Fonctionnement Hydrologique D’un Bassin Versant en Milieu Urbanisé—Approche Expérimentale et Modélisations [Sewer Network and Underground Water Interactions Role on the Hydrological Behaviour of an Urban Catchment—Experimental and Modelling Approaches]. Ph.D. Thesis, Ecole Centrale de Nantes (SPIGA), Nantes, France, 7 December 2009. (In French). [Google Scholar]
- Hiscock, K. Hydrogeology: Principles and Practice; Blackwell Science Ltd.: London UK, 2005. [Google Scholar]
- Hvorslev, M.J. Time Lag and Soil Permeability in Ground-Water Observations. Bull. No. 36 1951, Waterways Exper. Sta. Corps of Engrs, U.S. Army, Vicksburg, Mississippi, 1–50. Available online: https://books.google.com (accessed on 24 February 2020).
- Le Delliou, A.L.; Rodriguez, F.; Andrieu, H. Hydrological modelling of sewer network impacts on urban groundwater. La Houille Blanche 2009, 5, 152–158. [Google Scholar] [CrossRef]
- De Bénédittis, J.; Bertrand-Krajewski, J.-L. Infiltration in sewer systems: Comparison of measurement methods. Water Sci. Technol. 2005, 52, 219–227. [Google Scholar] [CrossRef]
- Wittenberg, H.; Aksoy, H. Groundwater intrusion into leaky sewer systems. Water Sci. Technol. 2010, 62, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, Y.; Cheng, X.; Zhu, D.Z.; Shi, H.; Yuan, Z. Quantifying rainfall-derived inflow and infiltration in sanitary sewer systems based on conductivity monitoring. J. Hydrol. 2018, 558, 174–183. [Google Scholar] [CrossRef] [Green Version]
- Carrera-Hernandez, J.J.; Gaskin, S.J. The groundwater modeling tool for GRASS (GTMG): Open source groundwater flow modeling. Comput. Geosci. 2006, 32, 339–351. [Google Scholar] [CrossRef]
- Yang, Y.; Lerner, D.N.; Barrett, M.H.; Tellam, J.H. Quantification of groundwater recharge in the city of Nottingham, UK. Environ. Geol. 1999, 38, 183–198. [Google Scholar] [CrossRef]
- Fatta, D.; Naoum, D.; Loizidou, M. Integrated environmental monitoring and simulation system for use as a management decision support tool in urban areas. J. Env. Manag. 2002, 64, 333–343. [Google Scholar] [CrossRef]
- Boukhemacha, M.A.; Gogu, C.R.; Serpescu, I.; Gaitanaru, D.; Bica, I. A hydrogeological conceptual approach to study urban groundwater flow in Bucharest city, Romania. Hydrogeol. J. 2015, 23, 437–450. [Google Scholar] [CrossRef]
- Johnson, A.I. Specific Yield—Compilation of Specific Yields for Various Materials; US Geological Survey Water-Supply Paper 1662-D; United States Government Printing Office: Washington, DC, USA, 1967; p. 74.
- Chiang, W.-H. 3D-Groundwater Modeling with PMWIN: A Simulation System for Modeling Groundwater Flow and Transport Processes; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Cassan, M. Aide-Mémoire D’hydraulique Souterraine [Groundwater Hydraulic Aide-Memoire]; Presses de l’Ecole Nationale des Ponts et Chaussées: Paris, France, 1993. [Google Scholar]
- Adamiade, V. Influence d’un Fossé sur les Ecoulements Rapides au Sein d’un Versant [The Hydrological Influence of the Ditches on Hillslope Flow: Application to the Pesticides Transfer]. Ph.D. Thesis, Université Pierre et Marie Curie, Géosciences et Ressources Naturelles, Paris, France, 15 March 2004. (In French). [Google Scholar]
- Lockmiller, K.A.; Wang, K.; Fike, D.A.; Shaughnessy, A.R.; Hasenmueller, E.A. Using multiple tracers (F−, B, δ11B, and optical brighteners) to distinguish between municipal drinking water and wastewater inputs to urban streams. Sci Total Environ 2019, 671, 1245–1256. [Google Scholar] [CrossRef]
- Garcia-Fresca, B.; Sharp, J.-M. Hydrogeologic considerations of urban development: Urban-induced recharge. Rev. Eng. Geol. 2005, 16, 123–136. [Google Scholar]
- Vizintin, G.; Souvent, P.; Veselic, M.; Cencur Curk, B. Determination of urban groundwater pollution in alluvial aquifer using linked process models considering urban water cycle. J. Hydrol. 2009, 377, 261–273. [Google Scholar] [CrossRef]
Parameter | Loess and Altered Mica-Schists | Mica-Schists | Alluvial Deposits |
---|---|---|---|
Initial values | |||
Hydraulic conductivity (m/s) | 1 × 10−6 | 1 × 10−7 | 1 × 10−6 |
Specific yield (%) | 20 | 20 | 20 |
Specific storage (1/m) | 1 × 10−5 | 1 × 10−5 | 1 × 10−5 |
Drain conductance (m2/day) | - | 0.9 | - |
Calibrated values | |||
Hydraulic conductivity (m/s) | 1 × 10−4 | 1 × 10−6 | 1 × 10−3 |
Specific yield (%) | 5 | 10 | 10 |
Specific storage (1/m) | 1 × 10−2 | 5 × 10−4 | 1 × 10−2 |
Drain conductance (m2/day) | - | 5 | - |
PZCRI | PZGO | PZCS | PZAF | PZUV | PZJV | PZD | PZCPS | PZPS | PZG | |
---|---|---|---|---|---|---|---|---|---|---|
Zsoil (m) | 28.70 | 26.70 | 25.50 | 24.50 | 23.80 | 22.14 | 21.30 | 21.05 | 20.00 | 17.20 |
Average gw depth (m) | 4.14 | 2.73 | 2.04 | 2.24 | 1.82 | 2.77 | 2.09 | 2.17 | 3.35 | 3.35 |
Minimum gw depth (m) | 5.18 | 4.14 | 3.16 | 3.01 | 3.60 | 3.52 | 2.94 | 2.75 | 3.72 | 4.01 |
Maximum gw depth(m) | 2.85 | 1.65 | 1.00 | 1.53 | 0.10 | 0.13 | 1.48 | 1.66 | 2.76 | 2.73 |
R2(SW) | 0.380 | 0.649 | 0.640 | 0.533 | 0.711 | 0.609 | 0.713 | 0.729 | 0.817 | 0.660 |
R2(WW) | 0.250 | 0.766 | 0.828 | 0.646 | 0.753 | 0.729 | 0.802 | 0.762 | 0.822 | 0.640 |
Criterion | PZCRI | PZGO | PZCS | PZAF | PZUV | PZJV | PZD | PZCPS | PZPS | PZG |
---|---|---|---|---|---|---|---|---|---|---|
Calibration (2006–2007) | ||||||||||
Data availability (%) | 100 | 96 | 87 | 96 | 100 | 100 | 88 | 94 | 100 | 96 |
R2 | 0.66 | 0.32 | 0.48 | 0.50 | 0.44 | 0.48 | 0.24 | 0.36 | 0.45 | 0.44 |
Bias error (%) | 6.87 | −0.38 | −3.47 | 3.36 | −9.16 | −3.12 | 7.02 | −3.15 | 0.90 | 7.93 |
RMSE (m) | 1.80 | 0.56 | 0.87 | 0.87 | 2.10 | 0.64 | 1.39 | 0.70 | 0.23 | 1.11 |
Validation (2007–2008) | ||||||||||
Data availability (%) | 96 | 56 | 98 | 63 | 95 | 99 | 98 | 38 | 100 | 51 |
R2 | 0.81 | 0.45 | 0.64 | 0.60 | 0.26 | 0.05 | 0.63 | 0.76 | 0.78 | 0.70 |
Bias Error (%) | −0.23 | −3.68 | −6.19 | 1.72 | −2.07 | −9.79 | 5.52 | −3.07 | 3.72 | 5.45 |
RMSE (m) | 0.61 | 0.40 | 1.42 | 0.31 | 4.91 | 1.78 | 1.03 | 0.28 | 0.58 | 0.55 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez, F.; Le Delliou, A.-L.; Andrieu, H.; Gironás, J. Groundwater Contribution to Sewer Network Baseflow in an Urban Catchment-Case Study of Pin Sec Catchment, Nantes, France. Water 2020, 12, 689. https://doi.org/10.3390/w12030689
Rodriguez F, Le Delliou A-L, Andrieu H, Gironás J. Groundwater Contribution to Sewer Network Baseflow in an Urban Catchment-Case Study of Pin Sec Catchment, Nantes, France. Water. 2020; 12(3):689. https://doi.org/10.3390/w12030689
Chicago/Turabian StyleRodriguez, Fabrice, Amélie-Laure Le Delliou, Hervé Andrieu, and Jorge Gironás. 2020. "Groundwater Contribution to Sewer Network Baseflow in an Urban Catchment-Case Study of Pin Sec Catchment, Nantes, France" Water 12, no. 3: 689. https://doi.org/10.3390/w12030689
APA StyleRodriguez, F., Le Delliou, A.-L., Andrieu, H., & Gironás, J. (2020). Groundwater Contribution to Sewer Network Baseflow in an Urban Catchment-Case Study of Pin Sec Catchment, Nantes, France. Water, 12(3), 689. https://doi.org/10.3390/w12030689